
When and how VOTM can improve performance
in contention situations

Kai-Cheung Leung
Yawen Chen
Zhiyi Huang

University of Otago
New Zealand

P2S2 2012

Locks vs Transactional Memory (TM)

I Parallel programming is becoming mainstream

I Parallel programming models need to facilitate both
performance and convenience

I In shared-memory models, Shared data generally manged
either by:

Locking Each shared object needed to be accessed
atomically is protected by a lock. Lock is
acquired before access and released after access

TM Transactions are used to access shared data
atomically. All processes enter transactions
freely and commit at the end of transactions,
and if conflict occurs, one or more transactions
abort and restart

I Problems in lock-based models:
I Manually arranging fine-grain locks is tedious, and prone to

errors such as deadlock and data race
I Coarse grain locks has little concurrency

I Problems in TM models:
I When conflict is rare, encourage high concurrency, but...
I When conflict is high, transactions can abort each other and

little progress is made

Solution: Restricted Admission Control (RAC)

I Shared memory is like a room, and

I traditional TM models freely admits anyone into the room
regardless of contention.

I RAC is like the doorman, who limits the number of people in
the room depending on contention.

I RAC allows Q people in the room at a given time.
1 <= Q <= N

I When Q = N, unrestricted admission, likes traditional TM

I When Q = 1, likes lock

Another problem...

I Contention in different places in memory is different

I e.g. many people fight for access to the PlayStation in a
room,

I but a few hard-working students are interested in accessing
the bookself at the other side of the room

I However, it’s unreasonable to restrict access to the books
because of high contention on the PlayStation, and would
unnecessarily impede concurrency of the people (processes)
wanting to read the books on the bookshelf

Solution: View-Oriented Transactional Memory (VOTM)

I View-Oriented Parallel Programming (VOPP) a data-centric
model which:

I Variables private to the process by default
I Each shared object must be explicited declared as “views”
I Views must not overlap
I Views are acquired before access and released after access

I VOTM is to control access to each view with TM, where:
I A transaction begins when the view is accessed and ends when

the view is released
I Therefore shared data that can be accessed together can be

put into the same view
I Now each view is guarded by its own doorman (RAC)

individually given the contention of the view
I Therefore when admission to the popular PlayStation is

restricted, access to the bookshelf is not affected

Little instrumentation needed to parallelize existing code
with VOTM
1 typedef struct Node_rec Node;

2

3 struct Node_rec {

4 Node *next;

5 Elem val;

6 };

7

8 typedef struct List_rec {

9 Node *head;

10 } List;

11

12 List *ll_alloc(vid_type vid) {

13 List *result;

14 create_view(vid, size, 0);

15 result = malloc_block(vid, sizeof(result[0]));

16 acquire_view(vid);

17 result->head = NULL;

18 release_view(vid);

19 return result;

20 }

Figure: Code snippet of list allocation in VOTM

1 void ll_insert(List *list, Node *node, vid_type vid) {

2 Node *curr;

3 Node *next;

4

5 acquire_view(vid);

6

7 if (list->head->val >= node->val) {

8 /* insert node at head */

9 node->next = list->head;

10 list->head = node;

11 } else {

12 /* find the right place */

13 curr=list->head;

14 while (NULL != (next = curr->next) &&

15 next->val < node->val) {

16 curr = curr->next;

17 }

18 /* now insert */

19 node->next = next;

20 curr->next = node;

21 }

22 release_view(vid);

23 }

Figure: Code snippet of list insertion in VOTM

Current Work - RAC theoretical model

I We have developed a theoretical model for RAC, that
suggests time spent in aborted and successful transactions
should be used to calculate whether the admission quota Q
needs to be adjusted:

δ(Q) =
CPUcyclesaborted tx

CPUcyclessuccessful tx ∗ (Q − 1)
(1)

and if δ(Q) > 1, then Q should be decreased

I The RAC model can also be applied individually in each view
in multiple-view cases.

VOTM-OrecEagerRedo on a 64-core machine

VOTM prevents livelocks and relieves high contention in
application data by restricting access through RAC.

