
On-the-Fly Synchronization Checking
for Interactive Programming in XcalableMP

Tatsuya Abe and Mitsuhisa Sato

P2S2’12
September 10, 2012

Outline

1. What is XcalableMP?

2. Verification of XcalableMP programs

3. Implementation of a Verification Tool

4. Experiment

5. Conclusion, Related Work, and Future Work

Outline

1. What is XcalableMP?

2. Verification of XcalableMP programs

3. Implementation of a Verification Tool

4. Experiment

5. Conclusion, Related Work, and Future Work

XcalableMP

XcalableMP (XMP) is a new programming language.

In XMP, we can write a program to use parallel and

distributed computational environments effectively.

XMP = C + directives (∼ OpenMP)

� �
#pragma xmp loop on t(i)

for (i=0; i<100; i++) {
a[i]=a[i]+a[i+1];

}� �

MPI vs. XMP

Message Passing Interface (MPI) is a communication

standard for HPC.

� �
int a[101];

a[100]=a[0];

for (i=0; i<100; i++) {
a[i]=a[i]+a[i+1];

}� �

To compute it in paral-

lel, distribute a into two

computational nodes and

synchronize its boundary.

0

&&MM
MMM

MMM
MMM

M · · · 49 (50)

50

88qqqqqqqqqqqq
· · · 99 (0)

MPI

To compute it in parallel, distribute

a into two computational nodes

and synchronize its boundary.

By message passing in MPI:

0

&&MM
MMM

MMM
MMM

M · · · 49 (50)

50

88qqqqqqqqqqqq
· · · 99 (0)� �

int a[51];

MPI_Comm_rank(MPI_COMM_WORLD, &me);

...

you=(me+1)%2;

MPI_Irecv(&(a[50]), 1, MPI_DOUBLE, you, MPI_ANY_TAG, MPI_COMM_WORLD, &req);

MPI_Send(&(a[0]), 1, MPI_DOUBLE, you, MPI_ANY_TAG, MPI_COMM_WORLD);

MPI_Wait(&req, &stat);

for (i=0; i<50; i++) { a[i]=a[i]+a[i+1]; }� �

XMP� �
#pragma xmp nodes p(2)

#pragma xmp template t(100)

#pragma xmp distribute t(block) onto p

int i, a[100];

#pragma xmp align a[i] with t(i+1)

#pragma xmp shadow a[0:1]

...

#pragma xmp reflect (a) width (/periodic/0:1)

#pragma xmp loop on t(i)

for (i=0; i<100; i++) { a[i]=a[i]+a[i+1]; }� �

Outline

1. What is XcalableMP?

2. Verification of XcalableMP programs

3. Implementation of a Verification Tool

4. Experiment

5. Conclusion, Related Work, and Future Work

Program Verification in XMP

XMP programming ∼ directive programming� �
#pragma xmp shadow a[1:3]

#pragma xmp reflect (a) width (1:3)

...

#pragma xmp reflect (a) width (1:2)� �� �
#pragma xmp shadow b[1:2]

#pragma xmp reflect (b) width (1:3)

...(no occurence of b)...

#pragma xmp reflect (b) width (1:2)� �

Redundant bcast� �
#pragma xmp bcast (a) from p(1) on p(2:10)

#pragma xmp bcast (a) from p(2) on p(11:20)

#pragma xmp bcast (a) from p(1) on p(10:11)� �
Redundant lock and unlock� �
#pragma xmp lock (a[1]:[1])

#pragma xmp lock (a[1]:[1])

#pragma xmp unlock (a[2]:[1])� �

Missing Directive

Access distributed arrays without any directive:� �
#pragma xmp distribute t(block) onto p

int i;

int a[100];

#pragma xmp align a[i] with t(i)

...

b=a[0]� �

Static and Light-Weight Checking in XMP

We wish a program verifier would satisfy

• Correctness (no false positive): warning→ error

• Completeness (no false negative): error→ warning

Types of program verifiers:

• dynamic vs. static

• light-weight vs. heavy-weight

Static and Light-Weight Checking in XMP

We wish a program verifier would satisfy

• Correctness (no false positive): warning→ error

• Completeness (no false negative): error→ warning

Types of program verifiers:

• dynamic vs. static

• light-weight vs. heavy-weight

The algorithm is in the proceedings.

A work using more heavy-weight methods is on-going.

Outline

1. What is XcalableMP?

2. Verification of XcalableMP programs

3. Implementation of a Verification Tool

4. Experiment

5. Conclusion, Related Work, and Future Work

Implementation of Engine

A stream-processing program tends to be hard to read.

To keep readability of the source code of our tool, use

• a parser combinator library Parsec

• user-defined datatypes in Haskell, and

• pattern-matchings by constructors of the user-defined

datatypes.

Implementation of User Interface

The engine takes a source

code and returns line numbers.

Possible to link any editor.

In this work, link our tool to

GNU Emacs.

Every time a buffer is updated,

check the source code.

Outline

1. What is XcalableMP?

2. Verification of XcalableMP programs

3. Implementation of a Verification Tool

4. Experiment

5. Conclusion, Related Work, and Future Work

Experiment

Every time find a di-

rective, add it to a

table. The worst

case is when ev-

ery directive is sus-

pended to be redun-

dant/missing or not.

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 1000 2000 3000 4000

T
im

e
 (

s
e

c
.)

Synchronization Directives

Core i7-M640/Windows 7
Core i7-M640/Ubuntu 11.04

Xeon X5650/CentOS 6.2

The worst case time complexity is O(n2) where n is not # of

synchronizations but # of directives.

Outline

1. What is XcalableMP?

2. Verification of XcalableMP programs

3. Implementation of a Verification Tool

4. Experiment

5. Conclusion, Related Work, and Future Work

Conclusion

We develop a programming tool:

• Checks errors when writing an XcalableMP program,

• Uses XMP’s features,

• Linked to GNU Emacs (possibly other IDEs), and

• Runs fast.

Abstract descriptions in XMP are useful to not only

development of a program but also verification of the

program.

Related Work

Verification by using features of languages is standard

in imperative, functional, logic, object-oriented, and

aspect-oriented programming fields etc.

In PGASs only,

• UPC-SPIN: static, detect race

• UPC-CHECK: run-time check, detect deadlock etc.

In this work, oriented to light-weightness (just like of a

spell-checking tool Flyspell or a variable occurence-check

Eclipse plugin) and a little complicated error check in XMP.

Future Work

In this work, oriented to light-weight check XMP programs.

• To detect more kinds of errors (race, dead-lock, etc.)

• To detect missing directives by model checking

are left to future work.

