
ü Fortran 2008 Bindings
ü  Improved Support for Intel MIC
ü MXM / HCOLL Support

ü New Fault Tolerance API
ü Support for Upcoming MPI 3.1 Standard  

(Including Nonblocking Collective I/O APIs)

MPICH is a high-performance and
widely portable implementation of the
Message Passing Interface (MPI)
standard.

q Provide an MPI implementation that efficiently supports
different platforms including commodity clusters (desktops,
shared-memory systems, multicores), high-speed networks
(10 Gigabit Ethernet, InfiniBand) and proprietary high-end
computing systems (IBM Blue Gene, Cray)

q Enable cutting-edge research in MPI through an easy-to-
extend modular framework for other derived implementations.

q ABI compatibility allows programs to conform to the same set
of runtime conventions.

q Aim of the initiative: all parties to agree on a schedule for
necessary ABI changes, leading to a more stable release
cycle and fewer surprises for developers.

q Several notable MPICH-derived MPI implementations have
begun a collaboration with the explicit goal of maintaining
ABI compatibility between their implementations. The
collaborators and package release dates include:

o  MPICH v3.1.3 (October 2014)
o  IBM MPI v2.1 (December 2014)
o  Intel MPI v5.0 (June 2014)
o  Cray MPT v7.0.0 (June 2014)

Cray, IBM, Intel, Lenovo, Mellanox, Microsoft, NUDT, Ohio State University, University of Tokyo, and many others…

Goals of MPICH

(http://www.mpich.org/abi/)

q MPICH-derived implementations are used exclusively on
nine of the world’s top 10 supercomputers (June 2014
ranking), including the world’s fastest supercomputer: Tianhe-2

q Proudly funded by DOE for 22 years

q R&D 100 award (2005)

MPICH Partners

Visit us at http://www.mpich.org

MPICH
Performance & Portability

Coming in MPICH 3.2

Other New Features

op 2	

op 3	
win 1	
 win 2	

slot 0	

slot 1	

slot 2	

slot 3	

GLOBAL PROGRESS (progress engine)	

P0	

slot 0	

slot 1	

slot 2	

TARGET PROGRESS	

W
IN

 P
R

O
G

R
ES

S	

target 1	
 target 2	

op 1	

The RMA infrastructure has been rewritten from the ground up for
MPICH 3.2, providing better scalability and performance (up to
50%). MPICH now better takes advantage of existing hardware to
accelerate data movement and uses software as a fallback.

target 0	
 target 1	

op 0	

op 1	

op 2	

target 2	

issued	

issued	

nacked	

acked	

acked	

issued	

PAUSE	

PAUSE ACK	

UNPAUSE	

Explicit flow-
control
when

hardware
cannot
handle

messages	

Communication
with hardware

matching	

Support for Portals4 networks in MPICH has undergone significant
improvements in MPICH 3.2. Improvements include support for
large messages, support for MPI one-sided operations, recovery
from flow control events, and increased stability.

MPICH Application Binary Interface (ABI)
Compatibility Initiative

Improved RMA Infrastructure Support for Portals4

Come join us at the MPICH
BoF! Tues 5:30 in Room 386-7

POC: Ken Raffenetti <raffenet@mcs.anl.gov>POC: Pavan Balaji <balaji@anl.gov>, Rajeev Thakur <thakur@anl.gov>

POC: Ken Raffenetti <raffenet@mcs.anl.gov>POC: Pavan Balaji <balaji@anl.gov>

ULFM is the fault tolerance proposal for the MPI 4.0 Standard. It includes
new APIs to handle process failures within an application. MPICH
provides an implementation of the proposed specification as an
experimental feature for users and vendors. It enables new forms of fault
tolerance to be built into applications and libraries looking to prepare for
exascale resilience. (Coming in MPICH-3.2)

MPI RMA communication is not always truly one-sided. On RDMA
supported platforms (e.g., IB, Cray), some ops such as noncontiguous
accumulates still have to be done in software (they need MPI calls to
make progress), resulting in long delays if the target process is busy
computing outside the MPI stack. Casper dedicates arbitrary number of
ghost processes on multi- and many-core architectures. It utilizes MPI-3
shared memory windows to map memory from multiple user processes
into the address space of ghost processes.	

