A MULTILEVEL STOCHASTIC COLLOCATION ALGORITHM FOR
OPTIMIZATION OF PDES WITH UNCERTAIN COEFFICIENTS

D. P. KOURI∗

Abstract. In this work, we apply the MG/OPT framework to a multilevel-in-sample-space
discretization of optimization problems governed by PDEs with uncertain coefficients. The MG/OPT
algorithm is a template for the application of multigrid to deterministic PDE optimization problems.
We employ MG/OPT to exploit the hierarchical structure of sparse grids in order to formulate a
multilevel stochastic collocation algorithm. The algorithm is provably first-order convergent under
standard assumptions on the hierarchy of discretized objective functions as well as on the optimization
routines used as pre- and post-smoothers. We present explicit bounds on the total number of PDE
solves and an upper bound on the error for one V-cycle of the MG/OPT algorithm applied to a linear
quadratic control problem. We provide numerical results that confirm the theoretical bound on the
number of PDE solves and show a dramatic reduction in the total number of PDE solves required
to solve these optimization problems when compared with standard optimization routines applied to
the same problem.

Key words. PDE Optimization, Multilevel, Uncertainty Quantification, Sparse Grids

AMS subject classifications. 49M15, 65K05, 65N35, 90C15

1. Introduction. The numerical solution of partial differential equation (PDE)
constrained optimization problems with uncertain coefficients is computationally ex-
pensive because of typically high-dimensional stochastic representations of the PDE
solution. This work applies the MG/OPT algorithm [33] to solve the optimization
problem

\[
\text{Minimize } \hat{J}(z) = J(u(z), z),
\]

where \(Z \) is a reflexive Hilbert space, \(U \) is a Banach space, and \(u = u(z) \in U \) is
the solution of a PDE with uncertain coefficients. We discretize \(\hat{J}(z) \) in the sample
space using a hierarchical sparse grid collocation discretization [27]. We demonstrate
that applying MG/OPT to this hierarchy of semi-discretized optimization problems
may reduce the number of PDE solves required to obtain a minimizer of \(\hat{J}(z) \) when
compared with other standard optimization algorithms.

The MG/OPT algorithm is an optimization-theoretic multigrid approach to solv-
ing PDE-constrained optimization problems [33, 30]. MG/OPT is a template which
allows for user-defined optimization routines, discretizations, and intergrid transfer
operators [33, 30]. Moreover, MG/OPT generalizes the full approximation scheme
(FAS) [25] to optimization and has traditionally been applied to a hierarchy of spatial
discretizations for the state and design variables. In this work, we apply the ideas of
MG/OPT to a hierarchy of stochastic discretizations.

Globalized with a line search, MG/OPT is provably convergent [33, 34]. At each
level, MG/OPT is analogous to a V-cycle (or more general cycles) of multigrid. As
in traditional multigrid, each level of MG/OPT requires pre- and post-smoothing.
These smoothing steps correspond to performing a finite number of iterations of an
optimization algorithm [33]. Recently, the authors of [21, 22, 23, 24] have developed a

∗Mathematics & Computer Science Division, Argonne National Laboratory, 9700 South Cass
Avenue, Building 240, Argonne, IL 60439-4844. E-mail: dpkouri@mcs.anl.gov. This author was
supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing
Research, under Contract DE-AC02-06CH11357.
recursive trust-region algorithm that accelerates the trust-region step using multigrid correction. Similarly, [47] has developed a line-search approach to multigrid optimization. Both of the multilevel trust-region and line-search algorithms are provably convergent and do not require pre- and post-smoothing.

Aside from MG/OPT and its adaptations, spatial multigrid has been applied to optimization problems governed by deterministic PDEs in [44, 8, 7, 10, 11, 12] by using multigrid solvers on the optimality system. We note that simply applying multigrid to the optimality system need not result in a minimizer since multigrid seeks only a stationary point of the optimality system [30]. This pitfall is circumvented by including target functions in the multigrid formulation. These ideas are extended to problems governed by PDEs with uncertain coefficients in [13, 14, 15]. Those works focus on multigrid in space, however, and do not consider multilevel sampling schemes. Unlike these multigrid algorithms for PDE-optimization with uncertain coefficients, the algorithm presented in this paper provides a multilevel-in-sample-space optimization routine. Moreover, one can incorporate existing spatial multigrid algorithms within the MG/OPT framework to solve the sparse-grid subproblems.

In Section 2, we present the problem formulation for the example problems considered in this paper. The problem formulation resembles standard quadratic control or least-squares type PDE-optimization. In Section 3, we review stochastic collocation and discuss hierarchical sparse-grid techniques. In Section 4 we extend MG/OPT to handle optimization of uncertain PDEs, and in Section 5 we prove the first-order convergence of MG/OPT. In Section 6, we present explicit upper bounds on V-cycle error and computational work. In Section 7, we demonstrate the power and efficiency of MG/OPT for stochastic collocation through numerical examples. In Section 8, we present conclusions and future work.

The following notation and conventions are employed throughout this paper. K denotes the finest level of sparse grid, and 1 always refers to the coarsest level of sparse grid. The index k denotes the intermediate levels of sparse grid (i.e., $k = 1, 2, \ldots, K$).

2. Problem Formulation. Let $D \subset \mathbb{R}^d$, $d = 1, 2, 3$, denote the physical domain and $\Gamma \subseteq \mathbb{R}^M$ denote the finite sample space. The sample space Γ is endowed with the probability density $\rho : \Gamma \to [0, \infty)$ and satisfies

$$\Gamma = \prod_{m=1}^{M} [a_m, b_m] \quad \text{and} \quad \rho(y) = \prod_{m=1}^{M} \rho_m(y_m)$$

with $a_m < b_m$ and $\rho_m : [a_m, b_m] \to [0, \infty)$ for $m = 1, \ldots, M$. Such finite-dimensional probability spaces satisfy the finite-dimensional noise assumption [1] and typically result from Karhunen-Loève or polynomial chaos expansions. Let $\mathcal{V} = \mathcal{V}(D)$ denote a Banach space of deterministic functions with domain D, and let $\mathcal{Z} = \mathcal{Z}(D)$ denote a reflexive Hilbert space of deterministic functions with domain D. \mathcal{V} is the deterministic state space and \mathcal{Z} is the control space. The control space is deterministic; this models the situation when one must determine a control prior to observing the state of the physical system. The governing PDEs in this work have the form

$$A(y)u(y) + N(u(y), y) = F(z, y) \quad \forall \, y \in \Gamma,$$

where $A : \Gamma \to \mathcal{L}(\mathcal{V}, \mathcal{V}^*)$, $N : \mathcal{V} \times \Gamma \to \mathcal{V}^*$, and $F : \mathcal{Z} \times \Gamma \to \mathcal{V}^*$. Now, let the Hilbert space \mathcal{W}, $C \in \mathcal{L}(\mathcal{V}, \mathcal{W})$, and $\tilde{w} \in \mathcal{W}$ be given. The prototypical example for PDE-constrained optimization is the quadratic control problem

$$\min_{z \in \mathcal{Z}} \tilde{J}(z) = \frac{1}{2} \int_{\Gamma} \rho(y) \|Cu(z; y) - \tilde{w}\|_{\mathcal{W}}^2 \, dy + \frac{\alpha}{2} \|z\|_2^2,$$
where \(u(z, y) = u(y) \in \mathcal{V} \) solves (2.1) almost surely in \(\Gamma \). The solution of this optimization problem can be approximated by sampling schemes such as Monte Carlo [31] and stochastic collocation [1, 37, 36, 48] or by projection schemes such as stochastic Galerkin [2, 3] and polynomial chaos [49, 17].

To simplify the analysis in this section, we focus on the quadratic control problem (2.2). The algorithm presented in this paper also applies to more general objective functions, although the analysis is typically more complicated [27].

The solution of (2.1) is a mapping \(y \mapsto u(y) : \Gamma \to \mathcal{V} \) and is assumed to have finite \(p^{th} \) moment for some fixed \(p \in [1, \infty) \); that is, \(u \in L^p_\rho(\Gamma; \mathcal{V}) \), where

\[
L^p_\rho(\Gamma; \mathcal{V}) = \{ v : \Gamma \to \mathcal{V} : v \text{ strongly measurable, } \int_\Gamma \rho(y)\|v(y)\|_\mathcal{V}^p dy < \infty \}.
\]

To sample \(y \mapsto u(y) \), we further assume that \(u \in \mathcal{U} = C^0_\rho(\Gamma; \mathcal{V}) \), where

\[
C^0_\rho(\Gamma; \mathcal{V}) = \{ v : \Gamma \to \mathcal{V} : v \text{ continuous, sup}_{y \in \Gamma} \rho(y)\|v(y)\|_\mathcal{V} < \infty \}
\]

which ensures that point evaluations of \(y \mapsto u(y) \) are possible. Furthermore, for the objective function to be well-defined, we require that \(C^0_\rho(\Gamma; \mathcal{V}) \) be continuously embedded in \(L^2_\rho(\Gamma; \mathcal{V}) \).

