
Cross-Platform OpenCL Code and Performance
Portability for CPU and GPU Architectures

investigated with a Climate and Weather Physics Model

Han Dong
Dibyajyoti Ghosh

Fahad Zafar
Shujia Zhou

Motivation

• Explore OpenCL in accelerating a real world
computationally intensively application. (NASA
climate and weather physics model)

• Investigate both the performance and code
portability of OpenCL with GPUs and CPUs.

• Extend the work of Zafar et al [1] by:
– Producing a baseline OpenCL code that compiles and

runs on both CPUs and GPUs.
– Maintain the accuracy of serial code.

Outline

• Solar Radiation Model

• Experimental Setup

• Porting and Optimizations

• Results

• Explicit AVX Registers

• Conclusion

SOLAR RADIATION MODEL

NASA GEOS-5 Code Structure

NASA GEOS-5

• Solar radiation component of NASA’s GEOS-5 takes
~10% of model computation time.

• NASA is interested in analysis of performance and cost
benefit using non traditional computing systems.

• GEOS-5 - 20+ years old, written in Fortran (mostly), still
evolving.

• Cannot be entirely rewritten due to production
constraints.

Processes in a Climate Model

Code Structure of SOLAR

Experimental Setup

PORTING AND OPTIMIZATIONS

OpenCL Compilation Model

• OpenCL uses Dynamic/Runtime compilation model [2]
1. Code is first compiled to an Intermediate Representation (IR)

– Done once and IR is stored

2. IR is compiled to machine code for execution
– Application loads IR and performs compilation during run time

• Preprocessor macros were used for constant variables that
dictated kernel loop iterations.

• Preprocessor macros enable OpenCL dynamic compilation to
ensure that the variable is known at kernel compile time
allowing compilers to perform implicit loop unrolling.

CLDFLX Serial

Initialize

Update

Finalize

CLDFLX Parallel

DownKernel

CLDFLX Parallel

UpKernel

CLDFLX Parallel

ReductionKernel

RESULTS

Accomplishments

• A single parallel OpenCL code runnable across multiple
platforms consisting of IBM Cell Processors, multicore CPUs
and GPUs.

• Achieved parallel implementation accuracy of 1.0 × 10−6 in
numerical differences when compared to serial
implementation (increased from 1.0 × 10−4 of Fahad et al
[1]).

• Discovered OpenCL can enable CPU devices to achieve
dramatic performance improvements.

Performance Results

Assembly Dump

Intel Streaming SIMD Extensions

• Designed by Intel and introduced in 1999.

• Increases performance when the same operation are
performed on multiple data objects.

• Registers:
– SSE

– SSE2

– SSE3

– SSE4

– AVX

How does it work?

• Intel SSE packs multiple data into fixed size
registers and applies same instructions to all data
in parallel.

How does OpenCL contribute?

• OpenCL coding style is SIMD based as it is intended to run on GPUs.

• Optimizations that are important for GPUs such as reducing thread
divergence and improving coalesced memory accesses helps CPU
compilers.

• SIMD style of kernel programming eliminates complex loop
constructs. This helps compilers by providing more effective
vectorization as it usually behaves in a conservative manner for
vectorization [3][4].

• Data dependence and cycles are broken through the optimization of
kernels originally intended to execute on GPUs to fully exploit the
SIMD feature of CPU vector processors.

GPU Results

• Reduced the original 70 kernels from Zafar et
al [1] to about half (36 kernels).

• Exploring local memory was severely limited
due to the simplified kernels.

• Development Time vs Performance

Explicit AVX Registers

• Difficulties:

• Affect the performance
portability due to targeting a
specific vector width

• Vector data types cannot be
used in conditional statement

• Utilized built-in relational
functions such as isgreater
or isless and called stub
functions for each side of
the conditional

• Pad arrays to be divisible by 8

Intel ICC Compiler Comparisons

Execution time comparisons of serial code compiled with
GCC, serial code compiled with Intel ICC (12.1.4) on Intel i7-2630QM
CPU, and parallel OpenCL implementations.

1

10

100

1000

10000

100000

1000000

10000000

GCC Serial
Code

ICC Serial
Code

OpenCL Code OpenCL AVX
Code

Ti
m

e
 (

M
ic

ro
se

co
n

d
s)

Total Time

SOLUV

SOLIR

Performance Results

Execution time comparison between OpenCL code and OpenCL
code using explicit AVX intrinsic on Intel Core i7-2630QM CPU on 128
column size.

Conclusion

• Developed an OpenCL code for a representative
climate and weather physics model that is able to
run across multiple platforms.

• OpenCL’s kernel programming and execution
model facilitates the compiler to vectorize the
code and consequently improve performance.

References
[1] F. Zafar, D. Ghosh, L. Sebald, and S. Zhou, “Accelerating a climate
physics model with OpenCL,”Symposium on Application Accelerators in
High-Performance Computing 2011, 2011.

[2] Intel, “Writing optimal opencl code with intel opencl sdk,”
http://software.intel.com/file/39189, 2011.

[3] M. Garzarn and S. Maleki, “Program optimization through loop
vectorization,”
http://agora.cs.illinois.edu/download/attachments/38305904/9-
Vectorization.pdf, 2010.

[4] C. M. J. Garzaran, “Loop vectorization,”
https://agora.cs.illinois.edu/download/attachments/28937737/10-
Vectorization.pdf, 2010.

