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ABSTRACT  
 

Application of massively parallel throughput DNA sequencing technologies to the 
generation of metagenomic datasets from environmental samples is presently 
transforming the field of microbiology. Whereas traditional (Sanger-based) DNA 
sequencing technology imparted a high economic cost on data generation, the 
development of “next-generation” technologies now make the large-scale generation of 
sequence data required for studying complex microbial communities feasible. Therefore, 
molecular-based approaches to inferring the structure of microbial communities based on 
the cataloging of PCR amplified small subunit ribosomal RNA (SSU rRNA) encoding 
genes can now be complemented with the inference of the function of these communities 
via shotgun sequencing strategies. However, significant hurdles in analyzing sequence 
data at this scale include:  (1) efficient strategies for identifying the gene content 
(annotation), (2) providing web-based interfaces for comparing datasets from different 
samples, and (3) applying statistical methods to guide identification of relevant gene sets 
for further study. The MG-RAST (MetaGenome Rapid Annotation using Subsystems 
Technology) system is one solution that has found widespread use in the analysis of 
metagenome-derived datasets. In this chapter, the underlying structure of the publically 
accessible MG-RAST resource and how it addresses the aforementioned hurdles will be 
discussed. Additionally, future challenges will be identified in relation to the expected 
increase of data output from DNA sequencing platforms. 
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INTRODUCTION 
 
Studying microorganisms recalcitrant to cultivation in the laboratory has been a major 

impediment to understanding natural microbial populations within the context of their 
environment. As a result, little is known about many of their physiologies and their functional 
contribution to the system at large. Cataloging the different types of microorganisms within 
any environment requires alternate approaches to those used with larger, macroscopic life 
forms. Classical taxonomy of plants and animals focuses on the comparison of a compilation 
of morphological and behavioral characteristics that are simply unavailable for the systematic 
classification of microbes. Comparison of a common molecular molecule found in all forms 
of life, namely the sequence of RNA comprising the small subunit of the ribosome (SSU 
rRNA), provides an informative phylogenetically based context in which to quantify such 
diversity. Molecular-based approaches have revealed an enormous phylogenetic diversity of 
microbial species found in natural environments that have not been cultured (Pace, 1997). 
The number of major taxonomic divisions (phyla) within the bacterial domain of life alone 
has grown from 12 in the mid-1980s (Fox et al., 1980) to greater than 80 today, of which less 
than 30 have cultured representatives (Hugenholtz et al., 1998; Fox, 2005). Moreover, with 
the application of massively parallel sequencing technology to rRNA-based inventories, 
previous estimates of species diversity richness, for example in the marine environment, may 
be under-represented by 10- to 100-fold (Sogin et al., 2006; Huber et al., 2007). With 
currently available molecular-based microbial ecology tools focused on the use of a single 
gene (usually rRNA encoding genes) as a proxy for the organisms present we can describe the 
community structure of the microbial community present, but in comparison there has been 
little available in terms of systems-based approaches to describing their function. This is 
presently changing as analyses geared towards studying the collection of genomes 
representing these species – the metagenome – have also recently incorporated second-
generation sequencing platforms (primarily 454-based pyrosequencing). 

Milestones in metagenomic-based research have been achieved primarily in marine and 
soil environments, complex samples in their own right (Handelsman, 2004). The first 
metagenomic library was constructed from marine picoplankton populations using fosmids 
for the purpose of testing the bias in PCR amplification of 16S rRNA genes from 
environmental sequences (Schmidt et al., 1991). Accessing the “metabolic potential” of a 
microbial community would not effectively occur until high-throughput Sanger-based DNA 
sequencing became more routine following the microbial genome sequencing revolution of 
the late 1990s. For low complexity environmental samples, this could drive the assembly of 
complete genomes from target-organism-specific sequences. In the case of an extremely low 
diversity environmental sample, as in the case of run-off from acid mine drainage, the 
reconstruction of several near-whole genomes was possible (Tyson et al., 2004). The 
alternative view for looking at more complex systems was to use the metagenome as a 
resource for data mining (Venter et al., 2004) – large insert libraries could be screened for 
functions of interest from soils (Rondon et al., 2000) or discovery as in the case of finding a 
previously unknown form of bacterial phototrophy in marine systems (Beja et al., 2000). 
However, the impediment of both library construction, predicated on the successful isolation 
of fairly large fragments of DNA, as well as the necessary sequencing depth, using Sanger-
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based sequencing, sorely under-represents the DNA sequence space present in most natural 
environments. 