Assumption 2.1. The inclusion \(C^0_\rho(\Gamma; \mathcal{V}) \subset L^2_\rho(\Gamma; \mathcal{V}) \) holds. Moreover, for each \(z \in \mathcal{Z} \) the state equation (2.1) has a unique solution \(u(z; \cdot) \in C^0_\rho(\Gamma; \mathcal{V}) \) satisfying

\[
\|u(z; \cdot)\|_{L^2(\Gamma; \mathcal{V})} \leq c\|u(z; \cdot)\|_{C^0(\Gamma; \mathcal{V})} \text{ for some } c > 0.
\]

The algorithm described in this paper requires gradient information. We use adjoints to derive the gradient, \(\nabla \hat{J}(z) \). To ensure differentiability, we require the following assumption.

Assumption 2.2. For every \(y \in \Gamma \), the functions \(v \mapsto \mathbf{N}(v, y) : \mathcal{V} \to \mathcal{V}^* \) and \(z \mapsto \mathbf{F}(z, y) : \mathcal{Z} \to \mathcal{V}^* \) are Fréchet differentiable with Fréchet derivatives \(\mathbf{N}'(u, y) \) and \(\mathbf{F}'(z, y) \), respectively. Moreover, the mapping \(z \mapsto u(z; \cdot) : \mathcal{Z} \to C^0_\rho(\Gamma; \mathcal{V}) \) is Fréchet differentiable, and the derivative \(v = u'(z; \cdot)\delta z \) satisfies

\[
\mathbf{A}(y)v(y) + \mathbf{N}'(u(y), y)v(y) = \mathbf{F}'(z, y)\delta z \quad \forall y \in \Gamma.
\]

Additionally, the adjoint equation

\[
\mathbf{A}(y)^*p(y) + \mathbf{N}'(u(y), y)^*p(y) = -\mathbf{C}^*(\mathbf{C}u(z; y) - \bar{w}) \quad \forall y \in \Gamma
\]

has a unique solution \(p \in C^0_\rho(\Gamma; \mathcal{V}) \).

If Assumptions 2.1 and 2.2 hold, then the gradient of the objective function \(\hat{J}(z) \) is

\[
\nabla \hat{J}(z) = \alpha z - \int_\Gamma \rho(y)\mathbf{F}'(z, y)^*p(y) dy.
\]

3. **Hierarchical Sampling Approaches: Sparse Grid Collocation.** Multilevel and adaptive Monte Carlo methods for the solution of the unconstrained stochastic programming problems are presented in [5, 16]. Furthermore, adaptive sparse-grid collocation methods are developed in [27, 28]. In this section, we review sparse grids [19, 4, 20, 42] with the goal of exposing their hierarchical nature.

We approximate the expected value in (2.2) using sparse-grid quadrature. Sparse-grid quadrature exhibits rapid convergence when \(y \mapsto \|\mathbf{C}u(y) - \bar{w}\|_{\mathcal{V}}^2 \) is sufficiently
smooth. Tensor products of 1D quadrature operators are the foundation for sparse-grid quadrature. Let \(\{E_{j,m}\}_{j=1}^{\infty} \) denote a sequence of 1D quadrature operators defined for continuous functions on \([a_m, b_m]\). We assume that the degree of polynomial exactness for \(E_{j,m} \) is \(d_{j,m} - 1 \), where \(\{d_{j,m}\}_{j=1}^{\infty} \subset \mathbb{N} \) is monotonically increasing. Associated with each \(E_{j,m} \) is a finite set of knots \(N_{j,m} \subset \Gamma_m \). For example, \(E_{j,m} \) can be Gaussian, Hermite, or Newton-Cotes quadrature operators.

To construct the sparse grid operator, we define the one-dimensional differences
\[
\Delta_{1,m} = E_{1,m} \quad \text{and} \quad \Delta_{j,m} = E_{j,m} - E_{j-1,m}, \quad j \geq 2.
\]
Then \(E_{j,m} = \sum_{i=1}^{j} \Delta_{j,m} \). Let \(\mathcal{I} \subset \mathbb{N}_+^M \) where \(\mathbb{N}_+ = \{1, 2, \cdots\} \). The general sparse-grid quadrature operator is
\[
E_{\mathcal{I}} = \sum_{i \in \mathcal{I}} \Delta_{i_1,1} \otimes \cdots \otimes \Delta_{i_M,M}. \tag{3.1}
\]

In order to maintain the telescoping sum property described above, the multi-index set, \(\mathcal{I} \), must satisfy the following property: If \(i = (i_1, \ldots, i_M) \in \mathcal{I} \) and \(j = (j_1, \ldots, j_M) \) is such that \(j_m \leq i_m \) for all \(m = 1, \ldots, M \), then \(j \in \mathcal{I} \). A multi-index set satisfying this property is called \textit{admissible} [20]. Each admissible multi-index set \(\mathcal{I} \) produces a set of points \(N_{\mathcal{I}} \subset \Gamma \) called a \textit{sparse grid}.

The general sparse-grid operator (3.1) can be written as a linear combination of tensor products of 1D quadrature operators by using the combination technique [19]:
\[
E_{\mathcal{I}} = \sum_{i \in \mathcal{I}} \left(\sum_{j \in \{0,1\}^M} (-1)^{|j|_1} \chi_{\mathcal{I}}(i + j) \right) \left(E_{i_1,1} \otimes \cdots \otimes E_{i_M,M} \right), \tag{3.2}
\]
where \(|j|_1 = j_1 + \cdots + j_M \) and \(\chi_{\mathcal{I}}(j) = 1 \) if \(j \in \mathcal{I} \) and zero otherwise. From (3.2), one can determine the particular form of the sparse grid, \(N_{\mathcal{I}} \). Define
\[
\vartheta(i) = \sum_{j \in \{0,1\}^M} (-1)^{|j|_1} \chi_{\mathcal{I}}(i + j).
\]
Then the sparse grid associated with \(\mathcal{I} \) is
\[
N_{\mathcal{I}} = \bigcup_{\{i \in \mathcal{I} : \vartheta(i) \neq 0\}} \left(N_{i_1,1} \times \cdots \times N_{i_M,M} \right). \tag{3.3}
\]

Now, suppose \(\{\mathcal{I}_k\}_{k=1}^{\infty} \) is a family of admissible multi-index sets satisfying
\[
\{(1, \cdots, 1)\} \subset \mathcal{I}_1 \subset \mathcal{I}_2 \subset \cdots \subset \mathbb{N}_+^M
\]
and the one-dimensional nodes \(N_{j,m} \) are nested (i.e., \(N_{j-1,m} \subset N_{j,m} \quad \forall j \)). Then, the resulting sparse grids are nested (i.e., \(N_k = N_{\mathcal{I}_k} \subset N_{\mathcal{I}_{k+1}} = N_{\mathcal{I}_{k+1}} \) for \(k = 1, 2, \cdots \)). Nested sparse grids are desirable for computation because they allow for the reuse of many computations in the hierarchy of sparse grids.

3.1. Exposing the Hierarchical Sampling Structure
Hierarchies of multi-index sets \(\mathcal{I}_k \subset \mathcal{I}_{k+1} \) can be generated in a multitude of ways. Some common methods are full tensor-product and isotropic/anisotropic Smolyak algorithms [42, 36, 1]. The multi-index sets constructed from the full tensor-product algorithm are defined as
\[
\mathcal{I}_k = \{ i \in \mathbb{N}_+^M : \max_{\ell=1,\cdots,M} |i_\ell - 1| \leq (k - 1) \}.
\]
On the other hand, the anisotropic Smolyak algorithm employs the multi-index set

\[\mathcal{I}_k = \{ i \in \mathbb{N}_+^M : \sum_{\ell=1}^M \gamma_i |i\ell - 1| \leq \gamma_i (k - 1) \}, \]

where \(\gamma = (\gamma_1, \ldots, \gamma_M) \) is an M-tuple of positive real numbers and \(\gamma_\ast = \min \gamma_\ell \).

Each component of \(\gamma \) determines the relative importance of the associated direction; and, in the case that \(\gamma = (1, \ldots, 1) \), we recover the isotropic Smolyak sparse-grid index set. For both the full tensor-product and Smolyak algorithms, the multi-index sets create the hierarchy required above. In general, the resulting point sets \(N_k \) produced from the Smolyak algorithm are sparser than those created from the full tensor-product algorithm. Hence, the Smolyak multi-index sets require fewer solves of (2.1) to evaluate the discretized objective functions, \(J_k = \hat{J}_{k\ast} \).