 0

 20

 40

 60

 80

 100

 120

Eigenbench Intruder Vacation SSCA2 Labyrinth

Ti
m

e
 (

s)

Applications

TM
VOTM

Figure: Single-view applications in VOTM-OrecEagerRedo (Eigenbench
on TM is not shown due to livelock)

VOTM can further improve performance by splitting shared data
into multiple views, which allows fine-grain access optimization by
RAC on each view.

 0

 20

 40

 60

 80

 100

 120

Eigenbench Intruder

Ti
m

e
 (

s)

Applications

1-view-nr
1-view

2-view-nr
2-view

Figure: 2-view based applications on VOTM-OrecEagerRedo. For
Eigenbench, its 1-view-nr and 2-view-nr versions have livelock.

VOTM-NOrec

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Eigenbench Intruder Vacation SSCA2 Labyrinth

Ti
m

e
 (

s)

Applications

TM
VOTM

Figure: Single-view applications in VOTM-NOrec

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

Eigenbench Intruder

Ti
m

e
 (

s)

Applications

1-view-nr
1-view

2-view-nr
2-view

Figure: Two-view applications in VOTM-NOrec

Table: Performance of VOTM Intruder

2-view-nr 2-view
Version time #cmiss δ1 δ2 time #cmiss Q1 Q2
OrecEagerRedo 107.6 15.5G 0.95 0.003 25.8 8.1G 8 64
NOrec 105.2 18.5G 0.004 0.004 37.0 4.7G 16 16

Table: Single-view applications in VOTM-OrecEagerRedo

TM VOTM
Application time δ cachemiss time Q cachemiss
Vacation 5.16 0.002 3.65G 5.36 64 3.69G
SSCA2 9.21 0.00001 2.07G 9.31 64 2.21G
Labyrinth 8.09 0.03 6.73G 8.13 64 6.74G

Table: Single-view applications in VOTM-NOrec

TM VOTM
Application time δ cachemiss time Q cachemiss
Vacation 48.0 0.00002 25.5G 24.9 16 5.93G
SSCA2 130.3 0.00004 4.37G 45.1 16 3.88G
Labyrinth 8.32 0.03 6.79G 8.35 64 6.81G

View partitioning can relieve TM metadata contention

Table: MultiRBTree in VOTM-NOrec

version #tx #abort #cachemiss

1-view-nr 32m 329k 11.6G

1-view 32m 180 4.76G

2-view-nr 32m 88.1k 7.30G

2-view 32m 388 4.63G

4-view-nr 32m 26.4k 4.75G

4-view 32m 2.02k 4.52G

8-view-nr 32m 41.1k 4.36G

8-view 32m 32.4k 4.26G

 0

 20

 40

 60

 80

 100

 120

 1 2 4 8

Ti
m

e
 (

s)

Number of views

TM
VOTM

Figure: MultiRBTree in VOTM-NOrec

I Both Eigenbench and Intruder show view partitioning can
improve performance by allowing fine-grain contention control
of each view by RAC.

I Also in Intruder, δ1 is large, which suggests high contention,
and performance is improved by decreasing Q1. δ2 is very low,
so the theorem correctly predicts that Q2 should stay at 64.

I In Vacation, SSCA2 and Labyrinth, the theorem correctly
predicts that Q should not be reduced in
VOTM-OrecEagerRedo.

I In VOTM-NOrec, the very low δ scores suggests low
application data contention, but results show further
performance improvements by restricting Q due to reduction
of metadata contention (indicated by the reduction of cache
misses).

I Similarly, MultiRBTree shows view partitioning alone can also
improve performance by alleviating the contention on TM
metadata.

Conclusions

I VOTM improves both progress and concurrency by allowing
shared data with different access patterns to be allocated into
different views and use RAC to optimize each view individualy
according to its contention

I VOTM can also relieve TM metadata contention by RAC and
fine-grain views

I The current dynamic adjustment algorithm only takes into
account of the application data contention. This algorithm
needs to be refined to take care TM overheads, e.g., TM
metadata contention

