Flexible Representation of Computational Meshes

Matthew G. Knepley and Dmitry A. Karpeev

A new representation of computational meshes is proposed in terms of a covering relation defined
by discrete topological objects we call sieves. Fields over a mesh are handled locally by using
the notion of refinement, dual to covering, and are later reassembled. In this approach fields are
modeled by sections of a fiber bundle over a sieve. This approach cleanly separates the topology of
the mesh from its geometry and other value-storage mechanisms. With these abstractions, finite
element calculations are expressed using algorithms that are independent of mesh dimension,
global topology, element shapes, and the finite element itself. Extensions and other applications
are discussed.

Categories and Subject Descriptors: G.4 [Mathematical Software]: Algorithm design and anal-
ysis; G.1.m [Numerical Analysis]: Miscellaneous; E.2 [Data Storage Representations]:
Composite structures

General Terms: Algorithms, Theory

Additional Key Words and Phrases: mesh, discretization, finite elements, sieve

1. INTRODUCTION

Many mesh generators are freely available [Shewchuk 2005; Si 2005], in which the
interfaces presented to the user closely mirror the specific characters of these meshes
(e.g., triangular or hexahedral) and the specific algorithms used in the construction
(e.g., incircle tests). It has become common practice to transfer these interfaces
directly into PDE simulation packages in order to represent the domain. However,
such practice severely reduces the flexibility and extensibility of those packages. To
rectify this situation, we must return to the underlying mathematical abstractions
on which the discretization algorithms themselves are based.

An essential feature of PDEs is their locality: (1) a differential operator needs the
input field values only from a neighborhood of point  to compute the output value
there, and (2) locally defined fields can be extended to the larger set covered by
their domains if they agree on the domain intersections. This feature is reflected in
the finite element method (FEM) approach to the discretized problem: operators
are assembled from local pieces operating on fields restricted to mesh elements,
with the assembly performed on the intersections. The intersection structure of the
local pieces determines the global data flow and provides a natural index into the
global data objects. Here we formalize the notion of a computational domain and
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Fig. 1. Examples of simple 2D polyhedral complexes: simplicial (left) and cubic (right). Cells are
labeled by their indices (subscript) within each dimension (superscript).

a field over it. The ultimate goal is the definition of discrete operators acting on
fields and the solution of discretized PDEs couched in these terms.

Moreover, in the spirit of the FENICS [Dupont et al. 2005] project in computa-
tional mathematical modeling, we focus on mathematics that describes the com-
putation itself, rather than the solution. For instance, much effort has gone into
characterizing the convergence and accuracy properties of finite element algorithms,
but little work — apart from FIAT [Kirby 2004] — has sought to characterize struc-
tures capable of representing or calculating with classes of finite elements. Similar
to the FIAT effort [Kirby 2006], we seek to define computational structures that
can represent very general hierarchies and operations over these structures, from
which we may construct very general algorithms.

2. COMPUTATIONAL SPACE ABSTRACTIONS

The typical setting where a need for computational domains arises is the application
of the finite element method to the discretization of PDEs. The first requisite
of the finite element method, according to the Ciarlet definition [Ciarlet 1978],
is a bounded domain K with a piecewise smooth boundary. These elementary
objects are images in R of some polyhedral sets assembled into a mesh by matching
polyhedra faces. On the basis of this purely combinatorial information, a mesh
corresponds exactly to the elements of a polyhedral cell compler. The best known
of polyhedral cell complexes are simplicial complezes [Aleksandrov 1957], although
we do not restrict the shape of cells a priori (see Figure 1 for examples). The
basis of the complex topology is the incidence relation between adjacent cells and
between the cells and their faces.

Alternatively, we can say that the mesh is covered by its elements. In fact, the
mesh topology itself may be expressed in terms of the covering relation among its
elements. For example, an edge is covered by each endpoint, and it in turn covers
the faces it borders. In general, an element ¢’ covers another element e if it is part
of the boundary or ¢ € de, and all elements cover themselves. At the moment
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this definition appears unsatisfactory because it apparently omits the interior of
the elements, but it does capture the main idea of the covering relation, which we
want to extract and refine. It is inspired by Grothendieck’s notion of a site [Barr
and Wells 1985], as a category with an étale (or covering) topology, in which the
notion of covering is axiomatized. We will examine the categorical ramifications
of our approach in subsequent publications [Knepley and Karpeev 2006]. Here we
present a more traditional graph-theoretic development of these ideas.

In a sense, a cover carries all the information about the covered domain localized
in its subdomains. The main advantage of such an approach to topology is that
it makes natural the notion of localization, which is useful for defining and manip-
ulating fields (see Section 3). Any field defined on a domain can be restricted to
a covering subdomain by composition with a covering arrow, manipulated locally,
and then reassembled from the pieces supported on the elements of the cover. A
recursive application of this decomposition allows one to separate a field into pieces
that can be conveniently manipulated independently and then reassembled in an-
other recursive process or with the equivalent one-step procedure comprising the
individual assembly stages.

To express the idea of covering in a compact and intuitive way, we introduce the
Sieve interface. It consists of a directed acyclic graph (DAG) with covering arrows
between the nodes, also known as points. In many cases, the primitive input and
output object is a chain,!, or set of sieve nodes.

2.1 Basic Queries

The key operation on a sieve is the cone: for any sieve point p the output of
cone (p) is the chain that completely covers point p — the set of all points with an
arrow to p. By taking the cone recursively after a finite number of steps (thanks to
acyclicity) we obtain the closure (p) of node p — the chain of all points from which
p is reachable. The dual operations of support and star are defined analogously
by reversing the arrows: support(p) and star(p) respectively produce the chains
of all nodes pointed to by p and reachable from p.

A less trivial operation, the meet(ps,p2) of two points p; and pa, is defined as
the chain m of all the points from which both p; and p, are reachable and which
is minimal in the sense that for any such point the paths to p; and p, necessarily
factor through m. Equivalently, the meet can be described as the minimal separator
of the two points — a set whose removal ensures that no point can simultaneously
reach p; and py. The dual of meet is the join of two points.? Together meet and
join make the set of sieve chains into a lattice. Alternatively, a lattice structure
could be introduced on the set of sieve’s nodes by adjoining (perhaps implicitly)
special nodes: an emptyNode, covering each of the root nodes (nodes that, in the
absence of special nodes, have zero in-degree), and a totalSieve node, covered by
all leaf nodes (nodes that, in the absence of the special nodes, have zero out-degree).

1Despite what the name might suggest no extra relations between the elements of the chain are
presumed. From the point of view of combinatorial topology we are dealing with chains mod 2 or
chains with coefficients in the two-point field F». However, we shall not use the algebraic structure
or homology in this publication.

2The obvious analogy with the categorical notions of product and coproduct will be clarified in
our forthcoming paper [Knepley and Karpeev 2006].
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Fig. 2. Mesh representation using a sieve.

This approach, however, in many cases provides no information on the relationship
between the nodes within a sieve. On the other hand, with chains used as the
primitive objects the special objects are represented simply by an empty chain as
well as the chain of all leaves.

As we see, it is really the chains that play the principal role in all sieve construc-
tions, nodes being the special case of a singleton chain. All of the above methods,
such as meet and join, are defined on chains simply by taking the unions of the
pointwise results. In the case of meet and join the result is the union of all pairwise
operations with one point from each of the two chains. We extend the notion of
covering from nodes to chains by saying that a chain ¢’ covers another chain c iff
each node of ¢’ is itself a node of ¢ or covers some node of c. More strongly, we say
that ¢’ completely covers ¢ (denoted ¢’ — ¢) iff, in addition to covering c, whenever
¢’ omits a node p of c, it contains cone(p).

The methods described above are sufficient to express all of the mesh topology
semantics. In particular, interpreting a sieve as a cell complex with the arrows
indicating face inclusion, the closure and star operations correspond exactly to
the same operations on the complex [Aleksandrov 1957]. In Figure 2, we illustrate
the use of sieves for representing meshes.