Now, consider isotropic Smolyak sparse grids, and suppose that the one-dimensional quadrature points satisfy \(|N_{k,j}| = O(2^j) \) for \(j = 1, \ldots, M \). Then, the authors of [19] show that the resulting sparse grids satisfy

\[Q_k = |N_k| = O(2^k k^{M-1}). \]

The growth rate between levels \(k \) and \(k - 1 \) is given by

\[g_k = Q_k/Q_{k-1} \approx 2 \left(\frac{k}{k-1} \right)^{M-1} \]

for \(k \) sufficiently large. Asymptotically, as \(k \to \infty \), the growth rate is 2, and the largest growth occurs between levels \(k = 1 \) and \(k = 2 \), namely, \(g_2 = Q_2/Q_1 \approx 2^M \).

In fact, for \(k = 1 \), \(Q_1 = 1 \) independent of the number of dimensions \(M \). Therefore, \(g_2 = Q_2 \) for all \(M \). The growth rate \(\{g_k\}_{k=1}^\infty \) is a monotonically decreasing sequence in the interval \([2, Q_2]\).

A popular choice of 1D quadrature points on \([-1,1]\] are Clenshaw-Curtis points

\[N_{m,j} = \left\{ -\cos \left(\frac{\pi (i - 1)}{d_j - 1} \right) : i = 1, \ldots, d_j \right\} \]

with \(d_1 = 1 \) and \(d_j = 2^{j-1} + 1 \) for \(j > 1 \). The Clenshaw-Curtis points are nested. Furthermore, these points satisfy the assumptions on growth rate discussed in the previous paragraph. Therefore, the sequence of growth rates for the sparse grids built on Clenshaw-Curtis nodes is decreasing on \([2, Q_2]\).

3.2. Sparse-Grid Collocation. Given an admissible multi-index set \(\mathcal{I} \subset \mathbb{N}_+^M\) and the associated quadrature rule \(E_{\mathcal{I}}\), the collocation discretization of (2.2) is

\[\min_{z \in \mathcal{Z}} \hat{J}_{\mathcal{I}}(z) = \frac{1}{2} E_{\mathcal{I}} \left[\|Cu(z) - \bar{w}\|^2_W + \alpha \|z\|^2_Z \right] \quad (3.4) \]

Note that the evaluation of the quadrature rule \(E_{\mathcal{I}}\) requires the solution of only the \(Q_{\mathcal{I}} = |N_{\mathcal{I}}|\) deterministic, decoupled PDEs

\[A(y^{\ell}_t)u_{\ell} + N(u_{\ell}, y^{\ell}_t) = F(z, y^{\ell}_t) \quad \forall \ell = 1, \ldots, Q_{\mathcal{I}}, \]

where \(N_{\mathcal{I}} = \{y^{\ell}_{1}, \ldots, y^{\ell}_{Q_{\mathcal{I}}}\} \) [27, 28]. This is equivalent to a stochastic collocation discretization of (2.1) [27]. The semi-discretized objective function can be written in the standard quadrature form as

\[\hat{J}_{\mathcal{I}}(z) = \frac{1}{2} \sum_{\ell=1}^{Q_{\mathcal{I}}} \omega^{\ell}_t \|Cu_{\ell}(z) - \bar{w}\|^2_W + \alpha \|z\|^2_Z. \]
where ω_ℓ^I are appropriate sparse-grid quadrature weights. Moreover, if Assumptions 2.1 and 2.2 hold, then $\bar{J}_z(z)$ is Fréchet differentiable with gradient

$$\nabla \bar{J}_z(z) = az - \sum_{\ell=1}^{Q_z} \omega_\ell^I F'(z,y_\ell^I)^* p_\ell.$$

In the gradient, $p_\ell \in \mathcal{V}$ solves the decoupled deterministic adjoint equations

$$A(y_\ell^I)^* p_\ell + N(u_\ell, y_\ell^I)^* p_\ell = -C^*(Cu_\ell - \bar{w}) \quad \forall \ell = 1, \ldots, Q_z.$$

These decoupled adjoint equations are equivalent to a stochastic collocation discretization of the infinite-dimensional adjoint equation (2.3) [27]. We note that sparse grids typically produce both positive and negative quadrature weights [19]. The presence of negative weights may affect optimization because $\bar{J}_z(z)$ may not be convex or weakly lower semi-continuous even if $\bar{J}(z)$ is [27, 26].

3.3. Collocation Error Bounds

The convergence of stochastic collocation has been extensively studied for elliptic, parabolic, and hyperbolic PDEs. See, for example, [37, 36, 35, 1, 32]. The standard result applies for both bounded and unbounded Γ. For simplicity, we assume Γ is bounded. Furthermore, we require the following assumption on the regularity of the solution u of (2.1) with respect to the parameters $y \in \Gamma$. For these assumptions, we use the following notation: for $y = (y_1, \ldots, y_M) \in \Gamma$, $y_j^I = (y_1, \ldots, y_{j-1}, y_{j+1}, \ldots, y_M) \in \Gamma_j^I = \prod_{\ell \neq j} \Gamma_\ell$. Furthermore, given $u \in C_\rho^0(\Gamma; \mathcal{V})$, we consider the function $u_j^* : \Gamma_j \rightarrow C_\rho_j(\Gamma_j^I; \mathcal{V})$ to be defined by $(u_j^*(\xi))(y_j^I) = u(y_1, \ldots, y_{j-1}, \xi, y_{j+1}, \ldots, y_M)$, where $\rho_j^I = \prod_{\ell \neq j} \rho_\ell$.

Assumption 3.1. Let Assumptions 2.1 and 2.2 hold. Suppose Γ is bounded, and let $u \in C_\rho^0(\Gamma; \mathcal{V})$ be the solution to (2.1) for fixed $z \in Z$. Then there exists $\tau_j > 0$ such that $u_j^* : \Gamma_j \rightarrow C_\rho_j(\Gamma_j^I; \mathcal{V})$ has an analytic extension on the set

$$\Sigma(\Gamma_j; \tau_j) = \{ \xi \in \mathbb{C} : \text{dist}(\xi, \Gamma_j) \leq \tau_j \}.$$

Furthermore, let $p \in C_\rho^0(\Gamma; \mathcal{V})$ be the solution to (2.3). Then there exists $\gamma_j > 0$ such that $p_j^\ast : \Gamma_j \rightarrow C_{\rho_j}(\Gamma_j^I; \mathcal{V})$ has an analytic extension on the set $\Sigma(\Gamma_j; \gamma_j)$. Similar assumptions to those in Assumption 3.1 can be found in [1, Lem. 3.2], [37, Lem. 3.2], and [36, Lem. 2.3]. For examples of the state equation (2.1) that satisfy Assumption 3.1, see [37, 36, 35, 1, 32]. For examples of optimization problems (2.2) for which (2.1) and (2.3) satisfy Assumption 3.1, see [27, 28]. If Assumption 3.1 holds, then stochastic collocation provides a convergent approximation scheme. The convergence of stochastic collocation depends on the quadrature rules used. In the case of elliptic PDEs, convergence is proven for isotropic and anisotropic tensor product quadrature built on 1D Gaussian abscissae, as well as isotropic and anisotropic sparse-grid quadrature built on Gaussian and Clenshaw-Curtis abscissae. These results are stated in [1, Thm. 4.1] for tensor products of Gaussian abscissae, in [37, Thm. 3.10, 3.11, 3.18, 3.19] for isotropic sparse grids built on Clenshaw-Curtis and Gaussian abscissae, and in [36, Thm. 3.8, 3.13] for anisotropic sparse grids built on Clenshaw-Curtis and Gaussian abscissae. The standard error bound has a specific form that we assume throughout.

Assumption 3.2. Let Assumption 3.1 hold, and let $\boldsymbol{\tau} = (\tau_1, \ldots, \tau_M)$ and $\boldsymbol{\gamma} = (\gamma_1, \ldots, \gamma_M)$. Furthermore, suppose $I \subset \mathbb{N}_+^M$ is an admissible index set with
corresponding sparse grid N_k, $Q = |N_k|$. Then, $u \in C^0(\Gamma; V)$ solving (2.1) and $p \in C^0(\Gamma; V)$ solving (2.3) satisfy

$$
\|E[u] - E_z[u]\|_{L^\infty(\Gamma; V)} \leq C(r(\tau), M)Q^{-\nu(\tau, M)}
$$

and

$$
\|E[p] - E_z[p]\|_{L^\infty(\Gamma; V)} \leq C(r(\gamma), M)Q^{-\nu(\gamma, M)},
$$

respectively. The function $r : \mathbb{R}^M \to \mathbb{R}^M$ is defined componentwise for $j = 1, \ldots, M$ by

$$
r_j(\tau) = \log \left(\frac{\tau_j}{\tau_j^*} + \sqrt{1 + \frac{\tau_j}{\tau_j^*}} \right).
$$

These results are extended to the optimization context for uniformly convex linear-quadratic optimal control problems in [27]. In this case, if $z_Q \in Z$ is a first-order necessary point of (3.4) and $z_* \in Z$ is a first-order necessary point of (2.2), then the error between z_Q and z_* satisfies the upper bound

$$
\|z_Q - z_*\|_Z \leq C(r(\gamma), M)Q^{-\nu(r(\gamma), M)},
$$

where ν is defined in (3.6).

