Chunked Extendible Dense Arrays for Scientific Data Storage

G. Nimako, E.J. Otoo, D. Ohene-Kwofie

School of Computer Science
The University of the Witwatersrand
Johannesburg, South Africa

Fifth International Workshop on Parallel Programming Models and Systems Software for High-End Computing (P2S2)

September 2012
Outline

1 Introduction

2 Linear Mapping for a Dense Extendible Array

3 Chunking Extendible Dense Arrays

4 Axial-Vectors as Memory Resident O_2-Tree

5 Experimental Results

6 Summary and Future Work
Introduction

- Multidimensional arrays has been proposed as the most appropriate model for representing scientific databases.

- Scientific data analysis use multidimensional arrays as their fundamental data structure. Examples of Array Files:
 - HDF/HDF5 and variants
 - NetCDF/pNetCDF
 - FITS
 - Global Array toolkit

- SciDB is being organised around multidimensional array storage.

- The problem is that such datasets gradually grow to massive sizes of the order of peta-bytes.
Multidimensional arrays has been proposed as the most appropriate model for representing scientific databases.

Scientific data analysis use multidimensional arrays as their fundamental data structure. Examples of Array Files:

- HDF/HDF5 and variants
- NetCDF/pNetCDF
- FITS
- Global Array toolkit

SciDB is being organised around multidimensional array storage.

The problem is that such datasets gradually grow to massive sizes of the order of peta-bytes.
Multidimensional arrays has been proposed as the most appropriate model for representing scientific databases.

Scientific data analysis use multidimensional arrays as their fundamental data structure. Examples of **Array Files**:

- HDF/HDF5 and variants
- NetCDF/pNetCDF
- FITS
- Global Array toolkit

SciDB is being organised around multidimensional array storage.

The problem is that such datasets gradually grow to massive sizes of the order of peta-bytes.
Introduction

- Multidimensional arrays has been proposed as the most appropriate model for representing scientific databases.

- Scientific data analysis use multidimensional arrays as their fundamental data structure. Examples of Array Files:
 - HDF/HDF5 and variants
 - NetCDF/pNetCDF
 - FITS
 - Global Array toolkit

- SciDB is being organised around multidimensional array storage.

- The problem is that such datasets gradually grow to massive sizes of the order of peta-bytes.
Introduction - Problem Motivation

- k-dimensional arrays represented in linear consecutive locations cannot extend without reallocation of already stored elements.

Definition

A realisation of the array $A[U_0][U_1]...[U_{k-1}]$ in $L[n]$ for $n = \prod_{j=0}^{k-1} U_j$, is a mapping function, $F : U^k \rightarrow L$, of the elements of A, one-to-one, onto the address, $\{0, 1, ..., n\}$ with $F(0,0,...,0) = 0$.

Row major realisation

$$q = F(i_0, i_1, i_2, ..., i_{k-1}) = s_0 + i_0 C_0 + i_1 C_1 + ... + i_{k-1} C_{k-1}$$

$$C_j = \prod_{r=j+1}^{k-1} U_r, 0 \leq j \leq k - 1, C_{k-1} = 1$$

- The limitation imposed by $F()$ is that extensions of the array can only be done on one dimension (i.e. that is dimension U_0 since it was not used in the evaluation of $F()$).
- k-dimensional arrays represented in linear consecutive locations cannot extend without reallocation of already stored elements.

Definition

A realisation of the array $A[U_0][U_1]...[U_{k-1}]$ in $L[n]$ for $n = \prod_{j=0}^{k-1} U_j$, is a mapping function, $\mathcal{F} : U^k \rightarrow L$, of the elements of A, one-to-one, onto the address, $\{0, 1, \ldots, n\}$ with $\mathcal{F}(0, 0, \ldots, 0) = 0$.

Row major realisation

$$q = \mathcal{F}(i_0, i_1, i_2, \ldots, i_{k-1}) = s_0 + i_0 C_0 + i_1 C_1 + \ldots + i_{k-1} C_{k-1}$$

$$C_j = \prod_{r=j+1}^{k-1} U_r, 0 \leq j \leq k - 1, C_{k-1} = 1$$

- The limitation imposed by $\mathcal{F}(\cdot)$ is that extensions of the array can only be done on one dimension (i.e. that is dimension U_0 since it was not used in the evaluation of $\mathcal{F}(\cdot)$).
Introduction - Problem Motivation

- This extendibility limitation degrades performance of various array operations particularly in scientific and engineering applications that sometimes undergo interleaved extensions.