2.2 Parallel Queries

Since sieves are inherently parallel objects, all of their nodes are labeled with integer
(prefix, index) pairs to allow for independent insertion of nodes on different
processes without fear of label collision. For example, the processor rank can be
used as the prefix, although arbitrary integer prefixes are allowed and identically
labeled nodes on different processes are treated as identical. At the same time,
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Fig. 3. Support completion (dashed) and the corresponding footprint (dotted) of a mesh sieve.

the same node on different processes may have distinct cone or support sets so
that in general each process possesses only partial information about the sieve —
its localSieve — which is a subsieve of the totalSieve. In fact, the ability
to complete the local picture on any process is, in our view, the most powerful
feature of sieves. Such a completion operation obtains the remote portion of the
cone (coneCompletion) or the support (supportCompletion) over each locally held
node and stores it in a separate completion sieve. If necessary, the completion can
be added to the original sieve by using the add method, creating a new sieve with the
node and arrow sets formed by the unions of the node and arrow sets, respectively,
of the added sieves. We note that even after completion, the local sieve may contain
only partial information about the total sieve, as illustrated in Figure 3.

At this point we introduce the notions of a base and cap of a sieve as the sets
of nodes of nonzero in-degress and out-degrees, respectively. Intuitively, the base
can be thought of as the domain of incoming arrows and the cap as the domain of
outgoing arrows, and the sieve may be conveniently pictured as a bipartite graph
with the cap lined above the base and the two levels joined by arrows. Since the
intersection of the base and the cap is nonempty in general, a sieve is not a bona fide
bipartite graph unless the occurrences of the same node in the base and the cap are
distinguished as separate nodes. It can be a useful way of viewing sieves, however,
as well as a source of interface and implementation simplifications. The methods
returning the base and cap sets are base and cap, respectively, while space returns
their union — all of the points in a sieve.

We note that during cone completion no new base points are introduced on any
given process. Only additional cap points, present in the remote cone over an ex-
isting base point, are added, together with the corresponding arrows. Similarly,
during support completion no new cap points are introduced, so that recursive in-
vocation of the completion methods is necessary for the total completion of the local
sieves. Since in most applications this is rarely required, and given the complexi-
ties of communicating the nodes and arrows, we do not implement this procedure
internally.

Sometimes it is useful to expand the definition of the base and cap sets by intro-
ducing into them nodes with no arrows at all. In this case the base and cap can be
viewed as the sets from which the terminating or originating arrow nodes can be
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Fig. 4. A base-cap view of the mesh sieve (top), its completion (middle), and the result of addition
of the completion (bottom).

drawn. These “placeholder” nodes can be used for distributing data from a subset
of processes to the rest of the communicator universe. For example, a local sieve
can be prepared on the root process assigning mesh elements residing in the cap to
the nodes representing the processes residing in the base. Each of the remaining
processors adds a single empty node to the base representing the process itself, and
upon cone completion each process contains exactly the mesh elements assigned to
it in the cap of the completion sieve. An example of this process can be found in
Section 7.3.

The origin, or contributing process, of the nodes added during completion is
optionally recorded in a footprint sieve with arrows from the nodes to the origi-
nating processes, themselves encoded as sieve nodes. This illustrates the utility of
sieves even for sieve-specific bookkeeping purposes. In fact, the cone and support
completion operations can be implemented by a single, generic completion routine.
Not only is a single routine easier to maintain and optimize, but this generality
makes parallel, dimension-independent code possible. More generally, we believe
that Sieve and its completion methods can encode a wide variety of unstructured
distributed data and associated communication procedures used in scientific com-
puting and beyond. The scalability of the communication methods is limited at
most by memory requirements of order P, the size of the communication universe,
or the communicator [MPI Forum 2005]. With the advent of architectures having
hundreds of thousands of processors, such as IBM’s BlueGene/L [Fitch et.al. 2005],
memory may become a limiting factor, and a hierarchical approach to communi-
cation may be warranted. Such organization is also likely to be reflected in the
underlying architecture of the future massively parallel computers, as is evident
from BlueGene/L experiences.
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2.3 General Manipulation

We list here some of the basic sieve operations. All main sieve construction opera-
tions are defined in terms of arrows between cap and base points. A point p can be
added to the base or the cap set, unless it is already there, by addBasePoint (p)
or addCapPoint (p), or to both sets by addPoint (p), with its cone and support
sets initially empty. An arrow between a cap point g and base point p is added by
addArrow(q,p), which inserts the appropriate points into the cap and base sets.
An arrow is removed by removeArrow(q,p), while leaving the endpoints in the
cap and base sets, respectively, even if the support of ¢ or the cone of p becomes
empty upon the removal. To get rid of the points themselves, along with all of the
arrows to or from them, one uses removeBasePoint (p) or removeCapPoint(q), or
removePoint (p) to do both at once. These “precise” manipulations are useful for
“sieve surgery”, as exemplified in Section 7.1.

In addition to these basic operations, wholesale addition of a chain ¢ to the cone
or support of a point p is accomplished by addCone(c,p) or addSupport(q,c),
which adds all of the arrows from the points of ¢ to p or from ¢ to the points
of c. Likewise, setCone(c,p) and setSupport(q,c) replaces the existing arrows.
Mass point removals, such as restrictBase(c) or restrictCap(c), retain only the
nodes from chain c in the base or the cap of the sieve, eliminating the others along
with the arrows to or from them. For example, these can be used to eliminate the
spurious nodes from the mesh partition sieve on the root process as in the example
of Section 7.3.

Since sieves are acyclic graphs, each node can be ascribed a height, measured as
longest path from any leaf node, and a depth, measured as the longest path from
any root node, while the sieve as a whole can be given a diameter, measured as the
longest path between any root and any leaf. These quantities are retrieved with
depth(p), height(p), and diameter, respectively. The sieve can be viewed as
being divided into strata (sets) of points at different heights from 0 to diameter or
into strata of points at different depths from 0 to diameter. For a mesh sieve, such
as that in Figure 2, the points at depth 0 are the mesh vertices, those at depth 1 are
the edges, and so on. In Figure 2 the strata are indicated by color. In general, in a
mesh sieve the points at depth k are k-dimensional cells, and the points at height k
are k-codimensional cells, with the mesh dimension equal to diameter. The chains
containing these strata are retrieved by heightStratum(k) and depthStratum (k)
respectively.

2.4 Stacks

In many applications, it is useful to distinguish between different “kinds” of arrows.
For example, in Section 7.5 we use a covering of mesh elements for both topology
and assignment of degrees of freedom to elements. To accomplish this, we provide
a composition mechanism embodied in the Stack interface, which links two sieves
by using wvertical arrows. The two sieves function as the base and the cap of the
stack and can be shared among multiple stacks.

Stack is a subclass of Sieve and therefore inherits all the sieve operations; how-
ever, they now operate over the vertical arrows. New methods include setTop
and setBottom. The only controvesial point concerns stack point insertion and
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deletion, since these translate into nontrivial structural changes in the cap or base
sieves. To prevent unintended side effects, we block point insertions and deletions,
including those implied by restrictBase and restrictCap; these methods remove
arrows only in the context of stacks. As arrows can be added only between existing
cap and base points, the necessary insertions must be performed explicitly on the
corresponding sieves returned by the getTop and getBottom methods.

3. DATA STORAGE ABSTRACTIONS

Sieved arrays are envisioned as a discrete counterpart to the continuum concept of
a field. Intuitively, fields represent quantities with spatial extent defined over some
domain. They can be restricted to convenient subdomains or even defined locally,
manipulated locally, and then (re)assembled if they agree on the intersections of the
subdomains. To represent fields in the discrete setting, we formalize this “sewing
together” property in terms of the covering relation on the sieve of subdomains.
If we reverse the covering arrows and replace subdomains with fields defined over
them, we obtain a sieve with the arrows signifying restriction relations that meet
some natural consistency constraints. These restriction relations between fields are
the dual of the covering relations of the subdomains and the core of finite element
methods.