4. MG/OPT as a Multilevel-in-Sample-Space Optimization Solver. Similar to classic spatial multigrid, the hierarchy of sparse-grid operators described above induces a hierarchy of (semi-)discretized optimization problems (2.2):

$$
\min_{z \in Z} \tilde{J}_k(z) = \frac{1}{2} \sum_{i=1}^{Q_k} \omega_i \nu_i^2 \|Cu_i(z) - \bar{w}\|^2_{W} + \frac{\alpha}{2} \|z\|^2_{Z}, \quad k = 1, \ldots, K.
$$

Recall that the evaluation of $\tilde{J}_k(z)$ requires the solution of (2.1) at all points in the sparse grid N_k (i.e., $Q_k = |N_k|$ PDE solves). MG/OPT applies to this hierarchy of optimization problems. In addition, the variants of MG/OPT such as recursive trust-regions [21, 22, 23, 24] and the multilevel line-search approach of [47] also apply to this hierarchy of sparse-grid discretizations, but we restrict our attention to MG/OPT.

Unlike spatial multigrid, the hierarchy of sparse-grid collocation discretization spaces appears implicitly in the definition of the semi-discretized objective function. That is, the control space is fixed, and $\nabla \tilde{J}_k(z) \in Z$ for all k. Therefore, the intergrid transfer operators (prolongation and interpolation) of spatial multigrid are trivially the identity operator. Moreover, for the application of MG/OPT, it is convenient to define the coarse-grid corrected objective functions

$$
J_k(z) = J_k(z \mid v_k) = \tilde{J}_k(z) - \langle v_k, z \rangle_Z \quad \text{for} \quad v_k \in Z.
$$

The MG/OPT algorithm defines v_k at each level, but it is always the case that $v_K = 0$. The multilevel sparse grid optimization algorithm is stated in Algorithm 1.

We offer a few comments on the implementation of Algorithm 1. First, Algorithm 1 defines one V-cycle of MG/OPT; and, with little modification, one can define more general cycles such as W-cycles, F-cycles, or cascadic multigrid. Second, the pre- and post-smoothing steps at each level, (4.2) and (4.4), can be computed by applying a fixed number of iterations of an optimization routine as suggested in [33]. Alternatively, Borzi [9, 6] suggests applying the pre- and post-smoothing optimization routines until the following sufficient decrease conditions are satisfied:

$$
J_k(z_{k,1}) < J_k(z_{k,1}^\tau) - \eta_{k,1} \|\nabla J(z_{k,1}^\tau)\|_Z \quad \eta_{k,1} \in (0, 1)
$$

$$
J_k(z_{k,2}^\tau) < J_k(z_{k,3}) - \eta_{k,2} \|\nabla J(z_{k,3})\|_Z \quad \eta_{k,2} \in (0, 1).
$$
and p_1 where s_1 satisfies

$$s_1 = \arg \min_{s \in \mathbb{Z}} \mathcal{J}_1(z_1^+ + s) = \tilde{J}_1(z_1^+ + s) - \langle v_1, (z_1^+ + s) \rangle_Z. \quad (4.1)$$

else

Pre-Smoothing: Perform $T_{1,k}$ iterations of a convergent optimization algorithm to obtain

$$s_{k,1} \approx \arg \min_{s \in \mathbb{Z}} \mathcal{J}_k(z_k^- + s) = \tilde{J}_k(z_k^- + s) - \langle v_k, (z_k^- + s) \rangle_Z \quad (4.2)$$

and update $z_{k,1} = z_k^- + s_{k,1}$.

Coarse Grid Correction: Set $v_{k-1} = v_k + (\nabla \tilde{J}_{k-1}(z_{k,1}) - \nabla \tilde{J}_k(z_{k,1}))$ and approximately minimize $\mathcal{J}_{k-1}(z) = \tilde{J}_{k-1}(z) - \langle v_{k-1}, z \rangle_Z$ using

$$z_{k,2} = \text{MG/OPT}(k-1, z_{k,1}, v_{k-1}). \quad (4.3)$$

Line Search: Use a line search to determine $\lambda_k \geq 0$ which sufficiently reduces $\mathcal{J}_k(z_{k,1} + \lambda(z_{k,2} - z_{k,1}))$ and set $z_{k,3} = z_{k,1} + \lambda_k(z_{k,2} - z_{k,1})$.

Post-Smoothing: Perform $T_{2,k}$ iterations of a convergent optimization algorithm to obtain

$$s_{k,2} \approx \arg \min_{s \in \mathbb{Z}} \mathcal{J}_k(z_{k,3} + s) = \tilde{J}_k(z_{k,3} + s) - \langle v_k, (z_{k,3} + s) \rangle_Z \quad (4.4)$$

and return $z_k^+ = z_{k,3} + s_{k,2}$.

end

Algorithm 1: Recursive MG/OPT algorithm.

Third, if $\nabla^2 \tilde{J}_k(z_{k,1})$ exists and is Lipschitz continuous with Lipschitz constant $L_k > 0$ for $k = 1, \ldots, K$ and if $e_k = (z_{k,2} - z_{k,1})$ is a descent direction, then Borzi [9, 6] suggests the following a priori choice for the line-search parameter λ_k:

$$\lambda_k = \min \left\{ 2, \frac{-\langle \nabla \tilde{J}_k(z_{k,1}), e_k \rangle_Z}{\langle \nabla^2 \tilde{J}_k(z_{k,1}) e_k, e_k \rangle_Z + L_k \| e_k \|^2_Z} \right\}.$$

This choice of λ_k guarantees sufficient decrease in the objective function. In general, L_k is unknown, and λ_k is computed by using a standard line-search rule such as backtracking. As noted in [29], the a priori choice $\lambda_k = 1$ as commonly used in the globalization of Newton’s method may not apply to MG/OPT. Furthermore, the nestedness of the sparse grids N_k implies that no additional PDE solves are required when computing v_{k-1}. For optimization problem (2.2), v_{k-1} can be written as

$$v_{k-1} = v_k + \sum_{i=1}^{Q_{k-1}} (\omega_i^{k-1} - \omega_i^{k}) \mathbf{F}'(z, y_i^K) p_i - \sum_{i=Q_{k-1}+1}^{Q_k} \omega_i^k \mathbf{F}'(z, y_i^K) p_i$$

where K denotes the finest level of sparse grid, $\omega_i^k = \omega_{i+1}^k$ denotes the level k sparse-grid weights, $y_i^K = y_i^0$ denotes the level K sparse-grid points ordered so that

$$N_K = \{ N_1, N_2 \setminus N_1, \ldots, N_K \setminus N_{K-1} \} = \{ y_1^1, \ldots, y_Q^1, \ldots, y_{Q_{K-1}+1}^K, \ldots, y_Q^K \},$$

and $p_i \in V$ solves the adjoint equation (2.3) at $y = y_i^k$ for $i = 1, \ldots, Q_k$.

5. Convergence Analysis for Algorithm 1. The analysis here follows directly from the analysis for MG/OPT in [33, 34]. The author in [9, 6] proves similar results using standard multigrid techniques. The convergence analysis for Algorithm 1 does not require restriction and prolongation operators. In fact, this analysis depends only on the sparse-grid discretization through the assumptions on the subproblems \(\hat{J}_K(z) \). The results in this section require the following assumptions.

Assumption 5.1. Let \(K \in \mathbb{N} \) be the finest level of sparse-grid hierarchy and assume a minimizer of \(\hat{J}_K(z) \) exists. Denote this minimizer by \(z^*_K \in Z \). Furthermore, let \(B_r(z^*_K) = \{ z \in Z : \| z - z^*_K \| z < r \} \) denote the open ball of radius \(r > 0 \) in \(Z \).