Metagenomics is presently entering a new phase of development as the implementation 
of the massively parallel throughput afforded by second-generation sequencing approaches 
becomes more widespread and applied to an increasing number of environments. Traditional 
dideoxy termination (Sanger) based DNA sequencing in metagenomics historically relied on 
large insert libraries propogated in an Escherichia coli host. Genes that may have been 
otherwise unstable or toxic in the cloning vector host cell can be accessed without cloning 
bias in the sequencing profile.  In addition to circumventing the need for cloning, the 
throughput afforded by second-generation sequencing technology enables a new approach to 
comparative metagenomics (Ronaghi et al., 1996; Ronaghi et al., 1998; Margulies et al., 
2005). Now sequence representation (abundance) can be used to contextualize datasets for 
driving pattern recognition and uncovering unique properties within natural microbial 
communities. 

The MG-RAST (MetaGenome Rapid Annotation using Subsystems Technology) suite of 
tools has incorporated a variety of visualizations to help users explore datasets via an intuitive 
web-based platform (Meyer et al., 2008). The system has found widespread use in the 
analysis of metagenome-derived datasets as the data exploration can be performed in “real-
time” by any user with an Internet connection and web browser. However, significant hurdles 
in analyzing sequence data at this scale include:  (1) efficient strategies for identifying the 
gene content (annotation), (2) providing web-based interfaces for comparing datasets from 
different samples, and (3) applying statistical methods to guide identification of relevant gene 
sets for further study. This chapter describes how MG-RAST addresses these issues by 
utilizing BLAST to screen for potentially protein encoding genes (PEGs) from metagenomes 
and then projecting them onto subsystems to efficiently organize and display the output in a 
user-friendly web-browser format. 

 
 

SUBSYSTEMS APPROACH TO GENE ANNOTATION AND  
COMPARATIVE GENOMICS 

 
The combination of high-throughput, automated, Sanger-based DNA sequencing 

technologies and improvements in computation allowed for the sequencing of microbial 
genomes beginning in 1995 (Fleischmann et al., 1995). Alongside improvements in sequence 
accuracy and assembly, accurate gene annotation remained a challenge. This was complicated 
by the fragmentary nature of biological inquiry, and compounded by the diversity of the 
natural microbial world. Although gene annotation can be obviously limited by the extent of 
the knowledge-base of previously sequenced and characterized genes, there is also the 
problem of ontology – inconsistencies in the names of homologs would impede the high-
throughput annotation of genomes. In the context of “The Project to Annotate 1000 
Genomes”, an international collaboration led by the Fellowship for the Interpretation of 
Genomes (FIG) and Argonne National Laboratory created a structured system for gene 
annotation that would lend itself to automation. The tenets of their approach were to:  (1) 
annotate a set of related genes (subsystem) across genomes by a single expert user rather than 
genes across a single genome; (2) analyze related protein families instead of a single protein 
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family; (3) project annotations from a populated subsystem instead of individual annotations; 
and (4) provide a central resource for other bioinformatic analyses. The core concept for this 
was the organization of genes into “subsystems”. 

A “subsystem” is defined as a set of abstract “functional roles” that together implement a 
specific biological process or structural complex (Overbeek et al., 2005). In this manner, the 
term “subsystem” has the flexibility of representing, for example, either a metabolic pathway 
(e.g. glycolysis) or a physical structure (e.g. ribosome). When these functional roles are 
linked to specific genes across genomes and organized in a “subsystem spreadsheet”, a 
“populated subsystem” emerges. The utility of this organization is extended by “subsystem 
connections” that allows linkage of genes between subsystems; in other words, a single gene 
may play a functional role in multiple subsystems simultaneously. 

By having “subsystem experts” perform the curation, consistency is encouraged to 
control the vocabularies and this is propagated across additional genomes as they become 
annotated. Overlap in functional roles between subsystems will lead to conflicts, but a 
“clearinghouse” has been established for expert curators to resolve differences and produce 
solutions.   