The SievedArray abstraction formalizes the notion of a discrete field as a con-
tainer of (distributed) numerical data that can be addressed at different levels of
granularity reflecting the organization of the underlying “base” sieve.? The base is
regarded as a representation of some computational domain, typically a mesh, and
its decomposition into progressively finer covering subdomains. A chain of base
sieve nodes is selected as the “support” of the sieved array: supp(X). A sieved
array X is indexed by its support nodes: we can retrieve the array values “resid-
ing” at a given support node p into a contiguous “native” array X (p) using the
getValues(p) method. This retrieves the data stored “at p” in the same way as
the value at a given index i of an ordinary array is returned in a single variable.
Similarly, setValues(p,values) sets the new values of X (p) supplied in a contigu-
ous native array values. The only guarantee made at this point is that the values
are retrieved in the same order as they are set.

Any “subarray” X (p) can be refined by restricting it to each node ¢ of the cone
over p, thereby generating a subarray X(g) at each ¢. In this way each covering
arrow ¢ — p is converted to an oppositely oriented restriction arrow X (¢q) < X (p).
After such a refinement p is replaced by its cone in the support of the sieved
array, and the values can be addressed at a lower level of granularity. Indeed,
instead of a single array X(p) we can retrieve any one of the “smaller” arrays
{X(q)}. In general, to any support chain ¢ = {r} there corresponds a cochain (a
chain in the dual sieve) of arrays X. = {X(r) : r € c}. Indeed, to each covering
relation between the elements of chains there corresponds a dual restriction relation
between the corresponding cochain elements. Likewise, for any complete covering
¢’ — ¢ the corresponding cochains are in a refinement relation: X « X.; in the
discussion of a single cochain element refinement we have ¢ = {p}, ¢’ = cone(p),
and X{p} «— X,

cone(p)*

3 As we shall see, the subdomain sieve is typically represented as the base of an appropriate stack.
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Fig. 5. A discrete field defined over the doublet mesh. Each element carries three numbered
degrees of freedom indicated in square brackets. A sieved array can be defined by associating with
each mesh sieve element the degrees of freedom contained in its geometric closure.

Thus, a sieved array is a collection of cochains that are refinements of one another.
At any given time a single cochain represents the sieved array. The following
example illustrates the introduced concepts and introduces the bundle construction
used in the implementation. Consider a discrete field defined on a doublet mesh by
attaching three degrees of freedom to the interior of each mesh element (Figure 5).
Such a field may result, for example, from a mixed-order finite element discretization
of some continuous fields over the domain discretized by the mesh.

The assignment of degrees of freedom to mesh elements can be encoded by the
vertical arrows of a stack, which we call the bundle, whose cap contains the degrees
of freedom themselves in a discrete* sieve, and the base is the mesh sieve, sometimes
referred to as the topology. The bundle is set and retrieved by using getBundle ()
and setBundle(bundle), respectively, where any object implementing the Stack
interface can serve as the bundle.

Given a base element e, the vertical cone over its horizontal closure represents the
degrees of freedom supported at e (see top of Figure 6). If e is among the support
elements of the array, then using e as an index into the array will return only the
values of the degrees of freedom supported on e in a contiguous native array.

A sieved array starts out supported on the leaves of the base sieve (chain c,) and
in the course of computation may be refined to have a more convenient support
chain c. The refine(c) method will refine the each of the element of ¢ C supp(X).
The inverse operation of assembly, discussed below, is implemented by the method
assemble(c) and takes the same input as refine. It reconstructs the subchain
supported on ¢ from its complete covering ¢’ C supp(X) and replaces ¢’ with ¢ in

4Discrete, in this case, means “without arrows”, by analogy with a discrete category, which such
a sieve uniquely determines. This is also reminiscent of a space with discrete topology; in this
case, it means “absence of coverings”.
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Fig. 6. A bundle stack (top), assigning degrees of freedom to the elements of the doublet mesh
by vertical arrows (dashed), and the dual sieve (bottom) with each support element replaced by
a contiguous array of values corresponding to the degrees of freedom over its closure. The dotted
arrows of the dual sieve represent restriction relations.
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Fig. 7. A refinement process on a sieved array over the doublet mesh sieve. From the bottom up:
first the single node leaf support chain (totalSieve) is refined into its two covering nodes (mesh
triangles); then the left triangle is refined into the set of covering edges. The degrees of freedom
duplicated at each state are indicated by color.

supp(X). Another method, restrict(c), leapfrogs all of the intermediate levels
of refinement between supp(X) and c, where ¢ « ... « supp(X), and refines X
all the way to c. Assembly can be done by using assemble(c’), where ¢ — ¢’.
Since the leaves become roots in the dual sieve, the initial state is a cochain of
all roots, or root cochain X.,. In some situations it may be convenient to adjoin
a unique leaf node to the base sieve or stack signifying the total (or local) sieve,
as illustrated in Figure 6. After the maximal number of refinements the support

reaches the roots c., through a series of complete coverings cso, — ... — ¢, and
the corresponding cochain is reached from the coroot chain through a series of
refinements X, _ «, ... « X, as illustrated in Figure 7.

More generally, it may be desirable to have each cochain element support repre-
sent a chain of mesh elements (rather than a single element) that are not readily
present in the mesh sieve. For an example think of a decomposition of a mesh
into the boundary and the interior, the set of submeshes employed in a domain-
decomposition method, or progressively finer meshes of a multilevel method. Each
chain of elements can be represented by a single stack point covered by the corre-
sponding mesh elements, residing in the cap of the stack. This additional structure
can be conveniently represented by setting this new stack into the base of the bun-
dle (recall that a stack is a sieve by inheritance), as illustrated in Figure 8. The
degrees of freedom at any support point are easily calculated as a composition of
cone operations: the result of the cone operation in the inner stack is used in the
input for the cone operation in the outer stack. To disambiguate the situation, we
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Top

Supports

Base = inner Stack

Fig. 8. A nested stack bundle construction: the internal base stack contains supports representing
mesh element chains. Dashed arrows are the result of composition of the arrows from two stacks
— inner and outer (bundle) — and can be stored explicitly as a form of caching.

will refer to a base stack to denote the base of the bundle and a base sieve to denote
the top of the base stack. If the base stack is in fact no more than a sieve, the two
notions coincide.

3.1 Refinement

The example above clearly shows that the values of different cochain elements
obtained by refinement of a root chain need not be independent. In fact, these
dependencies are encoded in the covering structure of the base sieve through the
restriction procedure. The nodes covering p presumably all obtained their values
from a single source, a cochain element at p, so we expect correlations between them.
This notion can be made precise if we consider iterated restrictions. Consider the
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following diagram.

Q1 P (1)

The dashed vertical arrow denotes the composition of the diagonal sieve arrows
and is not necessarily present in the sieve. Still, we demand that there be a
unique restriction X (p) — X (r). Naturally, there are two candidates for the def-
inition of this restriction — the iterated restrictions X (p) — X(q1) — X (r) and
X (p) — X(q2) — X(r) obtained by following the two paths from r to p composed
of the explicitly stored sieve arrows. We now impose the requirement that the
two compositions be identical, thereby defining the unique restriction from p to r.
It follows that a restriction operator resg/ is defined for any pair of points con-
nected by a path of zero or more arrows p” — --- — p satisfying the composition
requirement®

p'—p —p = resy, X (p) = resz:, ores) Xy} (2)

In fact, in the example above, the proviso regarding the taking of horizontal closures
in order to determine the degrees of freedom residing at each cochain element
ensures that the restriction operator res respects the composition of covering arrows
in the base sieve, as expressed in Equation 2.

Returning to diagram 1, since r lies in the meet of ¢; and ¢z, the just introduced
consistency requirement states that the cochain elements X (q1) and X(q2) agree
on the intersection in the sense that the cochain generated on the points of the
meet of q; and qa via refinement of X,y or Xy, are independent of the source
and the path refinement takes. A cochain such as X, 4,) whose elements agree on
their meets is called a cocycle. In the simplest case, such as in Figure 6, the related
values are duplicated at each of the nodes with nonempty intersections.

From the property of the restriction operator (2), it follows that cocycles are
preserved under refinements. Clearly, a cochain defined on the root chain of a sieve
is a cocycle, since roots have empty cones, and hence empty meets. If the base sieve
possesses a single leaf, such as in Figure 6, any cochain defined on it is a cocycle,
since clearly any cochain element agrees with itself. In fact, any cochain obtained
from such a singleton root cochain will be a cocycle.