1. \(\hat{J}_K(z) \) is twice continuously Fréchet differentiable and bounded below for all \(k = 1, \ldots, K \).
2. There exists \(r > 0 \) independent of \(k = 1, \ldots, K \) such that \(\nabla^2 \hat{J}_K(z) \in \mathcal{L}(Z, Z) \) is a uniformly positive-definite operator for all \(z \in B_r(z^*_K) \) and \(k = 1, \ldots, K \); that is, there exists \(\kappa_k > 0 \) such that
 \[
 (\nabla^2 \hat{J}_K(z) \xi, \xi)_Z \geq \kappa_k \| \xi \|_Z^2 \quad \forall 0 \neq \xi \in Z, \forall z \in B_r(z^*_K).
 \] (5.1)
3. The smoothing iteration numbers satisfy
 \[
 T_{1,k} \geq 0, \quad T_{2,k} \geq 0, \quad \text{and} \quad T_{1,k} + T_{2,k} > 0 \quad \text{for} \quad k = 1, \ldots, K.
 \]
4. The optimization routines used in (4.1), (4.2), and (4.4) are first-order convergent in the sense that
 \[
 \liminf_j \| \nabla \hat{J}_K(z_j) \| z = 0.
 \]

Assumption 5.1 ensures that the semi-discretized optimization problems at each level \(k \) are well-defined. Assumption 5.1.1 ensures that Newton-type methods are applicable. Assumption 5.1.2 assumes that when close to a solution (basin of attraction), the Hessian operators are positive-definite. This ensures second-order sufficient conditions hold at the minimizer. Assumptions 5.1.3-4 guarantee that Algorithm 1 makes progress toward a solution. Under these assumptions, we first prove that \(e_K = z_{K,2} - z_{K,1} \) is a descent direction.

Theorem 5.2. Let Assumption 5.1 hold, and let \(z_{K,1} \in B_r(z^*_K) \). Furthermore, suppose the optimization problem (4.3) is solved to the relative gradient tolerance
 \[
 \| \nabla \hat{J}_{K-1}(z_{K,2}) - e_{K-1} \| z \leq \gamma \kappa_{K-1} \| z_{K,1} - z_{K,2} \| z \quad \text{with} \quad \gamma \in [0, 1).
 \] (5.2)

Then \(e_K = z_{K,2} - z_{K,1} \) is a descent direction.

Proof. Suppose the approximate solution of (4.3) satisfies (5.2). Then there exists \(\eta \in Z \) such that \(\| \eta \| z \leq \gamma \kappa_{K-1} \| z_{K,2} - z_{K,1} \| z \) and
 \[
 \nabla \hat{J}_K(z_{K,1}) = \nabla \hat{J}_{K-1}(z_{K,2}) - \nabla \hat{J}_{K-1}(z_{K,1}) + \eta.
 \]

Therefore,
 \[
 \left(\nabla \hat{J}_K(z_{K,1}), e_K \right)_Z = \left(\nabla \hat{J}_{K-1}(z_{K,2}) - \nabla \hat{J}_{K-1}(z_{K,1}) + \eta, e_K \right)_Z
 \]
 \[
 = \left(\int_0^1 \nabla^2 \hat{J}_{K-1}(z_{K,2} - t e_K) (-e_K) \, dt, e_K \right)_Z + \left(\eta, e_K \right)_Z
 \]
 \[
 \leq -\kappa_{K-1} \| e_K \|_Z^2 + \| \eta \| z \| e_K \| z \leq (\gamma - 1) \kappa_{K-1} \| e_K \|_Z^2 < 0.
 \]
Hence, e_K is a descent direction. □

Corollary 5.3. Let Assumption 5.1 and inequality (5.2) hold. Furthermore, let $K \in \mathbb{N}_+$ denote the finest level of sparse grid. Suppose $\{z^{(j)}_K\}^\infty_{j=1} \subset \mathcal{Z}$ denotes a sequence of iterations produced by Algorithm 1 with initial guess $z^{(0)}_K \in \mathcal{Z}$. Then

$$\liminf_j \| \nabla \hat{J}_K(z^{(j)}_K) \|_\mathcal{Z} = 0.$$

Proof. If for some j the iterate $z^{(j)}_K \in B_r(z^*_K)$, then Theorem 5.2 ensures the search direction e_K is a descent direction, and Theorem 1 of [33] proves the result. On the other hand, if $z^{(j)}_K \notin B_r(z^*_K)$, then the search direction e_K need not be a descent direction. If e_K is not a descent direction, then the line-search parameter is $\lambda_K = 0$. In this case, Assumption 5.1.4 (i.e., global convergence of the smoothers) ensures the global convergence of Algorithm 1. □

Remark 5.4. Corollary 5.3 also holds if we replace Assumption 5.1.2 with the assumption that the level set

$$S = \{ z \in \mathcal{Z} : \hat{J}_K(z) \leq \hat{J}_K(z^{(0)}_K) \}$$

is compact. Under this assumption and if the pre- and post-smoothing steps are performed by using a trust-region or line-search algorithm, then the proof of Corollary 5.3 must be modified to account for possibly no improvement from the recursive step [34, Thm. 3]. On the other hand, to ensure the descent property in Theorem 5.2 under this new assumption, the MG/OPT subproblems (4.1) and (4.3) must be replaced by

$$\min_{s \in \mathcal{Z}} \mathcal{J}_k(s) \text{ subject to } \| s \|_\mathcal{Z} \leq \Delta$$

for some $\Delta > 0$ sufficiently small [34, Thm. 5].

6. The Convex-Quadratic Case. The main result of this section is an explicit error bound for one V-cycle of Algorithm 1 when the pre- and post-smoothing steps are performed with a finite number of conjugate gradient (CG) iterations. Before proving this result, we develop upper bounds for the total number of PDE solves required in one V-cycle.

6.1. Problem Formulation. Consider the hierarchy of linear-quadratic optimal control problems ($k = 1, \ldots, K$)

$$\min_{z \in \mathcal{Z}} \hat{J}_k(z) = \frac{1}{2} \sum_{i=1}^{Q_k} \omega^k_i \| C u_{k,i}(z) - \bar{w} \|_{\mathcal{W}}^2 + \alpha \| z \|_{\mathcal{Z}}^2,$$

where $u_{k,i}(z) = u_{k,i} \in \mathcal{V}$ solves

$$A(y_i^k) u_{k,i} + B(y_i^k) z = b(y_i^k) \quad \text{for } i = 1, \ldots, Q_k.$$

Here, $A : \Gamma \to \mathcal{L}(\mathcal{V}, \mathcal{V}^*)$ is assumed to have a bounded inverse for all $y \in \Gamma$, $B : \Gamma \to \mathcal{L}(\mathcal{Z}, \mathcal{V}^*)$, and $b : \Gamma \to \mathcal{V}^*$. Note that assuming $A(y)$ has a bounded inverse for all $y \in \Gamma$ implies Assumption 2.1. Again, K denotes the finest level of sparse grid discretization, while the coarsest level is always $k = 1$. Furthermore, suppose
\[\nabla^2 \tilde{J}_k(z) \in \mathcal{L}(\mathcal{Z}, \mathcal{Z}) \] is uniformly positive-definite for \(k = 1, \ldots, K \), that is, there exists \(0 < a_k \leq A_k < \infty \) such that
\[
 a_k \| v \|^2_\mathcal{Z} \leq \langle \nabla^2 \tilde{J}_k(z) v, v \rangle_\mathcal{Z} \leq A_k \| v \|^2_\mathcal{Z} \quad \forall \ v \in \mathcal{Z}. \tag{6.1}
\]

To simplify notation, denote \(A_{k,i} = A(y^k_i), \ B_{k,i} = B(y^k_i) \) and \(b_{k,i} = b(y^k_i) \). By assumption, \(A_{k,i} \) has a bounded inverse \(A_{k,i}^{-1} \in \mathcal{L}(\mathcal{V}^*, \mathcal{V}) \), and the state variable \(u_{k,i}(z) = u_{k,i} \in \mathcal{V} \) can be written as
\[
u_{k,i} = A_{k,i}^{-1}(b_{k,i} - B_{k,i}z).
\]

Substituting this expression for \(u_{k,i} \) into the objective function \(\tilde{J}_k(z) \) gives
\[
 \tilde{J}_k(z) = \frac{1}{2} \sum_{i=1}^{Q_k} \omega_i^k \| CA_{k,i}^{-1}(b_{k,i} - B_{k,i}z) - \bar{w} \|^2_\mathcal{W} + \frac{\alpha}{2} \| z \|^2_\mathcal{Z}
 = \frac{1}{2} \langle H_k z, z \rangle_\mathcal{Z} - \langle g_k, z \rangle_\mathcal{Z} + \ell_k,
\]

where \(H_k \in \mathcal{L}(\mathcal{Z}, \mathcal{Z}) \) and \(g_k \in \mathcal{Z} \) are defined as
\[
 H_k = \alpha I + \sum_{i=1}^{Q_k} \omega_i^k B_{k,i}^* A_{k,i}^{-1} C^* CA_{k,i}^{-1} B_{k,i},
 g_k = \sum_{i=1}^{Q_k} \omega_i^k B_{k,i}^* A_{k,i}^{-1} C^*\left(CA_{k,i}^{-1} b_{k,i} - \bar{w}\right).
\]