MPI + Threads: Runtime Contention and Remedies

MPICH mailing lists: Questions: discuss@mpich.org; Announcements: announce@mpich.org

General methods for thread-safety,
e.g. mutexes, incur resource
monopolization and do not adapt
well to the workload of an MPI
runtime. By eliminating resource
m o n o p o l i z a t i o n u s i n g f a i r
scheduling, threads progress was
much improved. We further refine
the scheduling to promote threads
likely to yield more useful work. This
is achieved by giving higher priority
to threads in the main execution
path (1) and lowering the priority of
those polling for progress (2). This
allows to feed the runtime with more
work and to reduce wasted
resource acquisitions. (to appear in
PPoPP’15)

Casper: Process-based Async. Progress for MPI RMA

ULFM: User Level Failure Mitigation

Papers
Mon / 04:10pm - 04:40pm / 286-7 / Simplifying the Recovery Model of User-Level Failure Mitigation
Wed / 10:30am - 11:00am / 393-4-5 / Nonblocking Epochs in MPI One-Sided Communication (Best Paper Finalist)
Wed / 11:30am - 12:00pm / 393-4-5 / MC-Checker: Detecting Memory Consistency Errors in MPI One-Sided Applications

Poster Tue / 05:15pm - 07:00pm / Lobby / Using Global View Resilience (GVR) to add Resilience to Exascale Applications (Best Poster Finalist)

BoFs Tue / 05:30pm - 07:00pm / 386-7 / MPICH: A High-Performance Open-Source MPI Implementation
Wed / 05:30pm - 07:00pm / 293 / The Message Passing Interface : MPI 3.1 and Plans for MPI 4.0

Tutorials Mon / 08:30am - 05:00pm / 389 / Advanced MPI Programming, by Pavan Balaji, William Gropp, Torsten Hoefler, Rajeev Thakur
Mon / 08:30am - 05:00pm / 386-7 / Parallel I/O In Practice, by Robert J. Latham, Robert Ross, Brent Welch, Katie Antypas

Demos Tue / 04:20pm - 05:00pm / UTK/NICS Booth #2925 / Argo Runtime for Massive Concurrency
Wed / 11:00am - 01:00pm / DOE Booth #1939 / ARGO: An Exascale Operating System and Runtime

CS_ENTER

OPERATION
COMPLETE?

USEFUL WORK

CS_EXIT

MPI_CALL_ENTER

MPI_CALL_EXIT

CS_EXIT

CS_ENTER

YIELD

NO

YES

1

2

P0 P1

+=
Computation

ACC(data)

MPI call	

Delay	

Ghost
ProcessP0 P1

+=
ComputationACC(data)

Master Worker
1

Worker
2

Worker
3

Send	

Recv	

Discovery	

0

1

2

3

Recv(1) Failed

Recv(3)

Send(2)Recv(0)

Revoked
RevokedRevoked

Revoke

Send	

MPICH Related Events at SC’14

MPICH
Enabling Cutting-edge Research

MPICH and User-level Threads

ULT

ES

ULT

ES

MPI

ULT

ES

ULT

ES

MPI

ULT Pthreads

User level
thread

Kernel thread

Context
switch

Executes
concurrently

tim
eline

ULT1
do computation
start an MPI send

Context switch to
ULT2, ULT1
communication
in background

Context switch back
to ULT1, ULT2
communicates in
background

ULT1

ULT2

CPU	
 NIC	

In this work, we build a hybrid runtime that integrates user-level
threads (ULTs), such as Argobots and qthreads, with MPICH. ULTs
are used as the fundamental unit of computation and
communication, tightly integrated with the scheduler of MPICH.
MPICH with ULTs can provide more opportunities for computation
and communication overlapping.

POC: Wesley Bland <wbland@anl.gov>

POC: Antonio Peña <apenya@anl.gov>

POC: Huiwei Lu <huiweilu@anl.gov>

POC: Huiwei Lu <huiweilu@anl.gov>, Sangmin Seo <sseo@anl.gov>