5This gives the assignment of cochains to sieve nodes, with the restriction operators as described,
a functorial character.
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Fig. 9. Distinct P> discretizations of scalar fields represented by sieved arrays over a triangle
boundary with identical refinements down to the vertex level.

3.2 Assembly

A fundamental feature of continuum® fields is the equivalence of local and global
descriptions given by cocycles. Clearly, a global field over some open domain
D = |J D; defines a cochain of fields with analogous properties (continous, smooth)
by restriction to a chain of open subdomains D; constituting a covering of D. Con-
versely, a cochain of local fields uniquely defines a global field precisely because
they agree on overlaps, so that any cocycle is a refinement of a global field.

This feature characterizes continuous fields as a sheaf over the underlying do-
main, which can be concisely rephrased as...a field is fully determined by its re-
strictions. It is a property of the restriction operator that is rooted both in the
nature of the fields, which are defined by their pointwise values, and in the nature
of the covering — a set-theoretic covering by open sets, — which ensures that each
point is represented in at least one subdomain.

If the analogous sheaf property is to hold in the discrete case, a sieved array must
be uniquely defined by its refinement to the root chain of the base sieve. However,
this is not the case for the example in Figure 6: the cochain values at the finest
level reflect only 12 degrees of freedom, while the whole array is specified by 33!
Similarly, a piecewise quadratic representation of a continuous scalar field defined
at the boundary of a triangle can be represented by a sieved array with supports
at the nodes indicated in Figure 9. However, its refinement to the vertex level can
be obtained by restriction of a whole family of piecewise quadratic fields, since the
interior edge node is omitted from the vertex-based description.

What went wrong? The main problem is a flawed geometric interpretation of
a purely syntactical construction represented by the mesh sieve. Indeed, when
attaching the degrees of freedom we identify the sieve nodes with mesh elements’
interiors, while when retrieving the cochain values the same nodes are identified
with the closures of the corresponding elements, and their coverings are identified
with the boundary during refinement. In short, the topology of the mesh sieve is
inadequate for a consistent defintion of this discrete field.

The situation can be rectified in various ways, but essentially all of them amount

6The adjective “continuum” in this context is used as the opposite of “discrete”
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to supplying a better topology for the base of the sieved array. The basic structure
of coverings among mesh elements is sufficient to express only piecewise linear dis-
cretizations of continuum fields adequately, and mostly likely on simplicial meshes
only. Higher-order methods typically attach degrees of freedom to element interiors
(except Hermite-based, perhaps), requiring a finer topology and a richer sieve, as
in the example above and Figure 9.

The simplest solution would be to cover each (nonroot) element e with a new
node e° representing the interior of e. A refined cochain would now be supported
on the boundary and the interior. Such an augmentation, however, would nearly
double the size of the base sieve while addiing essentially no new information about
the structure of the space — an interior node has exactly one arrow attached to it,
and everything about it can be inferred from the element node.

3.3 Sifting

We can shift some of the complexity from the structure of the bundle to the func-
tionality of the interface controlling access to the array data, which we will term
a Sifter. A Sifter, whose function may be directly implemented by a sieved ar-
ray class, implements a particular sifting policy. The policy defines (among other
things) the inputs acceptable as indices into a sieved array, even though they may
not be present in the base stack. For example, assuming only positive (p,i) pairs
are used to label the base sieve nodes, a node labeled by (-p,-i) may be rec-
ognized, within a given sifting policy, as the interior of a valid base node (p,i).
A cochain supported on (p,i) is then implicitly supported on (-p,-i), and the
corresponding cochain element contains the interior values only. Likewise, a sifter
may admit chains of base stack points as input to encode a finer indexing of cochain
data.

3.3.1 Fiber Bundles and Orientation. The main function of a sifter, and the
sifting policy it defines, is to define the effect that the refinement (and restriction,
on which refinement depends) and assembly operators have on the array data. In
the simplest, yet most ubiquitous, case as in Figure 7, restriction amounts to re-
ordering and gathering of data. More broadly, restriction may involve interpolation
or more general coordinate transformations on the data, when transferring it from
one level of granularity to another. For example, the underlying continuum field
may take values in a topologically nontrivial manifold, such as a sphere. The values
of the corresponding global discrete field can be stored in a sieved array in an arbi-
trary fashion. Upon refinement to the level where each elements maps into a single
coordinate system, restriction will perform the appropriate coordinate transforma-
tions. The exact input sequences indicating the coordinate system will be dictated
by the sifting policy of the sieved array.

A simple, yet important, example of a coordinate transformation is array compo-
nent reordering. This may be necessary, among other situations, if the user expects
the output of cochain subscripting to be stored in some desired order. For example,
in using higher-order finite element methods, say Ps, retrieval of the discrete field
components supported at a mesh edge must reflect the interpolation node order.
There are three nodes per edge in this case: one for each of the two endpoints

el, €9 and one in the edge itself (interior) el. The two orientations of the edge
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Fig. 10. Coordinate transformation of the cochain subsripting output consisting in reordering.
Indexing by the edge element outputs the data supported on its closure in an arbitrary ordering
(left). Indexing by cell-tuples forces a prescribed ordering (middle) and (right).

can exactly specify the two corresponding orders of retrieved components. An ori-
entation can be unambiguously prescribed by a cell-tuple [Brisson 1989] consisting
of an endpoint and its supporting edge. Admitting element chains representing
such cell-tuples into the bundle structure (representing them by base points in the
bundle) or into the sifter interface (allowing as input) enables the user to specify
the desired output order, as illustrated in Figure 10.

In general, use of cell-tuples corresponding to paths through the mesh sieve allows
for a unique ordering of the faces of the mesh element at which the path terminates
[Brisson 1989], and hence for a unique ordering of the cochain data indexed by
that element. The idea behind this relies on the use of generalized barycentric
subdivisions for the specification of a unique coordinate system on each cell of a
complex. It is particularly transparent in the simplicial complex case: the origin
of the coordinate system specified by the initial vertex of the chain tuple, the first
coordinate direction from that point, is along the edge following the vertex down
the chain. The second coordinate direction is any direction complementary to the
edge in the the triangle — the next element in the cell-tuple after the edge —
containing the edge, and so on. The simplest case of a two-dimensional simplicial
complex with the usual barycentric subdivision is illustrated in Figure 11.

Allowing nontrivial transformations of the cochain data during refinement, re-
striction, and data retrieval makes sieved arrays suitable for the modeling of sections
of fiber bundles over base spaces with discretizations encoded by sieves in terms of
coverings. In fact, sieved arrays can be interpreted as local sections of fiber bundles
over the underlying sieves. In all of these situations, simple and complex, the only
common constraint placed on the restriction operator is expressed by Equation 2.

3.3.2  Sifting Identities. Assembly is inextricably linked to restriction because
it is the process of recovery of a coarser cochain from its refinement. We may insist
that both refinement and assembly be reversible and act as each other’s inverses.
As we have seen (e.g., in Figure 9 and Figure 6), this is impossible in general
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Fig. 11. An orientation on a simplex defined by an ordering of the vertices of a barycentric
subdivision or, equivalently, by a path from a root node (0,1) to a to a leaf node (0,7) (enclosed,
nodes hatched).

because the assembly operator is not epimorphic when acting on the values of
the fine cochain alone. We can weaken the inversion requirement to demand that
refinement be a left inverse of assembly. In other words, given a support chain c
and its complete covering by ¢/, ¢’ — c, if RS is a refinement operator and AS is
the corresponding assembly operator, then

RS 0 AS =1, (3)

(&)

where I is the identity acting on the cochains supported on ¢’.