Here, \(I \in \mathcal{L}(\mathcal{Z}, \mathcal{Z}) \) is the identity operator, \(H_k = \nabla^2 \tilde{J}_k(z) \) is the Hessian operator, and \(\nabla \tilde{J}_k(z) = H_k z - g_k \) is the gradient. Furthermore, \(c_k \) is the appropriately defined constant that is irrelevant in the context of optimization. Given \(z_0 \in \mathcal{Z} \), the first-order necessary conditions are equivalent to the Newton system
\[
 \nabla^2 \tilde{J}_k(z_0)s = -\nabla \tilde{J}_k(z_0) \iff H_k s = -(H_k z_0 - g_k). \tag{6.2}
\]

6.2. Hierarchical Sparse Grids and Inexact Conjugate Gradients.
Recall that \(\mathcal{Z} \) is a Hilbert space and that the existence of \(0 < a_k \leq A_k < \infty \) in (6.1) ensures \(H_k \) is a positive-definite, bounded linear operator. Moreover, the specific form of \(H_k \) implies that \(H_k \) is self-adjoint. Under these conditions, we can apply the conjugate gradient algorithm (CG) to solve (6.2). The convergence of CG applied to (6.2) depends on the spectral properties of \(H_k \) as shown in the following theorem. For this result, we define the \(H_k \)-norm and \(H_k \)-inner product, \(\| z \|_{H_k} = \sqrt{\langle z, z \rangle_{H_k}} = \sqrt{\langle H_k z, z \rangle_{\mathcal{Z}}} \) for all \(z \in \mathcal{Z} \).

Theorem 6.1. The sequence of iterates, \(\{z_j\} \subset \mathcal{Z} \), generated by using CG applied to (6.2) converges to \(z_* \in \mathcal{Z} \) and
\[
 \| z_* - z_j \|_{H_k} \leq 2 \left(\frac{\sqrt{A_k} - \sqrt{a_k}}{\sqrt{A_k} + \sqrt{a_k}} \right)^j \| z_* - z_0 \|_{H_k}.
\]

Proof. Note that \(H_k \) is a self-adjoint, positive definite, bounded linear operator. Moreover, one can easily show that the \(\mathcal{Z} \)- and \(H_k \)-norms are equivalent. Therefore, Theorems 7 and 11 in [39] apply and prove the convergence of CG applied to (6.2). \(\square \)
Each iteration of CG requires the application of the Hessian operator to a vector. Recall that the computation of the gradient, \(\nabla \hat{J}_k(z) = H_k z - g_k \), requires \(2Q_k \) PDE solves (i.e., a state solve, \(A_{k,j}^{-1} \), and an adjoint solve, \(A_{k,j}^{-*} \), for \(j = 1, \ldots, Q_k \)). Similarly, the application of the Hessian \(H_k \) to a vector requires \(2Q_k \) PDE solves. Therefore, applying CG to (6.2) requires \(2Q_k(N_{k\text{CG}} + 1) \) PDE solves, where \(N_{k\text{CG}} \) denotes the number of CG iterations required to solve (6.2). Note that if the control space \(Z \) is finite-dimensional, then \(N_{k\text{CG}} \leq \dim(Z) \) in exact arithmetic.

Hessian-times-a-vector computations are computationally prohibitive for large problems even though the PDEs to be solved are linear. Fortunately we can exploit the hierarchical nature of sparse-grid discretization to possibly reduce this computational effort. Nested sparse grids allow us to build all levels of sparse-grid approximation \((\kappa < k) \) concurrently while computing the level \(k \) approximation. We suggest the inexact Hessian-times-a-vector algorithm listed in Algorithm 2.

\begin{algorithm}
\textbf{Multilevel Hessian-Times-a-Vector:} Given \(z, v \in Z \) and \(\tau > 0 \).
\begin{algorithmic}
\State Set \(Q_0 = 0 \) and \(h_k = \alpha v \) for \(k = 1, \ldots, k \).
\For \(\kappa = 1, \ldots, k \)
 \For \(i = Q_{\kappa - 1} + 1, \ldots, Q_\kappa \)
 \State Solve \(A_{\kappa,i} w_{\kappa,i} = B_{\kappa,i} z \).
 \State Solve \(A_{\kappa,i}^{*} p_{\kappa,i} = C^* C w_{\kappa,i} \).
 \For \(\ell = \kappa, \ldots, k \)
 \State Update \(h_\ell \leftarrow h_\ell + \omega_{\ell,i} B_{\kappa,i}^{*} p_{\kappa,i} \).
 \EndFor
 \EndFor
 \If \(\|h_\kappa - h_{\kappa - 1}\|_Z \leq \tau \|h_{\kappa - 1}\|_Z \) then
 \State Set \(h_k = h_\kappa \) and exit.
 \EndIf
\EndFor
\State Set \(H_k v \approx h_k \).
\end{algorithmic}
\caption{Inexact Hessian-times-a-vector algorithm.}
\end{algorithm}

In Algorithm 2 we build all quadrature estimates of \(H_k v \) for \(k = 1, \ldots, k \) concurrently by exploiting the sparse-grid hierarchy. Notice that no additional PDE solves are required in the evaluation of lower-order quadrature and that computational savings occur when Algorithm 2 terminates early with \(\kappa < k \). In this case, Algorithm 2 performs \(2(Q_k - Q_\kappa) \) fewer PDE solves than does the standard Hessian-times-a-vector algorithm at level \(k \). In the case of early termination, Algorithm 2 inexacty applies \(H_k \) to some vector \(v \). Fortunately Krylov methods can be adjusted to handle such inexactness. In [45, 41, 18] and the references within, the authors study the effects of inexactness on Krylov subspace methods.

Denote \((H_k + E_j)v_j = h_{k,j} \) as the application of Algorithm 2 during the \(j^{th} \) iteration of the inexact Krylov method. In [41], the authors present the following bound on inexactness, which guarantees convergence of the inexact Krylov method:

\[
\|E_j\| \leq \frac{\ell_m \varepsilon}{\|\tilde{r}_{j-1}\|_Z},
\]

where \(m \) is the maximum number of CG iterations, \(\varepsilon > 0 \) is a user-defined tolerance, \(\tilde{r}_{j-1} \) is the inexact residual of (6.2) at the \(j^{th} \) iteration of the inexact Krylov method, and \(\ell_m > 0 \) is a specific problem and algorithm constant. Under this condition, the
error between the residual from the inexact Krylov method (\tilde{r}_m) and the exact Krylov method (r_m) at the final iteration satisfies

$$\|r_m - \tilde{r}_m\|_{Z} \leq \varepsilon. \quad (6.4)$$

See [41, Thm. 5.3, 5.4] for the specific form of ℓ_m for inexact GMRES and inexact FOM. Since CG is equivalent to FOM applied to self-adjoint positive-definite operators [40], the proof of [41, Thm. 5.4] also applies to CG.

The parameter ℓ_m in (6.3) is problem dependent and typically cannot be computed a priori. The authors of [41] suggest approximating ℓ_m with

$$\ell_m \approx \frac{\sigma_{\text{min}}(H_k)}{m}$$

where $\sigma_{\text{min}}(H_k)$ denotes the minimum singular value of H_k. In [45], the authors set $\ell_m = 1$ and demonstrate that in many circumstances this choice of ℓ_m does not strongly affect the convergence of the algorithm [41, p. 463]. The authors in [18] propose replacing (6.3) with

$$\|E_j\| \leq \frac{\sigma_{\text{min}}(H_k)}{2} \min\left\{1, \frac{\ell_{m,j} \varepsilon}{\|\tilde{r}_j\|}\right\}$$

where $\ell_{m,j} > 0$ is computed by using quantities available at each Krylov iteration [18, Thm. 4.2]. This condition also ensures the residual error bound (6.4).

Remark 6.2. The relative error $\|h_k - h_{k-1}\|_Z/\|h_{k-1}\|_Z$ used to terminate Algorithm 2 is not an error estimate. Therefore, early termination must be monitored, and convergence of inexact CG may not be guaranteed.

6.3. Exact Line Search.

For this convex-quadratic example, the kth-level line-search parameter, λ_k, can be computed exactly. Given $z_k \in Z$, if $e_k \in Z$ is a descent direction of $J_k(z_k + s) = J_k(z_k + s) - \langle v_k, (z_k + s)\rangle_Z$, then minimizing $J_k(z_k + \lambda e_k)$ with respect to λ yields the explicit value

$$\lambda_k = -\frac{\langle \nabla J_k(z_k) - v_k, e_k \rangle_Z}{\langle \nabla^2 J_k(z_k)e_k, e_k \rangle_Z} = -\frac{\langle H_k z_k - g_k - v_k, e_k \rangle_Z}{\langle H_k e_k, e_k \rangle_Z} . \quad (6.5)$$

Since e_k is a descent direction, Assumption 5.1 ensures that λ_k is positive. The computation of the gradient requires $2Q_k$ PDE solves, and the application of H_k to the search direction e_k requires $2Q_k$ PDE solves. Therefore, computation of λ_k requires $4Q_k$ PDE solves.