- For example, some data processing applications require incremental tiling of adjacent scenes and progressive inclusion of selected bands.

- Extendible arrays, on the other hand can handle dynamic growth in the bounds of the dimensions.

- These arrays can expand in any dimension without reorganising already allocated array element.
Outline

1. Introduction

2. Linear Mapping for a Dense Extendible Array

3. Chunking Extendible Dense Arrays

4. Axial-Vectors as Memory Resident O_2-Tree

5. Experimental Results

6. Summary and Future Work
The mapping function for extendible array uses axial-vectors to store information needed to compute the function.

A vector-list of axial-vectors is maintain for each dimension.

Let $A[U_0^*][U_1^*][U_2^*]$ be an arbitrary 3-dimensional array, where U_j^* denotes the bound that has the ability to grow as opposed to a fixed bound U_j as in the conventional array.

Similarly we employ the notation:
- $F()$ when referring to conventional array mapping function.
- $F^*()$ when referring to a mapping function that allows extendibility in any dimension.
The mapping function for extendible array uses axial-vectors to store information needed to compute the function.

A vector-list of axial-vectors is maintain for each dimension.

Let \(A[U_0^*][U_1^*][U_2^*] \) be an arbitrary 3-dimensional array, where \(U_j^* \) denotes the bound that has the ability to grow as opposed to a fixed bound \(U_j \) as in the conventional array.

Similarly we employ the notation:
- \(F() \) when referring to conventional array mapping function.
- \(F^*() \) when referring to a mapping function that allows extendibility in any dimension.
Linear Mapping for a Dense Extendible Array - Illustration

G. Nimako, E.J. Otoo, D. Ohene-Kwofie
School of Computer Science
The University of the Witwatersrand
Johannesburg, South Africa

Chunked Extendible Dense Arrays for Scientific Data Storage
September 2012 8 / 25
Suppose that in a k-dimensional extendible array $A[U_0^*][U_1^*][U_2^*]...[U_{k-1}^*]$, dimension l is extended by λ_l, then the index range increases from U_l^* to $U_l^* + \lambda_l$.

Let the location $A\langle 0, 0, ..., U_l^*, ..., 0 \rangle$ (i.e. the starting location of an allocated hyperslab) be denoted as ℓZ_l^* where $Z_l^* = \prod_{r=0}^{k-1} U_r^*$.

The Mapping Function

$$q^* = F^*(\langle i_0, i_1, i_2, ..., i_{k-1} \rangle) = Z_l^0 U_l^* + (i_l - U_l^*) C_l^* + \sum_{j=0}^{k-1} i_j C_j^*$$

$$C_l^* = \prod_{j=0}^{k-1} U_j^*$$

$$C_j^* = \prod_{r=j+1}^{k-1} U_r^*$$
Suppose that in a k-dimensional extendible array $A[\mathbf{U}_0^*][\mathbf{U}_1^*][\mathbf{U}_2^*]...[\mathbf{U}_{k-1}^*]$, dimension l is extended by λ_l, then the index range increases from \mathbf{U}_l^* to $\mathbf{U}_l^* + \lambda_l$.

Let the location $A\langle 0,0,...,\mathbf{U}_l^*,...,0 \rangle$ (i.e. the starting location of an allocated hyperslab) be denoted as $\ell \mathbf{Z}_l^*$ where $\mathbf{Z}_l^* = \prod_{r=0}^{k-1} \mathbf{U}_r^*$.

The Mapping Function

$$q^* = \mathcal{F}^*(\langle i_0, i_1, i_2, ..., i_{k-1} \rangle)) = \mathbf{Z}_0^*_{\mathbf{U}_l^*} + (i_l - \mathbf{U}_l^*) \mathbf{C}_l^* + \sum_{\substack{j=0 \\ j \neq l}}^{k-1} i_j \mathbf{C}_j^*$$

$$C_l^* = \prod_{\substack{j=0 \\ j \neq l}}^{k-1} \mathbf{U}_j^*$$

$$C_j^* = \prod_{\substack{r=j+1 \\ r \neq l}}^{k-1} \mathbf{U}_r^*$$
Outline

1. Introduction

2. Linear Mapping for a Dense Extendible Array

3. Chunking Extendible Dense Arrays

4. Axial-Vectors as Memory Resident O_2-Tree

5. Experimental Results

6. Summary and Future Work
The use of the vector-list for axial-vectors can be expensive and depends particularly on the interruptible expansions (cubical extensions).

Such interruptible expansion causes the addition of a new entry in the vector-list.