In practice, we do not expect refinement to discard data but simply to expose
the appropriate cochain representing the array at a certain level of granularity.
Therefore, since assembly acts on all of the sieved array, not only on the exposed
cochain, the ambiguity in the reconstruction of a coarser cochain array can be
removed, and the other inversion identity will hold:

AY o RS = 1. (4)

C

In this way, assembly can be interpreted as an update of the sieved array from the
current representative cochain. Refinement can then be viewed as splitting a coarse
cochain into complementary parts, one of which, the refined cochain, is open for
query and updates, while the data over other is kept fixed. Then assembly of the
coarser cochain consists of reconstructing it from the two pieces: the updated and
the fixed.

3.3.3 Bundle Stack Structure. In this light it appears natural that the life cycle
of a sieved array should start at the coarsest level. In practice, however, a sieved
array is referenced at the same level of granularity throughout the computation”:
it is refined to the appropriate level, and cochain elements indexed by the suitable
elements of the refined support are examined or assigned. Assembly is performed
occasionally to enforce the cocycle condition and thus to produce a global field over
the totalSieve, followed by refinement back to the “working level” of granularity.
To encapsulate this commonly occurring sequence of operations, we provide an
equivalent update (c) method, where assembly is done down to the level of chain
c. An empty chain is conventionally used to denote the totalSieve, and hence the
“total assembly.”

7A notable exception is furnished by multilevel methods.

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



18 : Matthew G. Knepley and Dmitry A. Karpeev

The sifting policy should also specify the procedure for distributed assembly of
bundles. In particular, different processes may specify different fibers — vertical
cones of degrees of freedom — over the same element. At least two natural conflict-
resolution policies exist: taking the union of all contributed fibers and assigning
precedence to a unique process (e.g., the one with the lowest rank). This situation
suggests that a separate Bundle interface, extending that of Stack, should be intro-
duced. Such an interface would allow the specification of this bundle sifting policy
by the user, and the explicit execution of the bundle assembly procedure.

4. OPERATORS

The role of assembly is not merely reconstruction of coarse cochains from the cov-
ering cocycles. A more important function is the assembly of cochains that are not
cocycles (i.e., whose elements do not agree on the meets of the supports). This
situation arises commonly in the application of operators to discrete fields. In a
typical continuum setting, a differential operator acts equally well on the global
and local fields, generating the same pointwise values on output, which can then
be trivially assembled for any cocycle. Indeed, being local, a differential operator
requires only the data from an arbitrarily small neighborhood of a point, which is
available in full for any local field over an open subdomain.

Indexing the local operator values can be conveniently implemented by using a
sifting policy. In particular, the local matrix entries, corresponding to the restriction
of an operator to a sieve element, may be indexed by chain pairs, analogous to the
“row-column” indices.

4.1 Finite Difference Sifting

In a typical discrete setting, the situation is markedly different. A discrete operator
P arising as a discretization of a differential operator acting on a local portion of
a discrete field X defined over a subdomain of a mesh can generate only partial
data for the resulting discrete field Y. If finite difference discretizations are used,
the operator can compute values of Y only at “interior” points — a designation
depending on the stencil being used — with the rest computed on different subdo-
mains and designated as “ghosts.” The refinement procedure in this case consists of
replacement, where a single process (e.g., with the lowest rank) containing a given
mesh element e in the interior of a locally structured grid block scatters its local
cochain element X (e) to all other processes storing the same data.

4.2 Finite Element Sifting

Finite element methods are more symmetric in the sense that operators discretized
this way typically contribute output data for any input degree of freedom. However,
the input data and the output contribution correspond only to the components
of X and Y along the local basis elements supported on the local subdomain.
The output contributions must be incorporated from each subdomain to obtain a
complete representation of the result in the finite element basis. When representing
this situation in terms of sieved arrays, the refinement-assembly pair of operators
acts as a partition of unity, resolving a field, usually by using projections, into
components supported at a given covering of the domain by subdomains and then
assembling results, usually by addition, in general using a linear map.
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Fig. 12. Stack structure specifying the topology of a multilevel mesh. The structure of a multilevel
sieved array would be prescribed by a bundle over such a stack; prolongation and restriction would
naturally correspond to refinement and assembly with an appropriate linear sifting policy.

This discussion demonstrates that assembly must be general enough to assemble
cochains that are not cocycles, while on cocycles it must reproduce the expected
results (i.e., the array whose restrictions generate the cocyle). This property can
be nicely expressed by using the update operator introduced above. Denoting the
support of a sieved array by ¢/, denoting the update operator by UCCI = Rg/ o AS,
and comparing with (3), we conclude that UCC/ reduces to the identity operator on
c’-cocycles, while all other chains are “projected” on this cocycle space.

4.3 General Linear Sifting

We can admit into refinement-assembly pairs the restriction-prolongation operators
of multilevel methods. Here different supports of a sieved array may correspond to
meshes of different resolution, with covering arrows encoding the relations between
the elements at different levels. This configuration can be conveniently represented
by using stacks with the base and the cap being sieves representing meshes at differ-
ent levels (see Figure 12). A sieved array defined over such as stack would represent
a field at different levels of resolution at once. Clearly, in this case we cannot insist
on a unique reconstruction of a fine state from a coarsened state, although as men-
tioned before, if assembly is viewed as an update, it is possible in practice. Similarly
we can deal with the assembly of sieved arrays defined over nonconforming meshes
as in Figure 13. In both cases the construction of the refinement and assembly op-
erators involves nontrivial choices, such as the interpolation or averaging methods,
which are highly problem dependent.

Together the refinement and assembly operations define the sifting policy imple-
mented by the sifter, which can be thought of as representing a particular class or
space of sieved arrays with operators acting on the appropriate spaces only. Op-
erators themselves can be easily represented by sieved arrays. Indeed, if the local

ACM Transactions on Mathematical Software, Vol. V, No. N, Month 20YY.



20 : Matthew G. Knepley and Dmitry A. Karpeev

process 0 process 1

process 1

33

: i

7 VAN

&y e O ha
/ ® r//.

Fig. 13. Stack structure specifying the topology of a nonconforming mesh. In serial, such a
structure would contains cycles; it could be handled by using PreSieves. A sieved array over such
a mesh would use a linear assembly policy to reconcile (interpolate) values on the nonconforming
interface.

action of an operator, application to a chain at a given support node generating
the values of a chain at the same node, depends on some numerical values, such
as local matrix coefficients (Jacobi matrix in the FEM case), they can be stored in

another chain with the same support. The application of an operator X L. ¥ then
consists in refinement of a sieved arrays representing X, Y, and P to the necessary
level, then local calculations of values in Y, followed by assembly, if necessary, as
illustrated in Figure 14.

The assembly of a fully distributed field proceeds as an assembly from any cov-
ering. The totalSieve can be viewed as a sieve node covered by the localSieve
support points residing on different processes with the same sifting policy applied
on the meets of local sieves when assembling the chain supported at the total sieve
node, the coarsest array state.

Figure 15 illustrates different assembly procedures. At the top of the figure is
a cochain of two matching scalar fields discretized by using piecewise-linear ele-
ments. If those values disagree, they must be coerced to produce a consistent field,
illustrated at the bottom of Figure 15.

If we think in terms of the old contiguous vector approach to FEM, we can liken
the approach embodied in sieved arrays to indexing into the storage by using mesh
elements rather than integers. In fact, the common domain decomposition approach
to parallelism, used in the Portable Extensible Toolkit for Scientific computing
(PETSc), can be seen as a special case of refinement. The field is refined to a
collection of subdomains, serial calculations are done, and the results are combined
along the parallel interface.
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Fig. 14. Action of a sieved operator P on a sieved array X producing a sieved array Y, all
sharing the same base sieve. The refinement-assembly resolution of identity intervenes at stage 1
(refinement) and at stage 3 (assembly) after the local operator application generates a refined Y
in stage 2.

5. MESH

We have defined all of the ingredients of a flexible mesh representation. The topol-
ogy of a mesh is represented by a sieve. The boundary submesh can be implemented
as a stack with the bottom containing the subsieve representing the boundary with
the induced covering relations, the top being the mesh itself, and the vertical arrows
identifying the elements of the boundary with their embedding into the full mesh.
The boundary elements in the full mesh are easily identified as the vertical support
of the total boundary sieve.