6.4. Computational Work.

We are now prepared to derive bounds on the total number of PDE solves required for one V-cycle of MG/OPT using exact CG smoothing. Let W_k denote the number of PDE solves per cycle of Algorithm 1 at level k, and let W_{k+1}^k denote the number of PDE solves required for one cycle of Algorithm 1 excluding the number of PDE solves required to solve (4.3). That is, W_{k+1}^k is the number of PDE solves required for pre- and post-smoothing, computing the coarse grid correction v_k, and computing the line-search step length λ_k. The structure of Algorithm 1 leads to the recursive definition of W_k:

$$W_2 = W_1^1 + W_1 \quad \text{and} \quad W_{k+1} = W_{k+1}^k + W_k \implies W_K = \sum_{k=2}^{K} W_{k-1}^k + W_1, \quad (6.6)$$
where W_1 is the number of PDE solves required to exactly solve (4.1). See [43] for more details on spatial multigrid work estimates. If we use CG to solve (4.1), then $W_1 = 2(N_{\text{CG}}^1 + 1)Q_1$, where N_{CG}^1 denotes the total number of CG iterations.

For the following results, we assume the sparse-grid growth rate satisfies

$$q_k = Q_k/Q_{k-1} = 2 \left(\frac{k}{k-1} \right)^{M-1} \quad \text{for} \quad k = 1, 2, \ldots,$$

which is satisfied for many instances of isotropic Smolyak sparse grids (recall Section 3 and [19]). We prove two results: the first result concerns pre- and post-smoothing with a constant number of iterations, while the second result deals with level-dependent pre- and post-smoothing.

Proposition 6.3. Let (6.7) hold. Consider Algorithm 1 with $T_{1,k} = \tau_1 \geq 0$ iterations of CG for pre-smoothing and $T_{2,k} = \tau_2 \geq 0$ iterations of CG for post-smoothing for $k = 1, \ldots, K$. Then, the total number of PDE solves for a single V-cycle of Algorithm 1 satisfies

$$W_K \leq 4(3 + \tau_1 + \tau_2)Q_K + W_1.$$

Proof. We require $2Q_k$ PDE solves to compute the gradient, $2\tau_1 Q_k$ PDE solves for pre-smoothing, $2\tau_2 Q_k$ PDE solves for post-smoothing, and $4Q_k$ PDE solves to compute the line-search step length. Therefore, the growth rate (6.7) implies

$$W_{K-1}^{k-1} = (4 + 2(1 + \tau_1 + \tau_2))Q_k = (6 + 2(\tau_1 + \tau_2))Q_K \prod_{j=k+1}^{K} q_j^{-1}.$$

Notice that

$$\prod_{j=k+1}^{K} q_j^{-1} = \left(\frac{1}{2} \right)^{K-(k+1)+1} \left(\frac{k}{k+1} \right)^{M-1} \leq \left(\frac{1}{2} \right)^{K-k}.$$

Combining these facts with (6.6) and then invoking geometric series convergence yields the desired bound. \(\square \)

For our second example, we vary the number of CG iterations, $T_{1,k}$ and $T_{2,k}$, at each level. This approach allows us to more accurately solve the smoothing problems (4.2) and (4.4) on the coarse levels and less accurately on the fine levels.

Proposition 6.4. Let (6.7) hold and let τ_1, τ_2 be fixed non-negative integers. Moreover, suppose pre- and post-smoothing are performed with

$$T_{j,K} = \tau_j, \quad T_{j,K-1} = 2\tau_j, \ldots, \quad T_{j,2} = (K-1)\tau_j \quad \text{for} \quad j = 1, 2$$

CG iterations, respectively. Then the total number of PDE solves for a single V-cycle of Algorithm 1 satisfies

$$W_K \leq 4(3 + 2(\tau_1 + \tau_2))Q_K + W_1.$$
Proof. Note that $2^n = \sum_{n=0}^{\infty} n2^{-n}$ and $2^n = \sum_{n=1}^{\infty} n2^{-n}$. Using these facts, we obtain from the bound (6.8) and the recursive estimate (6.6),

$$W_K \leq Q_K \sum_{k=2}^{K} (6 + 2(\tau_1 + \tau_2)(K - (k - 1))) \left(\frac{1}{2}\right)^{K-k} + W_1$$

$$\leq Q_K \left(12 + 2(\tau_1 + \tau_2) \sum_{k=2}^{K} (K - k) \left(\frac{1}{2}\right)^{K-k} + 4(\tau_1 + \tau_2)\right) + W_1$$

$$\leq 4(3 + 2(\tau_1 + \tau_2))Q_K + W_1.$$

\[\square \]

6.5. Error Estimation. We now derive an error bound for a single V-cycle of Algorithm 1 where pre- and post-smoothers are computed by using $T_{1,k}$ and $T_{2,k}$ iterations of CG, respectively. The error estimate in this subsection is based on the CG error estimate given in Theorem 6.1. This subsection is organized as follows. First we present a compact operator representation for a single V-cycle of Algorithm 1. Using this operator formulation, we then apply the CG error estimate in Theorem 6.1 to determine an initial upper bound for the V-cycle error. Subsequently, we prove an optimality result concerning the line-search parameter. Combining this line-search result with the CG error estimate gives the final error bound. To conclude, we present explicit bounds for the 2-level case (i.e., $K = 2$).

We seek a representation of the iterate z_k^+ of Algorithm 1 as an operator equation depending on the coarse grid information z_{ℓ}^-, v_ℓ, g_ℓ, H_ℓ, and λ_ℓ for $\ell = 1, \ldots, k$. First, recall that $T_{k,i}$ iterations of CG applied to (4.2) and (4.4) produce

$$z_{k,1} = (I - P_{k,1}H_k)z_{k-1}^- + P_{k,1}(g_k + v_k)$$

$$z_k^+ = (I - P_{k,2}H_k)z_{k,3}^- + P_{k,2}(g_k + v_k),$$

where $P_{k,i} = p_{k,i}(H_k)$ and $p_{k,i}$ is a polynomial of degree $T_{k,i} - 1$ for $i = 1, 2$ [40, L. 6.28]. Now, beginning on level $k = 1$, define $S_1 = H_1^{-1}$. Then the result of the level 1 optimization problem (4.1) can be expressed as

$$z_1^+ = (I - S_1H_1)z_1^- + S_1(g_1 + v_1).$$

Employing this expression for z_1^+ and the compact representations of the smoothing operators (6.9), we arrive at the following compact operator form for the k^{th}-level MG/OPT iteration:

$$z_k^+ = (I - S_kH_k)z_k^- + S_k(g_k + v_k),$$

where S_k is defined recursively through Algorithm 1 and satisfies

$$(I - S_kH_k) = (I - P_{k,2}H_k)(I - \lambda_kS_{k-1}H_k)(I - P_{k,1}H_k)$$

for $k = 2, \ldots, K$.

We use the operator form (6.10) of the MG/OPT iteration to derive error bounds. First, we apply Theorem 6.1 to prove the following partial bound.

Lemma 6.5. Let $k \in \{1, \ldots, K\}$, $\lambda_k \in \mathbb{R}$ be fixed, and $z_k^+ \in \mathcal{Z}$ satisfy

$$H_kz_k^+ = (g_k + v_k).$$
Furthermore, let the assumptions of Theorem 6.1 hold, and consider one V-cycle of Algorithm 1 where pre- and post-smoothing are performed by using $T_{1,k}$ and $T_{2,k}$ iterations of CG, respectively. Then,

$$
\|z^*_k - z^+_k\|_{\mathbf{H}_k} \leq 2 \left(\frac{\sqrt{\lambda_k} - \sqrt{\mu_k}}{\sqrt{\lambda_k} + \sqrt{\mu_k}} \right)^{T_{2,k}} \|z^*_k - z_{k,3}\|_{\mathbf{H}_k}.
$$

Proof. This is a straightforward application of Theorem 6.1. □

The goal now is to bound the quantity $\|z^*_k - z_{k,3}\|_{\mathbf{H}_k}$. To this end, recall that $e_k = (z_{k,2} - z_{k,1}) \in \mathcal{Z}$, and note that e_k satisfies

$$
e_k = S_{k-1}(g_k + v_k - H_k z_{k,1}), = S_{k-1}H_k(z^*_k - z_{k,1})
$$

where z^*_k is defined in the statement of Lemma 6.5. Substituting this expression into the right-hand side of the error bound given in Lemma 6.5 gives

$$
\|z^*_k - z_{k,3}\|_{\mathbf{H}_k} = \|(I - \lambda_k S_{k-1} H_k)(z^*_k - z_{k,1})\|_{\mathbf{H}_k}.
$$

Using this error representation, we prove the following optimality result for the exact line-search parameter computed using equation (6.5).