 
 

FIGFAMS AND THE RAST SERVER 
 
The National Microbial Pathogen Data Resource (NMPDR) is a Bioinformatics Resource 

Center that was funded by the National Institute of Allergy and Infectious Diseases (NIAID) 
to compile all known genetic information related to Category B priority pathogens (McNeil et 
al., 2007). Initially, the complete genomes of 50 pathogenic bacteria were the focus for 
subsystems curation but additional genomes were incorporated to provide a phylogenetic 
context for data analysis (in the form of “supporting genomes”). As genome sequencing of 
new strains and serovars and newly discovered pathogens would become routine, a system for 
quickly and accurately annotating genome sequences became a priority. This in itself was 
recognized as a global utility of the NMPDR that could be extended beyond pathogens, and 
the Rapid Annotation using Subsystems Technology (RAST) server was developed as a 
general comparative genomics analysis platform (Aziz et al., 2008). 

RAST is based on the manually curated subsystems described earlier and on the protein 
families that are derived from them called “FIGfams” (Meyer et al., 2009). FIGfams are sets 
of isofunctional homologues that are defined as a four-tuple:  (1) a stable, unique identifier 
[ID], (2) a set of protein sequences that are globally similar and provide a common function 
[protein-set], (3) a procedure for deciding whether a new protein sequence should be included 
in the set [decision-procedure], and (4) a function implemented by all protein-set members 
[family-function]. FIGfams are analogous to TIGRFAMs (Haft et al., 2003) and PIRSFs (Wu 
et al., 2004) in that all three approaches curate protein families based on global similarity and 
common domain structure. However, the method of curation and decision-procedure set 
FIGfams apart from the other two. This impacts not only the throughput of curation but also 
the number of families identified. The creation of an individual FIGfam is based on the 
avoidance of placing two proteins with different functions in the same set; this conservative 
perspective leads to a high number of small protein families.  
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The RAST server provides a comparative genomics environment by the fully automated 
annotation of two general classes of gene functions – those that are subsystems-based and 
those that are nonsubsystems-based. This is reflected in the way FIGfams are created initially. 
They are either subsystems-driven or delineated from the comparison of closely related 
strains. For subsystems-generated FIGfams, proteins would be considered part of the same 
FIGfam if they implement the same functional role (inferred from the previously described 
subsystem spreadsheet), and the region of similarity shared by them covers at least 70% of 
each sequence. For non-subsystems generated FIGfams that are inferred from strain-to-strain 
comparison, sequence similarity (greater than 90% identity) and context within the 
chromosome (i.e. synteny) are the major determinants. Although non-subsystems based gene 
functions may be unknown, they serve a useful purpose in that they can act as the starting 
material for novel subsystems. 

Furthermore, the tight coupling of FIGfams with subsystems allows continual updates to 
reflect changes to the subsystems. The current release (10.0) contains roughly 107,000 
families that are built up from both manual curation using the subsystems approach and 
automated annotation of closely related strains. 

 
 

MG-RAST OVERVIEW 
 
The quantum leap in metagenomics is presently occurring with the implementation of 

second-generation DNA sequencing technologies. The challenges associated with second-
generation DNA sequencing relative to didexoy chain termination (“Sanger”) sequencing are 
shorter reads and an increased scale of data output. The aforementioned RAST server was 
designed for analyzing complete, or near-complete, archaeal and bacterial genomes and is 
therefore predicated upon large stretches of assembled contiguous sequences (“contigs”). The 
output for most metagenomic datasets is far from an assembled state and therefore the 
strategy for data handling and display is distinct. Whereas the focus of RAST with an 
individual genome is an exhaustive inventory of the types of genes present, for MG-RAST the 
abundance of the types of genes is equally important for the purposes of comparative 
metagenomics. 

Regardless of the DNA sequencing technology implemented, the first step in analysis of 
any metagenome-derived dataset involves the comparison of them to known sequences. This 
is a computationally intensive task, but provides the data types required for many subsequent 
analyses. These analyses can include phylogenetic comparisons, functional annotations, 
binning of sequences, phylogenomic profiling, and metabolic reconstructions.  

The pipeline accepts data in a number of formats: 454 reads may be uploaded directly in 
the format delivered by 454, and fasta files typical of Sanger-sequences and used by other 
platforms may also be uploaded. The pipeline will also accept assembled sequences in fasta 
format. Users may choose to upload raw unassembled reads or assembled contigs.  