Analogously we can represent any subsets of a mesh or its partition into subdo-
mains; hence, discussion of field restrictions to those subdomains becomes simple,
using the SievedArray interface. We feel this approach is superior to the represen-
tation of boundaries and subdomains using markers because it eliminates having
to sift through the element space by hand, identifying the boundary or subdomain
elements by marker examination; with sieves, the process is accomplished by a sin-
gle cone or support operation, which can be efficiently implemented, both in serial
and in parallel.

As mentioned in the Introduction, it is common to include geometry in the def-
inition of the mesh itself. For instance, Triangle [Shewchuk 2005] assumes that
vertices alone carry geometric information. Other mesh formats allow coordinates
to be associated with other parts of the mesh but tend to store this information
as part of the mesh data structure. This approach seems counterintuitive because
a given topology can be embedded in many different spaces and in many different
ways into the same space. Thus the geometry appears as an external property,
imposed on the mesh from outside and subject to change. It is therefore natu-
ral to separate the geometric information of the embedding from the topological
information of the mesh itself.

In fact, the geometry of the mesh can be implemented as a field represented by
a sieved array. If the embedding is done into a nontrivial space (e.g., a sphere or
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Fig. 15. Assembly of a sieved array over a doublet mesh. A cochain over the triangles matching
on the intersection (top), and not matching (middle). In order to define a field on the total mesh,
the nonmatching cochain must be coerced by one cochaing taking precedence (bottom left), or
averaging (bottom right).

a torus to emulate periodic geometry), coordinate transformations that were dis-
cussed above may be necessary. In fact, the fields may take values in essentially
arbitrary target spaces amenable to computational representation (think of fiber
bundles with specific typical fibers). Thus it may represent tensor fields (represen-
tation of operators in Section 4 is an example), discrete markers, and even fields
with values in object classes.

The mesh generator, refiner, and coarsener may now be merged into a single
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Fig. 16. Array assembly and update implementing the replacement policy (top) and addition
policy (bottom).
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interface acting on a stack representing the embedding of the boundary into the
mesh. A stack with an empty top indicates the request to generate the mesh from
the boundary data. Its geometry can be supplied separately as a sieved array, or
as a full mesh object referencing the bottom of the stack. Likewise, the refinement
or coarsening constraints on the mesh can be easily implemented as sieved arrays
attaching, for example, the maximal or minimal volumes to the elements to be
refined.

5.1 Implementation

We provide a reference implementation of the interfaces discussed above. The core
algorithms are implemented in C/C++ on top of PETSc (see [Balay et al. 2005])
and the Message Passing Interface (MPI) (see [MPI Forum 2005]). This ensures a
high level of performance and scalability of the core sieve and array code.

To ensure interoperability and the ease of code deployment, we employ a lan-
guage interoperability environment ASE developed at Argonne National Labora-
tory [Knepley et al. 2005] and providing interfaces to the core capabilities in various
languages. At the moment C/C++ and Python are supported, although we plan
to support Fortran and Matlab interfaces.

6. HOW DOES IT STACK UP?

We attempt here to contrast the conceptual foundation of the sieve paradigm with
other mesh abstractions, and also give an indication of future theoretical develop-
ments and applications.

6.1 Value of Abstraction

The Sieve abstraction retains a minimum of structure to ensure the greatest possi-
ble expressivity. For example, although the connectivity, or incidence, information
is not explicitly specified in a sieve-based description of mesh topology, it can be re-
covered through an application of a concise and elegant fully parallel algorithm (see
Section 7.2). Moreover, even basic topological information such as the dimension
and shape of an element, though not explicitly preserved, can be recovered through
simple sieve operations. However, the absence of this information in the objects and
especially in the operations over a sieve make it possible to write algorithms that
are independent of these extraneous details, as demonstrated throughout Section 7.

6.2 Triangle

The most common scheme for representing a computational mesh is exemplified
in the format used by the Triangle [Shewchuk 2005] mesh generator. Vertices are
identified by their spatial coordinates, and then faces are specified by the collection
of vertices they contain; edges are left implicit. This is also the strategy employed
by the TSTT interface [Brown et al. 2005]. Here the geometric information is
embedded directly into the mesh description rather than being expressed separately,
as in our fibre bundle construction. In fact, material attributes are also allowed
using another mechanism, when they could be handled in an identical manner
using bundles. Moreover, Triangle makes explicit distinctions between topological
elements of differing dimension and shape. Our sieve construction, on the other
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hand, treats all elements equally. This approach simplifies greatly the task of
coding algorithms that are independent of the intrinsic dimension of the mesh.

6.3 Incidence Relations

Previously (unpublished) we formulated the covering relations in terms of an equiva-
lent incidence relation graded by dimension. Thus, the user could ask for all incident
elements of dimension d rather than the cone or composition of cones. Restriction
was similarly expressed in the interface, but its duality to the covering category
was obscured, and it still possessed unnecessary distinctions in dimension. The
user interfaces presented here are similar; however, the basic structures are much
simpler in the Sieve case and extend much more readily to other scenarios, such
as parallel partitioning. Furthermore, the underlying implementation was vastly
simplified by using sieves.

6.4 Ramifications and Further Applications

The Sieve concept is much more general than the traditional mesh structures com-
monly used for numerical solution of PDEs, and it can represent many more struc-
tures commonly implemented separately. Using sieves, we can easily define quad-
and oct-tree decompositions used in methods for fast evaluation of integral opera-
tors, such as the fast multipole method. Such global computational space decom-
positions exploit the decay properties of integral operator kernels away from the
diagonal to agglomerate the effects of interaction of a point with a whole subdomain,
if the two are sufficiently separated. Such structures map well on global physical
network topologies, such as the tree network of the BlueGene/L architecture.

Another example of nonlocal interactions can be found in metabolic networks,
whose degree distribution follows a power law resulting in many highly connected
nodes. Recently decomposition algorithms have been proposed for separation of
such graphs into a locally connected (meshlike) part and a global “shortcut”
graph [Chung et al. 2004]. Using sieves, we can model this situation and inves-
tigate different mappings of the nonlocal portions of the networks onto BGL-like
communication topologies. This capability could open a computational avenue to
problems on metabolic, or more broadly scalefree, graphs.

In micromagnetics, modeled by the Landau-Lifschitz-Gilbert equations, the mag-
netic spin takes values not in a Euclidean vector space but rather on the sphere.
Consequently, a single coordinate chart cannot cover the entire space. When re-
trieving values in the overlap between charts, one may need to perform a coordinate
transformation before returning the values. This complication is handled in our
formalism by changing the sifting policy to incorporate coordinate transformations
during refinement or assembly. This approach has the potential to simplify the use
of geometric integration algorithms, such as multisymplectic and Lie group- based
algorithms.

The computational use of fiber bundle ideas by itself raises several interesting
points. For example, the computation of fields may require changes to the base
sieve. Assume that for the sieved array in Figure 6 after a computational step the
local field over (0,10) no longer “fits” into the given coordinate chart. This situation
is quite possible in certain applications, such as micromagnetics. The only way to
deal with this situtation may be to refine the base mesh and to generate a finer
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field mapping each element into a single coordinate chart.

The finite element tearing and interconnecting [Klawonn et al. 2005] method is
an iterative substructuring method using Lagrange multipliers to enforce the con-
tinuity of the finite element solution across the subdomain interface. Degrees of
freedom that lie on the interface itself are treated independently on either side of
the interface, and in the calculation phase vectors are used containing both as global
degrees of freedom. This method can easily be accommodated as follows. The finite
element fields can be handled as cochains with the support containing the subdo-
mains. As long as the assembly is not performed below — to the meet — of the
subdomain level, cochain elements supported on the subdomains have independent
values for a not-too-agressive sifting policy (one that would immediately enforce
replacement), so that on subdomain boundaries values are not reduced. The inter-
polants do not yet match, preventing us from extending to a global function across
both elements. After the solve has been accomplished, values along the interface
do match, generating a cocycle that representing a global solution over the entire
domain, which can be assembled to the root level, if necessary.