Chunking the array gives some additional advantages:

- It gives contiguous storage allocations for the elements of the chunks.
- When arrays are allocated onto secondary storage, I/O can be made in multiples of the chunk size.

The allocation is done in chunks as opposed to the single elements.
The use of the vector-list for axial-vectors can be expensive and depends particularly on the interruptible expansions (cubical extensions).

Such interruptible expansion causes the addition of a new entry in the vector-list.

Chunking the array gives some additional advantages:

- It gives contiguous storage allocations for the elements of the chunks.
- When arrays are allocated onto secondary storage, I/O can be made in multiples of the chunk size.

The allocation is done in chunks as opposed to the single elements.
Given a chunked block $Q[\chi_0][\chi_1][\chi_2]...[\chi_{k-1}]$, the number of chunk indices, ρ_i for a given dimension i, is given by:

$$\rho_i = \left\lceil \frac{U_i^*}{\chi_i} \right\rceil$$

The allocation of chunks, denoted by A_c, becomes $A_c[\rho_0][\rho_1][\rho_2]...[\rho_{k-1}]$.

An entry is made to the requisite axial-vector only if this condition is met:

$$[U_i^* + \lambda_i] > [\rho_i \times \chi_i]$$

The number of chunks ρ_i to be allocated is given by:

$$\rho_i = \left\lceil \frac{[U_i^* + \lambda_i] - [\rho_i \times \chi_i]}{\chi_i} \right\rceil$$
Chunking Extendible Dense Arrays

- Given a chunked block \(Q[\chi_0][\chi_1][\chi_2]...[\chi_{k-1}] \), the number of chunk indices, \(\rho_i \) for a given dimension \(i \), is given by:

\[
\rho_i = \left\lfloor \frac{U_i^*}{\chi_i} \right\rfloor
\]

- The allocation of chunks, denoted by \(A_c \), becomes

\[A_c[\rho_0][\rho_1][\rho_2]...[\rho_{k-1}] \]

- An entry is made to the requisite axial-vector only if this condition is met:

\[
[U_i^* + \lambda_i] > [\rho_i \times \chi_i]
\]

- The number of chunks \(\rho_i \) to be allocated is given by:

\[
\rho_i = \left\lfloor \frac{[U_i^* + \lambda_i] - [\rho_i \times \chi_i]}{\chi_i} \right\rfloor
\]
Chunking Extendible Dense Arrays

- **D_1**
 - 0:0 [-1 -1] S_0
 - 2:4 1 2 S_1
 - 3:9 1 3 S_3

- **D_2**
 - 0.0 2 1 S_0
 - 2:6 4 1 S_2

- **Starting Index for Chunks**
- **Starting Location**
- **Multiplying Coefficients**
- **Starting Address Pointer**

- **Local Indices of a Chunk**

- **Row-Major Sequence Order**
- **Z (or Morton) Sequence Order**
- **Peano-Hilbert Space-Filling Curve**

Axial Vector for Chunks
- **Chunk Indices**
- **Input Indices**
- **Ghost Regions**
To access an array element \(A\langle i_0, i_1, i_2, \ldots, i_{k-1} \rangle \), the input indices \(\langle i_0, i_1, i_2, \ldots, i_{k-1} \rangle \) is translated into chunk indices \(\langle j_0, j_1, j_2, \ldots, j_{k-1} \rangle \) where

\[
j_i = \left\lfloor \frac{i_i}{\chi_i} \right\rfloor
\]

The starting address, \(q_c^* \) of the chunk containing \(A\langle i_0, i_1, i_2, \ldots, i_{k-1} \rangle \) can be found by:

\[
q_c^* = \mathcal{F}^*(\langle j_0, j_1, j_2, \ldots, j_{k-1} \rangle) = \mathbb{Z}^0_{\rho_l} + (j_l - \rho_l) C_l^* + \sum_{m=0}^{k-1} j_m C_m^*
\]

\[
C_l^* = \prod_{m=0}^{k-1} \rho_m
\]

\[
C_m^* = \prod_{r=m+1}^{k-1} \rho_r
\]
To access an array element $A\langle i_0, i_1, i_2, \ldots, i_{k-1} \rangle$, the input indices $\langle i_0, i_1, i_2, \ldots, i_{k-1} \rangle$ is translated into chunk indices $\langle j_0, j_1, j_2, \ldots, j_{k-1} \rangle$ where

$$j_i = \left\lfloor \frac{i_i}{\chi_i} \right\rfloor$$

The starting address, q_c^* of the chunk containing $A\langle i_0, i_1, i_2, \ldots, i_{k-1} \rangle$ can be found by:

$$q_c^* = \mathcal{F}^* (\langle j_0, j_1, j_2, \ldots, j_{k-1} \rangle) = \mathbb{Z}_{\rho_l}^0 + (j_l - \rho_l)C_l^* + \sum_{m=0}^{k-1} j_mC_m^*$$

$$C_l^* = \prod_{m=0}^{k-1} \rho_m$$

$$C_m^* = \prod_{r=m+1}^{k-1} \rho_r$$
To compute the address of $A\langle i_0, i_1, i_2, ..., i_{k-1}\rangle$ within the local chunk, the input indices $\langle i_0, i_1, i_2, ..., i_{k-1}\rangle$ needs to be translated to local chunk indices $\langle i_{c0}, i_{c1}, i_{c2}, ..., i_{c(k-1)}\rangle$ by:

$$i_{cm} = (i_m \mod \chi_m)$$

The address of $A\langle i_0, i_1, i_2, ..., i_{k-1}\rangle$ is only a displacement within the chunk.

This can be done by using a row-major sequence order or column-major order.

If the chunk size is 2^n where $n \geq 2$, then the Z-order sequence or Peano-Hilbert space filling curve can be used.
To compute the address of $A\langle i_0, i_1, i_2, \ldots, i_{k-1} \rangle$ within the \textit{local chunk}, the input indices $\langle i_0, i_1, i_2, \ldots, i_{k-1} \rangle$ needs to be translated to local chunk indices $\langle i_{c0}, i_{c1}, i_{c2}, \ldots, i_{c(k-1)} \rangle$ by:

$$i_{cm} = (i_m \mod \chi_m)$$

The address of $A\langle i_0, i_1, i_2, \ldots, i_{k-1} \rangle$ is only a displacement within the chunk.

This can be done by using a row-major sequence order or column-major order.

If the chunk size is 2^n where $n \geq 2$, then the \textbf{Z-order sequence} or \textbf{Peano-Hilbert space filling curve} can be used.
Outline

1 Introduction

2 Linear Mapping for a Dense Extendible Array

3 Chunking Extendible Dense Arrays

4 Axial-Vectors as Memory Resident O_2-Tree

5 Experimental Results

6 Summary and Future Work
A new approach to maintaining these axial-vectors in memory is with the use of O_2-Tree.

An O_2-Tree is an augmented Red-Black Tree with data records stored only at the leaf nodes.

A metadata file F_m stores the records that correspond to the leaf nodes of the O_2-Tree.

These records in F_m is used to reconstruct the memory resident O_2-Tree.
A new approach to maintaining these axial-vectors in memory is with the use of O_2-Tree.

An O_2-Tree is an augmented Red-Black Tree with data records stored only at the leaf nodes.

A metadata file F_m stores the records that correspond to the leaf nodes of the O_2-Tree.

These records in F_m is used to reconstruct the memory resident O_2-Tree.
Axial-Vectors as Memory Resident O_2-Tree

General Structure of the O_2-Tree:

- **Black Nodes**
- **Red Node**
- **Axial Array with ‘x’ as starting index**
1 Introduction

2 Linear Mapping for a Dense Extendible Array

3 Chunking Extendible Dense Arrays

4 Axial-Vectors as Memory Resident O_2-Tree

5 Experimental Results

6 Summary and Future Work
Experimental Results

- Average Access Cost without Extensions (in Memory)

![Graph showing Average Access Cost Static Array (No Extensions)-Array size of 10^9](image)
Experimental Results

- Total Access Cost for Interleaved Extensions in Memory

![Graph showing total access cost for interleaved extensions in memory]
Experimental Results

- Total Access Cost for Interleaved Extensions on Disk

![Graph showing total time for interleaved extensions on disk](image_url)
Experimental Results

- Storage Utilization for Chunked Extendible Array
Outline

1. Introduction
2. Linear Mapping for a Dense Extendible Array
3. Chunking Extendible Dense Arrays
4. Axial-Vectors as Memory Resident O_2-Tree
5. Experimental Results
6. Summary and Future Work
Summary and Future Work

- In this paper, we have given an implementation of the chunked extendible dense arrays.

- By chunking the elements of the array, the chunked extendible array can be conveniently stored in files.

- Array elements are then accessed into and out of memory in multiples of chunks with the aid of a mapping function.

- The organisation of extendible arrays using such a mapping function is highly appropriate for most scientific datasets where the model of the data is perceived to be in the form of large array files.

- Currently the appropriate APIs for integrating our scheme with the Global Array Toolkit are being developed.