Local search to improve task mapping

Balzuweit*, Bunde*, Vitus Leung, Finley*, Lee*

P2S2, 12 September 2014

*Knox College, Galesburg, IL
Parallel (Distributed Memory) Resource Management Pipeline

- **Parallel Job**
- **Scheduler**
 - Decides *when* job runs
- **Allocator**
 - Decides *which* nodes job uses
- **Task mapping**
 - Assignment of tasks to cores

Operating system
Task mapping

- Long history [Bokhari, 1981] (general graph model)
- Less important in mid-1980s with wormhole routing
 - Message latency independent of size
- Recent resurgence
 - Almasi et al. 2004
 - Gygi et al. 2006 (application exhibited 1.64 times speedup)
 - Hoefler and Snir 2011 (heuristics for NP-Complete general model)
 - Barrett et al. 2012 (heuristic for coordinate model, multicore)
 - Leung et al. 2014 (heuristics for coordinate model, hybrid parallelism)
 - Deveci et al. 2014 (coordinate model vs. general model for stencil app)
- Contention for limited bandwidth
 - Processors continue improving faster than networks
 - Processor counts in state of the art HPC systems continue to grow
General view of task mapping

Application Task Graph

Allocated Processors with mesh coordinates

General graph view of allocation
Using recursive coordinate bisection for task mapping (Geom)
Using recursive coordinate bisection for task mapping (Geom)
Using recursive coordinate bisection for task mapping (Geom)

Job

Machine
Using recursive coordinate bisection for task mapping (Geom)
Using recursive coordinate bisection for task mapping (Geom)
Using recursive coordinate bisection for task mapping (Geom)
Two levels of cuts in decomposition created by Geom

\[\begin{align*}
A & \quad B \\
C & \quad D
\end{align*} \]

--- first cut
--- next cuts
Local search algorithm, GSearch, improves on Geom by swapping pairs of tasks when doing so improves average distance between communicating tasks

Demonstrate GSearch in proxy application improves application’s total running time
 - While reducing variability in total running time

Show number of swaps made by GSearch is reasonable in practice
 - Some processor allocations require more
 - Use distribution of swaps made to provide guidance on when to cut off search and avoid pathological cases

Demonstrate again that Geom is good task mapping algorithm, but local search can improve upon it
Pseudocode for local search component of GSearch (version without a swap limit)

do {
 madeSwap = false;
 for 1 ≤ i < num_tasks
 for i < j ≤ num_tasks
 if(swapping tasks i and j reduces average hops) {
 make the swap
 madeSwap = true;
 }
 } while(madeSwap);
Cielo miniGhost Experiments

- Los Alamos National Laboratory Cielo machine, Cray XE6
 - 143,104 compute cores in 8,944 compute nodes, dual AMD Opteron 6136 eight-core “Magny-Cours” socket G34 running at 2.4 GHz
 - 272 service nodes, AMD Opteron 2427 six-core “Istanbul” socket F running at 2.2 GHz
 - Gemini 3D torus in 16x12x24 (XYZ) topology, 2 compute nodes (sockets) per Gemini, 6.57x4.38x4.38 (XYZ) TB/s bi-section bandwidth
 - As of November 2013, number 26 on top 500 list

- Application used was miniGhost
 - Boundary exchange using stencil computations in scientific parallel computing, bulk-synchronous message passing code modeled on CTH

- Set of experiments consists of miniGhost runs for various numbers of total cores (16 cores per MPI rank)
Job Dimensions used in miniGhost experiments

<table>
<thead>
<tr>
<th>Nodes</th>
<th>Job Dimensions</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>1 x 4 x 1</td>
</tr>
<tr>
<td>8</td>
<td>2 x 4 x 1</td>
</tr>
<tr>
<td>16</td>
<td>2 x 4 x 2</td>
</tr>
<tr>
<td>32</td>
<td>2 x 8 x 2</td>
</tr>
<tr>
<td>64</td>
<td>4 x 8 x 2</td>
</tr>
<tr>
<td>128</td>
<td>4 x 8 x 4</td>
</tr>
<tr>
<td>256</td>
<td>4 x 16 x 4</td>
</tr>
<tr>
<td>512</td>
<td>8 x 16 x 4</td>
</tr>
<tr>
<td>1k</td>
<td>8 x 16 x 8</td>
</tr>
<tr>
<td>2k</td>
<td>8 x 32 x 8</td>
</tr>
<tr>
<td>4k</td>
<td>16 x 32 x 8</td>
</tr>
</tbody>
</table>
Running time by job size for miniGhost on Cielo (Average over 6 sets of experiments)

Execution time (sec)

Job size (nodes)

Geom
GSearch
Difference between max and min running time by job size for miniGhost on Cielo

- Geom
- GSearch

<table>
<thead>
<tr>
<th>Job size (nodes)</th>
<th>Diff. between longest and shortest times (sec)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>1K</td>
<td>0.5</td>
</tr>
<tr>
<td>4K</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Simulated miniGhost Experiments

- Since time on large systems is scarce
- Trace-based simulations of more varied scenarios (PWA)
 - Job arrival time, size, running time, and (in many cases) time estimate
 - On machine
 - schedule (EASY),
 - allocate (snake best fit [Lo et al. 1997 and Leung et al. 2002]), and
 - map
 - Summary of trace used in simulations
 - Log name: LLNL-Atlas-2006-2.1-cln, Machine: 24x24x16,
 - # jobs used: 12,474
- Random simulations
- Exhaustive simulations
Average edge length by job size for LLNL-Atlas trace

Average edge length (hops)

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Job size (nodes); displayed in buckets of 200 nodes
Number of swaps made by GSearch as a function of job size (average and max)

<table>
<thead>
<tr>
<th>Job size (nodes)</th>
<th>Number of swaps</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>0.0625</td>
</tr>
<tr>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>64</td>
<td>4</td>
</tr>
<tr>
<td>256</td>
<td>16</td>
</tr>
<tr>
<td>1K</td>
<td>64</td>
</tr>
<tr>
<td>4K</td>
<td>256</td>
</tr>
</tbody>
</table>

Graph showing the increase in the number of swaps as the job size increases.
Number of swaps made by GSearch as a function of job size on LLNL-Atlas trace

points show average
top of error bars show max
line depicts $0.35n + 20$

Job size (nodes); displayed in buckets of 200 nodes
Swap count frequencies from 100,000 random allocations on 16 x 24 x 24 system
Swap count frequencies from all possible allocations of 4 x 2 x 1 job on 4 x 4 x 2 system
Average edge length as function of number of swaps made on trace jobs

- Worst initial/final mapping, least improved mapping
- Most improved mapping
- Most swaps
- Best initial/final mapping

Average edge length (hops)

Number of swaps

0 500 1000 1500 2000 2500
Future work

- Understanding performance anomaly at 4k nodes
- Fully parallel implementation of GSearch
- Questions?