In general, we expect many applications of sieve-based algorithms well beyond
mesh representation. We view the Sieve concept as a general tool for “geometriza-
tion” of computational problems by viewing computational objects in terms of cov-
erings by more elementary parts. We emphasize that the sifting policy is the central
programmable part that must be overloaded to accommodate “exotic” applications,
while most users will find the basic sifting policies mentioned above sufficient.

7. EXAMPLES
7.1 Simple Mesh Surgery Operations

One common operation involves splitting a triangular face by point insertion. Sup-
pose that we insert a vertex inside an existing face (0,0), as shown in Figure 17.
The existing sieve may be simply altered to incorporate the new face. First we will
add the new faces,

addCone([(0,8), (0,1), (0,91, (0, 11))
addCOne( [(0)9) > (012) > (07 10)] ) (0, 12))
addCone ([(0,10), (0,3), (0,8)], (0, 13))

then the new edges,

addCone ([(0,5), (0,7)1, (0, 8))
addCone([(0,6), (0,701, (0, 9))
addCone([(0,4), (0,701, (0, 10))

noticing that the vertex is added automatically. The old face may be eliminated
by using removePoint ((0,0)), or it can be retained to preserve the refinement
history. For instance, we could add it explicitly to the topology sieve.

addSupport ((0,0), [(0,11), (0,12), (0,13)1)

However, this would probably be better preserved in another “refinement” sieve or
a stack so that all faces continue to possess height zero.

Another common operation is the edge flip, often used in Delaunay triangulation
algorithms. Here the edge dividing two triangles is removed, and a new edge is
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0.6)

04 (0.5)

Fig. 17. Point insertion into a triangular face.

inserted joining the opposite vertices, as shown in Figure 18. Two operations on
the sieve are necessary to perform the flip. First, the cone of the flipped edge
becomes the two opposite vertices of the quadrangle, in this case (0,7) and (0,10).
Next, the triangle cones must swap a pair of opposite edges. In this case we choose
(0,3) and (0,6). If we had chosen the other pair,(0,2) and (0,5), it would merely
have placed (0,0) on the bottom. This latter change is more easily carried out by
adding and deleting the individual arrows rather than by setting whole cones.

7.2 Constructing the Dual Graph

An example illustrating the power and simplicity of the Sieve construct is the forma-
tion of the essential part of a dual mesh, or element connectivity graph, in parallel.
This is typically required to compute a mesh partition by using graph partitioning
algorithms such as those implemented in ParMetis [Karypis et al. 2005]. Consider
again the doublet mesh divided between two processes, shown in Figure 2. As evi-
dent from the serial sieve on the left of Figure 2, the two simplices (0,10) and (0,11)
are adjacent as they share the edge (0,7). In the partitioned sieve on the right,
however, this determination cannot be made on either process separately.

To make the adjacency determination in parallel, we use the support completion
operation. We use only the part of the parallel doublet mesh sieve from Figure 2
(right) representing edges and triangles, which is sufficient for triangle adjacency
determination. Clearly the local support for (0,3) contains a single element. How-
ever, we can use supportCompletion and add to construct the completed sieve
on each process, shown at the top of Figure 19; the completion portion is dashed.
Both processes now contain the two triangles (0,6) and (1,5) covered by a single
edge (0,5). The edge separates adjacent triangles, and this fact is recorded in the
triangle adjacency graph, illustrated at the bottom of Figure 19. This process can
be carried out for any mesh, producing the triangle connectivity graph. Other
types of connectivity data structures can be computed in an analogous manner. In
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Fig. 18. Edge (0,4) is flipped.
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Fig. 19. One stage in the construction of a mesh connectivity graph from a (partial) distributed
mesh sieve. Without completion, adjacency of nodes (0,6) and (1,5) cannot be derived.

dualTopology = ALE.Sieve.Sieve()
dualTopology.setComm(comm)
completion, footprint = topology.supportCompletion(footprintTypeSupport)
for face in topology.heightStratum(1):
support = topology.support(face)
if len(support) ==
dualTopology.addCone (support, face)
elif len(support) == 1 and completion.capContains(face):
dualTopology.addCone ((support[0], completion.support(face)[0]), face)

Fig. 20. Python code to create the dual mesh.

particular, using completion methods we can compute the dual mesh with an edge
between the two members of any face with support of size two.® Figure 20 contains
Python code to construct the dual mesh. Notice that no part of this code refers to
the dimension of the mesh or any element, or to the shape or connectivity of any
element, and thus will work for any general mesh.

7.3 Partitioning in Parallel

Since partitions are merely collection of mesh elements, we may view a partition
as covered by the elements it contains, and thus enlarge our sieve to include the
partitions themselves. The cone of each partition point is now the set of elements
in that partition. Using this construction, we may redistribute the mesh using only
the cone completion operation.

First we consider the case of distributing a serial mesh that has been partitioned.
The initial process will contain the full mesh sieve and an assignment of elements
to processes in a partition sieve. The other processes will add the partition node
corresponding to that process, for example, the prefix given by the size of the
communicator and index by the process rank as in the top diagram of Figure 21.

8Recall that in a mesh sieve each cell of codimension 1 can be shared by at most two other cells.
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Fig. 21. Three states of sieves involved in doublet mesh partitioning. Initial state of the parti-
tioning (P) and the topology (T) sieves (top); after completion of P (middle); after completion of
T (bottom).
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completion, footprint = topology.coneCompletion(footprintTypeCone)

topology.add(completion)

for point in topology.cone((-1, rank)):
topology.addBasePoint (point)

completion, footprint = topology.coneCompletion(footprintTypeCone)

topology.add(completion)

topology.restrictBase(topology.cone((-1, rank)))

Fig. 22. Python code to partition a mesh

In the case of the doublet mesh used in the figure, it is sufficient to partition the
triangles — elements of highest dimension — into disjoint sets corresponding to
processes. Then all of the covering elements of each triangle are added to the
corresponding set, possibly duplicating lower order elements on different processes.
Such a partitioning strategy is sufficient to retain all information about a serial
sieve after its distribution.

After the initial setup, cone completion will transfer the entire cone of each par-
tition element to the remaining processes. This completion consists of all elements
in that partition and is merged into the sieve (see middle diagrams in Figure 21);
on all processes other than root, the cap of the completed sieve is a duplicate of
the base of the topology sieve. A second completion will transfer all the cover-
ing relations to the other processes. Finally, the local sieve on the root process is
pruned of all elements whose support does not contain its partition element (see
the bottom diagrams in Figure 21). In the case of fully parallel rebalancing, each
process creates partition nodes and cones exactly as the first process in the serial
case, and then the partitioning proceeds exactly as in the serial case. Notice that
the code in Figure 22 is again independent of dimension and element connectivity.

Upon cone completion, the full topology will be available on all processes; how-
ever, the element ownership will still appear as it was prior to the partition. We can
renumber the elements to reflect the partition by completing the sieve once more,
thereby putting all shared elements into the completion. Then a simple tie-breaking
rule can be used to divide up shared elements. This method will be used to create
variable numberings in Section 7.5; however, element identity is immaterial for this
so we will not bother to carry it out.

7.4 Meshing in Parallel

The strategy for meshing in parallel is now similar to that for partitioning. We
use a serial mesh generator to generate a mesh on each individual process, using
an initial boundary communicated to all processes. These meshes may disagree on
the boundary; however, we will construct a cover of the original edges by any edges
produced by splitting. Then, using cone completion, we can construct a complete
covering of the boundary. We must then resolve incommensurate coverings of each
boundary edge either by merging two close points or by introducing another edge
between the two. Any newly introduced boundary edges are incorporated into the
existing process mesh. As a final step, we may run a parallel mesh improvement
algorithm, without topology change, to smooth out any distortions caused by merg-
ing [Munson 2004]. This procedure will result in a mesh that may be artificially
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refined along process boundaries, but this effect becomes negligible as the mesh
grows, and we argue that it is far outweighed by the simplicity of the algorithm
itself.

We also note that a serial mesh generator can be used to construct periodic
meshes. Just as in the parallel mesh example, we must merge a boundary, in this
case the identified periodic boundary. This merge is accomplished in exactly the
same manner, resulting in a fully periodic mesh.