It is increasingly apparent that the full potential of comparative metagenome analysis can 
be achieved only in the context of the metadata (information describing the sample). The 
Genomics Standards Consortium has proposed a minimal set of data, called the Minimum 
Information about a (Meta)Genome Sequence (MIGS/MIMS), that should be collected with 
every metagenome sequence. Although this is an evolving standard, the metagenomics-RAST Dionysios Antonopou…, 10/23/10 1:24 PM
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server is MIGS/MIMS-compliant (Kottmann et al., 2008). Metadata is requested from the 
user at the time of sequence submission to MG-RAST. This data is stored with the user's data 
and is made available to them. If the user chooses to publicly release the sequence data, the 
metadata is also included. 

After data upload files are checked for formatting errors and sequences are dereplicated. 
Next, fragments are mapped against a comprehensive nonredundant database (NR). A 
phylogenetic reconstruction and a metabolic reconstruction are computed from the set of hits 
against the NR. The resulting data is made available for browsing, download, and most 
important, comparison against a comprehensive collection of public metagenomes. A 
submitted metagenome is visible only to the user, unless the user makes it public or shares 
with other registered users. Public metagenomes are available to all. 

 
 

Descriptions of Major Steps in Data Processing 
 
Step 1. Normalization step – generating unique internal IDs and removal of exactly 

duplicated sequences from 454 data sets. 
After uploading the data, unique internal IDs are generated and duplicate 

sequences from 454 data sets are removed. These sequences can arise as artifacts of 
the sequencing technique (Gomez-Alvarez et al., 2009). 

Step 2. Sequences screened for potential protein encoding genes via BLASTX against 
variety of databases.  (E-value of cutoff of 0.01). Other sequence matches also made 
to specialized database (e.g. rRNA). 

In parallel with BLASTX searches against the NR, the sequence data is 
compared to accessory databases by using the appropriate algorithms. These include 
several rRNA-derived ones, including GREENGENES (DeSantis et al., 2006), RDP-
II (Cole et al., 2005), and the Silva database (Pruesse et al., 2007). Other accessory 
databases include the chloroplast database, mitochondrial database, and ACLAME 
database of mobile elements (Leplae et al., 2010). The search criteria are specific for 
each database that the sequence data is compared against. For example, screens for 
ribosomal RNA genes in the sequence data are performed by using BLASTN against 
the rRNA databases.  However more stringent selection criteria are used to identify 
candidate rRNA genes than those used for identifying protein-encoding genes (by 
default, the similarity must exceed 50 bp in length and have an expect value less than 
e-05). 

Step 3. Matches used to compute derived data. 
 A “phylogenomic” reconstruction of the sample is computed by using both the 

phylogenetic information contained in the NR database and the similarities to the 
ribosomal RNA database. Functional annotations of the PEGs are computed by 
projecting against SEED FIGfams and subsystems based on the similarity searches. 
Functional assignments become the input to an automatically generated metabolic 
reconstruction and model of the sample, providing suggestions for metabolic fluxes 
and flows, reactions, and enzymes. 
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INDIVIDUAL METAGENOME DATA MINING 
 
The data from a single metagenome is displayed in four major ways:  (1) an overview of 

the basic statistics related to the DNA sequences themselves, (2) a metabolic reconstruction 
(“Metabolic Profile”) displaying the categorization of the annotated genes within the 
metagenome, (3) a phylogenetic reconstruction (“Phylogenetic Profile”) displaying the 
composition of the metagenome based on taxonomic inference, and (4) metabolic models and 
maps in the Biochemistry and Model database of the MGRAST framework for genome 
annotation. Compounds and reactions can be viewed for each specific model. 

Overview.  The basic statistics of the uploaded sequence are outlined according to the 
distribution of sequences and their GC content. A “preview” of the data is also generated 
based on both the protein-encoding gene content as well as any detected 16S rRNA encoding 
genes (using e-05 as a maximal expectation value and a minimal alignment length of 50 bases). 

Sequence profile.  Once sequence data has been uploaded to MG-RAST and computed, 
the genes detected via BLAST are displayed according to the subsystems approach. Two 
distinct interfaces allow the user to mine the sequence data; one interface is driven by the 
functional genes detected (“Metabolic Profile”) and the other is by the 16S rRNA encoding 
genes detected (“Phylogenetic Profile”). 

