ON-THE-FLY SYNCHRONIZATION CHECKING
FOR INTERACTIVE PROGRAMMING IN XCALABLEMP

TATSUuYA ABE AND MITSUHISA SATO

P252'12
SepTEMBER 10, 2012

Outline

1. What is XcalableMP?

2. Verification of XcalableMP programs
3. Implementation of a Verification Tool
4. Experiment

5. Conclusion, Related Work, and Future Work

Outline

1. What is XcalableMP?

XcalableMP

XcalableMP (XMP) is a new programming language.

In XMP, we can write a program to use parallel and
distributed computational environments effectively.

XMP = C + directives (~ OpenMP)

-
#pragnma xnp |l oop on t(1)

for (i=0; i<100; i++) {
a[i]=a[i]+a[i+1];

}

N

MPI| vs. XMP

Message Passing Interface (MPI) is a communication
standard for HPC.

To compute it in paral-
lel, distribute a into two

Int a[101]; A computational nodes and
al 100] =a[0] ; synchronize its boundary.
for (i=0; i<100; i++) {
a[i]=ali]+a[i+1]; 01|49 |(50)
: >
N / \

50 [- | 99 | (0) |

MPI

To compute it in parallel, distribute

a into two computational nodes O} 497 (50) ‘
and synchronize its boundary. ><

By message passing in MP!I: 50 99A (0) ‘
Ki nt a[51]; \

MPI _Comm r ank(MPI _COVM WORLD, &ne);

you=(ne+l) %2;

MPI _Irecv(& a[50]), 1, WMPI_DOUBLE, you, MPI_ANY_TAG MPI_COWM WORLD, &req);
MPI _Send(&(a[0]), 1, MPI_DOUBLE, you, MPI_ANY _TAG MPI_COVM WORLD);

MPI WAit(& eq, &stat);

for (i=0; i<50; i++) { a[i]=a[i]+a[i+1]; }

XMP

#pragma xnp nodes p(2)

#pragnma xnp tenplate t(100)

#pragma xnp distribute t(block) onto p
Int 1, a[100];

#pragma xnp align afi] wth t(i+1)
#pragma xnp shadow af 0: 1]

#pragma xnp reflect (a) wdth (/periodic/0:1)
#pragma xnp | oop on t(1)
for (i=0; 1<100; i++) { a[i]=a[i]+a[i+1]; }

N\

J

Outline

2. Verification of XcalableMP programs

Program Verification in XMP

XMP programming ~ directive programming

//#pragna Xmp shadow a[1: 3] h

#pragma xnp reflect (a) wdth (1:3)

#pragma xnmp reflect (a) wmdth (1:2)

o

N

#pragma xnp shadow b[1: 2]
#pragma xnp reflect (b) wdth (1:3)
...(no occurence of b)...

#pragma xnmp reflect (b) wdth (1:2)
. _/

R

edundant bcast

N

#pragma xnp bcast (a) fromp(1l) on p(2:10)
#pragma xnp bcast (a) fromp(2) on p(1ll:20)
#pragma xnp bcast (a) fromp(l) on p(10:11)

~

/

R

edundant | ock and unl ock

-

#pragma xnp lock (a[1l]:[1])
#pragma xnp lock (a[l1l]:[1])
#pragma xnp unlock (a[?2]:[1])

Missing Directive

Access distributed arrays without any directive:

/
#pragma xnp distribute t(block) onto p A

Int | ;
I nt a[100];
#pragma xnp align afi] wmth t(i)

b=al O
| Pmalol Y

Static and Light-Weight Checking in XMP

We wish a program verifier would satisfy

e Correctness (no false positive): warning — error

e Completeness (no false negative): error — warning
Types of program verifiers:

e dynamic vs. static

e light-weight vs. heavy-weight

Static and Light-Weight Checking in XMP

We wish a program verifier would satisfy
e Correctness (no false positive): warning — error

e Completeness (no false negative): error — warning

Types of program verifiers:
e dynamic vs. static
e light-weight vs. heavy-weight

The algorithm is in the proceedings.
A work using more heavy-weight methods is on-going.

Outline

3. Implementation of a Verification Tool

Implementation of Engine

A stream-processing program tends to be hard to read.

To keep readability of the source code of our tool, use
e a parser combinator library Parsec
e user-defined datatypes in Haskell, and

e pattern-matchings by constructors of the user-defined
datatypes.

Implementation of User Interface

The engine takes a source
£ emacs@ABET-VAIO == %

code and returns line numbers. |[;: =« e s <o

#tpragma xmp nodes p(2) -
fipragma xmp template t(9)
fipragma xmp distribute t(block) onto p

Possible to link any editor. i

#tpragma xmp align b[i] with t(i)
#tpragma xmp shadow b[1:2]

int a[9];

int main(void){

In this work, link our tool tO| e o w02

a[0]=b[0];
#tpragma xmp reflect (b) width [1:3]

GNU EmaCS fipragma xmp reflect (b) width [1:2]

#ipragma xmp becast (a) from p(1) on p(2)
fipragma xmp bcast (a) from p(2) on p(3)

. . #pragma xmo beast (a) from p(1) on p(3)
Every time a buffer is updated, B
check the source code.

il

tpragma xmp lock (al1]:[1])
#ipragma xmp unlock (a[11:[101)

return @;
}
I

-(Unix)--- redundant.c AlLL (28,0) (XcalableMP/C Dio Abbrev)

MUDA! Possibly redundant synchronizations.

Outline

4. Experiment

Experiment

Core i7-M640/Windows 7

Every time find a di- "*| e =
rective, add it to a r
table. The worst 5 o8}
case Is when ev- ¢ os)
ery directive IS sus- o4t
pended to be redun- o2}
dant/missing or not.

(se

0 1000 2000 3000 4000
Synchronization Directives

The worst case time complexity is O(n?) where n is not # of
synchronizations but # of directives.

Outline

5. Conclusion, Related Work, and Future Work

Conclusion

We develop a programming tool:
e Checks errors when writing an XcalableMP program,
e Uses XMP’s features,
e Linked to GNU Emacs (possibly other IDESs), and
e Runs fast.

Abstract descriptions in XMP are useful to not only

development of a program but also verification of the
program.

Related Work

Verification by using features of languages is standard
In imperative, functional, logic, object-oriented, and
aspect-oriented programming fields etc.

In PGASS only,
e UPC-SPIN: static, detect race
e UPC-CHECK: run-time check, detect deadlock etc.

In this work, oriented to light-weightness (just like of a
spell-checking tool Flyspell or a variable occurence-check
Eclipse plugin) and a little complicated error check in XMP.

Future Work

In this work, oriented to light-weight check XMP programs.
e To detect more kinds of errors (race, dead-lock, etc.)
e To detect missing directives by model checking

are left to future work.