7.5 Constructing a Finite Element

We have remarked above that the restriction and prolongation operations are ex-
actly the mechanism responsible for finite element assembly. Here we demonstrate
this in detail for a higher-order Lagrange element on multiple fields. The restric-
tion of a continuum field to an element 7 is what we approximate using our finite
element space P. For our Lagrange element, we use a nodal basis, meaning that
the basis {¢;} for P and the basis of functionals {L;} for its dual P’ satisfy
Lj(¢:) = 04

Thus, the restriction process can be thought of as a selection of the coefficients
for basis functions in P that are nonvanishing on 7, and each coefficient can be
identified with the particular L; which does not annihilate that basis function.
Furthermore, each L; is identified with a certain topological piece of the element.
In the case of point evaluations, this is merely the piece on which the evaluation
point occurs.

Consider the third-order Lagrange element on a triangle. In Figure 23, the circles
represent the point evaluation functionals that form a basis for P’. If we, for
instance, restrict to es, then we will require the four coefficients associated with
(vo,v1, e2). Restricting to 7, we need the coefficients from all the labeled topological
elements, which we can recognize from above as the cone of fj.

In traditional finite element code, one represents the discretized field by an array
of basis function coefficients. This approach forces the user to construct a number-
ing on the basis functions and then select the correct indices for each element. Thus,
the code is more complicated, and its relation to the mathematics is obfuscated.
In our paradigm, we replace the integers in indexing with the topological elements
themselves, and selection occurs through the cone construction. In addition, when
we consider the problem of representing multiple discrete fields over the mesh, we
realize the full power of the stack as lattice operations are incorporated. We can
represent degrees of freedom as points in a discrete sieve (i.e., a sieve without ar-
rows). Variables may be associated with topological elements by vertical arrows
with the topology as the base. However, we would like a mechanism to segregate
variables in each field. Each field is represented by a point in an auxiliary sieve,
which is then used as the base of a stack whose vertical arrows connect to the degree
of freedom sieve. The cone over each field point is the set of variables in the field,
as depicted in Figure 24, and the degrees of freedom from a given field over a given
element are simply the meet of the cones in the corresponding base points. This
approach also allows us to order the degrees of freedom in a manner suitable for
a given application, or even reorder them for different stages of the computation,
without affecting the retrieval code.
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v_0 e 2 v_1
Fig. 23. Third-order Lagrange element.

As a concrete example, we create a numbering for two fields over the doublet
mesh. The first is a P, vector field and the second a Pj scalar field. Figure 25
shows these initial choices and the creation of the numbering stack. In Figure 27
we present the numbering algorithm itself.

We loop over all elements in the topology. If the element is present on more
than one process, only the lowest-rank process will create degrees of freedom over
it. We then loop over each field and decide how many degrees of freedom the field
possesses on that element. FIAT can provide the size of the dual space on an
element of that dimension, and we equate dimension with depth in the sieve. We
assume that tensor fields have dimension equal to the dimension of the mesh. We
add these new degrees of freedom to the cone of the current field and then add
the collective degrees of freedom for the current element to its vertical cone in the
numbering stack. Lastly, the stack is completed over vertical arrows so that ghost
degrees of freedom are available. The full stack is shown in Figure 26.

If we let f and K be the local element vector and matrix, F' a global discrete
field, and J its Jacobian, the code in Figure 28 will assemble the function and its
Jacobian.

Using both sieves and stacks, we have provided routines that partition a mesh
in parallel, calculate the finite element variable ordering, integrate the weak form,
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~Topology

Fig. 24. Degrees of freedom for multiple fields.

elements = [FIAT.Lagrange.Lagrange (FIAT.shapes.TRIANGLE, 2),
FIAT.Lagrange.Lagrange (FIAT.shapes.TRIANGLE, 3)]

ranks = [1, 0]

dim = mesh.getDimension()

dof = ALE.Sieve.Sieve()

dof . setComm (comm)

numbering = ALE.Stack.Stack()

numbering. setComm (comm)

numbering.setTop(dof)

numbering.setBottom(topology)

Fig. 25. [Initial specifications for the finite elements.

and assemble the operator. These routines are independent of the mesh dimension,
global topology, element shapes, and finite element.

8. CONCLUSIONS

A key conclusion of this effort is that better mathematical abstractions in software
bring concrete benefits. In current FEM simulation packages, reusability rarely
goes beyond the linear algebra level. The reason is a lack of effective mathemati-
cal abstractions for hierarchically structured data and operations that adequately
reflect the modeled problem. Components cannot be shared when operations are
inextricably linked in the implementation. Furthermore, the complexity of the ex-
isting hierarchical solvers written without the benefit of these abstractions increases
quickly, creating inpenetrable and unmaintainable code. This low-level approach
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Fig. 26. DOF stack for the trial discretization over a doublet mesh.

completion, footprint = topology.supportCompletion(footprintTypeSupport)
index = 0
for p in topology.space():
if completion.capContains(p):
neighbors = footprint.support([p]+list(completion.support(p)))
if [0 for processTie in neighbors if processTie[1] < rank]:
continue
indices = []
for field in range(len(elements)):
scalarDof = len(elements[field].dual_basis().getNodeIDs(topology.depth(p)) [0])
entityDof = scalarDof#*max(1l, dim*ranks[field])
if entityDof:
var = [(-(rank+1), index+i) for i in range(entityDof)]
indices.extend(var)
index += entityDof
dof.addCone(var, (0, field))
numbering.addCone(indices, p)
completion, footprint = numbering.coneCompletion(footprintTypeCone)

Fig. 27. Python code to create a variable ordering.

to implementation has also greatly hindered generalization of these algorithms, for
instance to regions with nontrivial global topology.

However, many of these difficulties can be rectified by using the Sieve construct
and sieved array structures. Discarding the explicit dimensionality and shape in-
formation in the algorithms not only reduces the complexity but also results in
much greater generality. All operations are expressed in terms of a single cover-
ing relation, which captures the ubiquitous notion of a decomposition of objects
into more elementary parts. With only a single routine with parallel communi-
cation, optimization and portability also become much easier. Furthermore, since
this approach assumes much less about the structure of the problem, sieves can be
more easily incorporated into existing PDE frameworks, and perhaps frameworks
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elements = mesh.topology.space()

elemU = u.restrict(elements)

# Loop over highest dimensional elements

for element in mesh.topology.heightStratum(0):
# We want values over the element’s closure
coeffs = elemU.getValues([element])
# Calculate the stiffness matrix and load vector
K, f = self.integrate(coeffs, self.jacobian(element, mesh, space))
# Place results in global storage
elemF.setValues([element], f)
elemJ.setValues([[element], [element]], K)

F = elemF.assemble([])

J = elemJ.assemble([])

Fig. 28. Python code to assemble the linear system. The sifting policy identifies elements with
their closures, and local matrix indexing is treated as block diagonal. Empty chain signifies
totalSieve for assembly purposes.

for other problems as well. Moreover, the generality of the interface enhances the
capabilities of existing PDE solvers. Sieves can seamlessly handle hybrid meshes,
complicated global topologies as in micromagnetics, and intricate structures em-
bedded in the mesh such as fault systems in seismic modeling.

Glossary
chain: A set of sieve points, often identified with a set of topological mesh
elements.

cochain: A set of points in a dual sieve, often identified with a set of functions
over toplogical mesh elements.

cocycle: A cochain satisfying consistency conditions on the meet of the elements,
often identified with the agreement along element intersections of functions de-
fined on the elements.

covering: A relation between two sieve points, expressed by a sieve arrow. The
notion can be extended to a relation between two chains.

complete covering: A chain covering another that, for each member of the
covered chain, includes either that member or its entire cone.

localSieve: An artificial sieve point covered by all of the leaves on the process.

sieve: A directed acyclic graph that expresses a covering relation between points,
meant to encode an étale topology.

stack: A sieve that has other sieves for both its cap and base. Sieve operations
operate only over arrows between these sieves, not inside them.

sieved array: Storage structured according to the covering relations of a sieve.

totalSieve: An artificial sieve point covered by all of the leaves in the sieve.
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