For the “Metabolic Profile” only a subsystems-based hierarchy is used to display the data 
in a hierarchical fashion. Data can be viewed and searched via pie charts or interactive tables. 
Profiles of a sample can also be compared with others via a visualization tool that places the 
information in a circular tree with the interior nodes to the leaves representing the various 
levels of the subsystems hierarchy. The color and hue shown for a branch reflects the 
commonality between the samples. 

The “Phylogenetic Profile” is also displayed in a nested hierarchy. However, the user is 
able to display different taxonomic frameworks based on the database searched. Presently, 
only Greengenes, NCBI, RDP, and SILVA are the databases available. Depending on when 
user data was uploaded (pre-2008), the European RNA database may be available to drive the 
display. 

Another feature of the “Phylogenetic Profile” interface is the option to use the SEED as a 
way of interpreting the composition of the microbial community represented in a dataset. This 
feature uses the annotated functional genes in a dataset to extract the taxonomic string 
associated with their nearest match. Although functional genes may be more prone to 
horizontal gene transfer and therefore lose their phylogenetic resolution to infer the identity of 
an organism, the approach does serve to query a significantly greater number of genes (since 
for shotgun metagenomic datasets, the number of 16S rRNA encoding genes sampled 
randomly will be low; usually less than <1%). 

BLAST.  A direct sequence driven query interface is provided, where the user can mine 
the sequence data directly via BLAST. 

Download.  A full sequence dataset or subset can be downloaded via the MG-RAST 
analysis platform. Additionally all of the “Profile” interfaces allow the user to download the 
displayed tables. 
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COMPARATIVE METAGENOMICS 
 
Comparative analyses are what drive discovery-based biology. Even a single 

metagenome dataset generated by an individual researcher can be mined in a comparative 
fashion via the MG-RAST platform. Three interfaces are provided that compare a 
metagenome to either (1) other metagenomes (via a heat map), (2) individual genomes (via a 
“recruitment plot”), or (3) both metagenomes and genomes (via metabolic maps). 

The subsystem comparison tools identify the number of PEGs in each metagenome 
connected to a subsystem based on protein level similarity. With these connections, 
subsystems present in a sample are scored by counting the number of sequences similar to a 
protein in each subsystem. Dividing the score by the total number of sequences similar to any 
protein in a subsystem, yields the fraction of sequences in subsystems that are in a given 
subsystem. In this manner, samples can be compared irrespective of the number of sequences 
from a particular sample. Since only a few sequences may hit each subsystem, the fractions 
tend to be small (especially considering there are now over 600 subsystems in the SEED). To 
emphasize those subsystem that differ between samples, the scores can be factored for display 
purposes. Furthermore, the display can focus on specific areas of metabolism, or other 
subsystem groups, as desired by the user. 

Heat map.  The heat map function in MG-RAST allows the user to choose publically 
available metagenome datasets, in addition to privately held ones owned by the user, and then 
compare them. The main interface is driven by a color scheme that represents either the 
relative abundance or absolute number of sequences classified to a specific subsystem.  When 
the upper-level subsystem hierarchy is chosen, the number of rows is minimized. This “low 
resolution” heat map serves to at least display where the majority of annotated sequences are 
binned. Choosing the succeeding levels in the subsystem hierarchy serves to expand the 
number of rows. However, for the color scheme to retain its effectiveness, the color scale 
needs to be adjusted accordingly. Additionally, depending on the complexity of the sample 
from which the metagenome was generated, fine level susbsystems dissection can dilute the 
effectiveness of the heat map. All of the numerical data displayed in the heat maps are 
downloadable as tab-delimited files that can be imported into any off-line tool for 
downstream analysis. 

Recruitment plot.  The recruitment plot function is set up to provide a selected sequenced 
microbial genome as a scaffold to map metagenome-derived sequences to. As in the heat 
map, sequences that have been annotated from a metagenome are used as the queries. The 
initial view provides a ranked list of microbial genomes that “contain” the most number of 
matched sequences from the metagenome. This gives an indication of the relative 
representations in terms of genomic content found within the metagenome.  

Metabolic maps and models.  Metagenomics also has the potential provide insights into 
the critical biochemical mechanisms in each environment. Models in the MG-RAST are 
based on the initial metabolic reconstructions constructed. The functional roles from the 
reconstruction are then mapped to reactions in the SEED biochemistry database, and this 
mapping is used then used to assemble a reaction list for the model. Models are based on a 
steady state and undergo flux balance analysis. 
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METADATA 
 
An additional consequence of the decrease in sequencing cost and rise in the number of 

metagenomes available is the ability to perform “inter-experimental” comparisons. As was 
described in the previous section on the comparative metagenomics capability of MG-RAST, 
even a single researcher with a single dataset can contextualize it with other publically 
available metagenomes. Choosing appropriate datasets by understanding the sampling 
protocols that were used or finding additional chemical/physical characterizations for the 
sample from which a metagenome was generated from all serve to highlight the rich amount 
of information that can be associated with a metagenome – metadata. However, one of the 
major impediments to incorporating metadata effectively into metagenomic datasets is again 
the issue of producing a controlled vocabulary. 

MG-RAST v.2 made use of the Minimum Information about a Genome Sequence 
(MIGS), proposed by the Genomics Standards Consortium (GSC), as a minimal set of data to 
be captured with every metagenome sequence at time of its submission. Stored with the user’s 
data this information would be provided to the GSC genome catalog and other similarly 
associated archives upon public release of the metagenome. In MG-RAST v.3, metadata takes 
a prominent role in organizing the entire catalog of publically available metagenomes. The 
incorporation of such metadata allows for the study of microbial communities and the specific 
attributes of the metgenomic datasets. For instance, comparison of soil samples across North 
America may show considerable overlap between communities at different locations, or soils 
samples from different domains or depths may show what is unique (e.g. genes that are 
enriched for particular environmental conditions or location). One of the first publications to 
address the importance of integrating metadata into the analysis, particularly habitat 
information, was the “nine biomes” work (Dinsdale et al., 2008). Although simply a 
comparison of metagenomes from drastically different environments, this does indicate the 
value of additional levels of information to be able to mine metagenomic data.  

 
 

CONCLUSION 
 
The metagenome annotation system, MG-RAST, was started in 2007 and within a year, 

became a major community resource and presently is in its third release. With over 400 public 
data sets and over 3,000 “hidden” or private data sets in the system, it has become a valuable 
resource for over 2,500 researchers. The system has analyzed over 100 GB of sequence data, 
and the current backlog of data exceeds 15 GB. With the advent of the next-generation 
sequencing technology (especially with Solexa reads becoming longer and therefore usable 
for metagenomics) computer resources will play a key role in metagenome analysis. MG-
RAST has removed one of the primary bottlenecks in metagenome sequence analysis – the 
availability of high-performance computing for annotating the data. 

MG-RAST leverages the SEED microbial genome annotation platform and provides 
integration of metagenome data (including metadata), microbial genomics, and manually 
curated annotations. Each metagenome project has its own requirements for stringency, 
datasets to be analyzed, and output format for results. MG-RAST has been built by using an 



Dionysios A. Antonopoulos, Elizabeth M. Glass and Folker Meyer 10 

extensible format allowing the integration of new datasets and algorithms without a need for 
recomputation of existing results. 

Although the service contains core functionality for the annotation and analysis of 
metagenomes, many of the techniques traditionally used for genome analysis (e.g., 
approaches for the prediction of coding sequences) either do not work with metagenomes or 
have poor performance (Krause et al., 2006). Many of the differences between complete 
genome annotation and metagenome annotation are reminiscent of those encountered 
previously with the analysis of expressed sequenced tags (Liang et al., 2000). Therefore, new 
analytical methods are needed to fully understand metagenomics data. The most obvious 
problem is with the large number of unknown sequences in any sample. Depending on the 
specific sample processed, as few as 10% of the sequences or as many as 98% of the 
sequences may have no known similarity to anything in the database. Beside ourselves, others 
in this field are developing new binning, clustering, and gene prediction tools to handle these 
unknown sequences, and effective tools will be incorporated into the pipeline when available. 
Another problem is that the rapid pace with which sequence data is being generated outpaces 
increases in computational speed, and therefore improvements in common search algorithms 
are required to ensure that sequence space can be accurately and efficiently searched.  

 

 

Figure 1. The metadata editor in MG-RAST. 
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Figure 2. Using the tree-viewer to compare multiple metagenome metabolic profiles. 

Figure 3. Metabolic models use KEGG maps for visualization. 
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