Lemma 6.6. Let λ_k be the exact line-search parameter computed in equation (6.5), and define $v = (z^*_k - z_{k,1})$. Then

$$
\lambda_k = \arg \min_{\mu \in \mathbb{R}} \frac{1}{2} \| (I - \mu S_{k-1} H_k)v \|_{\mathbf{H}_k}^2,
$$

and

$$
\| (I - \lambda_k S_{k-1} H_k)v \|_{\mathbf{H}_k}^2 = \langle (I - \lambda_k S_{k-1} H_k)v, v \rangle_{\mathbf{H}_k}.
$$

Proof. Define $j(\mu) = \frac{1}{2} \| (I - \mu S_{k-1} H_k)v \|_{\mathbf{H}_k}^2$. The objective function $j : \mathbb{R} \rightarrow \mathbb{R}$ is differentiable, convex, and quadratic. Expanding j gives

$$
j(\mu) = \frac{1}{2} \| (I - \mu S_{k-1} H_k)v \|_{\mathbf{H}_k}^2 = \frac{1}{2} \langle H_k (I - \mu S_{k-1} H_k)v, (I - \mu S_{k-1} H_k)v \rangle_{\mathcal{Z}}$$

$$= \mu^2 \langle S_{k-1} H_k v, S_{k-1} H_k v \rangle_{\mathcal{Z}} - \mu \langle S_{k-1} H_k v, H_k v \rangle_{\mathcal{Z}} + \frac{1}{2} \langle H_k v, v \rangle_{\mathcal{Z}}.
$$

Setting the derivative, $j'(\mu)$, to zero and solving for μ gives the optimal solution

$$
\mu_* = \frac{\langle S_{k-1} H_k v, H_k v \rangle_{\mathcal{Z}}}{\langle H_k S_{k-1} H_k v, S_{k-1} H_k v \rangle_{\mathcal{Z}}}.
$$

Now, since $e_k = (z_{k,2} - z_{k,1})$ satisfies (6.12), the optimal value of μ satisfies

$$
\mu_* = \frac{\langle e_k, g_k + v_k - H_k z_{k,1} \rangle_{\mathcal{Z}}}{\langle H_k e_k, e_k \rangle_{\mathcal{Z}}} = \lambda_k.
$$

This proves (6.13), and evaluating $2j(\lambda_k)$ proves (6.14). □
The optimality of the line-search parameter, λ_k, proved in Lemma 6.6 and Lemma 6.5 combined with Theorem 6.1 implies the following error bound:

$$\|z_k^* - z_k^+\|_{H_k} \leq 4 \left(\frac{\sqrt{A_k} - \sqrt{a_k}}{\sqrt{A_k} + \sqrt{a_k}} \right)^{T_{1,k} + T_{2,k}} \|z_k^* - z_k^-\|_{H_k}. \tag{6.15}$$

This result is comparable to the error bound for performing $T_{1,k} + T_{2,k}$ iterations of CG with restart after $T_{1,k}$ iterations and is overly pessimistic because it disregards the coarse-grid information. In the following, we show that the coarse-grid correction is, in fact, beneficial.

Lemma 6.7. Let the assumptions of Lemma 6.5 hold, and let $\varrho(I - \lambda_k S_{k-1} H_k)$ denote the spectral radius of $(I - \lambda_k S_{k-1} H_k)$. Then

$$\|z_k^* - z_k^+\|_{H_k} \leq 4 \sqrt{\varrho(I - \lambda_k S_{k-1} H_k)} \left(\frac{\sqrt{A_k} - \sqrt{a_k}}{\sqrt{A_k} + \sqrt{a_k}} \right)^{T_{1,k} + T_{2,k}} \|z_k^* - z_k^-\|_{H_k}. \tag{6.16}$$

Proof. Lemma 6.6, in particular equality (6.14), implies

$$\|(I - \lambda_k S_{k-1} H_k)(z_k^* - z_{k-1})\|_{H_k} \leq \sqrt{\varrho(I - \lambda_k S_{k-1} H_k)} \|z_k^* - z_{k-1}\|_{H_k}.$$

Therefore, Lemma 6.5 and Theorem 6.1 imply (6.15). \(\square\)

The goal now is to derive explicit bounds on the spectral radius of $(I - \lambda_k S_{k-1} H_k)$. In particular, we wish to prove that $\varrho(I - \lambda_k S_{k-1} H_k) < 1$. This is equivalent to proving $(1 - \lambda_k \mu) < 1$ for all eigenvalues, μ, of $S_{k-1} H_k$. In the case of $K = 2$, we can prove such bounds. Note that if $(v, \mu) \in Z \times \mathbb{C}$ is an eigenpair of $S_1 H_2 = H_1^{-1} H_2$, then $H_2 v = \mu H_1 v$; in other words, μ is a generalized eigenvalue of the operator pencil (H_2, H_1). Let $\sigma(H_2, H_1)$ denote the spectrum of the pencil (H_2, H_1). Then the spectral radius is $\varrho(I - \lambda_2 H_1^{-1} H_2) = 1 - \lambda_2 \min\{\mu : \mu \in \sigma(H_2, H_1)\}$.

Lemma 6.8. Suppose there exists $\varepsilon > 0$ such that

$$\|H_2 v - H_1 v\|_{Z} \leq \varepsilon \quad \forall \ v \in \{s \in Z : \|s\|_{Z} \leq 1\}. \tag{6.16}$$

Then, the spectrum $\sigma(H_2, H_1)$ satisfies

$$\sigma(H_2, H_1) \subset [(1 + a_2^{-1} \varepsilon)^{-1}, 1 + a_1^{-1} \varepsilon].$$

Proof. Let $\mu \in \sigma(H_2, H_1)$ and $v \in Z$ be a normalized eigenfunction corresponding to μ (i.e., $\|v\|_{Z} = 1$). First note that $\mu > 0$; that is,

$$H_2 v = \mu H_1 v \quad \Rightarrow \quad \langle H_2 v, v \rangle_{Z} = \mu \langle H_1 v, v \rangle_{Z} \quad \Rightarrow \quad \mu = \frac{\langle H_1 v, v \rangle_{Z}}{\langle H_2 v, v \rangle_{Z}} > 0$$

since H_2 and H_1 are assumed to be uniformly positive-definite operators.

Write $H_1 = H_2 + \delta H$, where $\delta H = H_1 - H_2$. Then, substituting $H_2 + \delta H$ for H_1 gives

$$H_2 v = \mu H_2 v + \mu \delta H v \quad \Rightarrow \quad \delta H v = \frac{1 - \mu}{\mu} H_2 v \quad \Rightarrow \quad \mu^{-1} - 1 = \frac{\langle \delta H v, v \rangle_{Z}}{\langle H_2 v, v \rangle_{Z}} \leq a_2^{-1} \varepsilon.$$

Since $\mu > 0$, we have $\mu \geq (1 + a_2^{-1} \varepsilon)^{-1}$.
On the other hand, $\mathbf{H}_2 = \mathbf{H}_1 - \delta \mathbf{H}$, and

$$
\mu \mathbf{H}_1 v = \mathbf{H}_1 v - \delta \mathbf{H} v \quad \Rightarrow \quad (\mu - 1) \mathbf{H}_1 v = -\delta \mathbf{H} v \quad \Rightarrow \quad \mu - 1 = -\frac{\langle \delta \mathbf{H} v, v \rangle_Z}{\langle \mathbf{H}_1 v, v \rangle_Z} \leq a_1^{-1} \varepsilon.
$$

Therefore, we have $\mu \leq 1 + a_1^{-1} \varepsilon$. This proves the lemma. \(\square \)

Lemma 6.8 implies the following bound on the spectral radius $\rho(\mathbf{I} - \lambda_2 \mathbf{H}_1^{-1} \mathbf{H}_2)$:

$$
\rho(\mathbf{I} - \lambda_2 \mathbf{H}_1^{-1} \mathbf{H}_2) \leq 1 - \lambda_2 (1 + a_2^{-1} \varepsilon)^{-1}.
$$

In the same vein as Lemma 6.8, we can bound the line-search parameter.

LEMMA 6.9. Suppose (6.16) holds. Then, the line-search parameter, λ, computed by using (6.5) satisfies

$$
\lambda_2 \in [(1 + a_1^{-1} \varepsilon)^{-1}, 1 + a_2^{-1} \varepsilon].
$$

Proof. First, note that

$$
\langle \mathbf{g}_2 + v_2 - \mathbf{H}_2 z_{2,1}, e_2 \rangle_Z = \langle \mathbf{H}_1 \mathbf{H}_1^{-1} (\mathbf{g}_2 + v_2 - \mathbf{H}_2 z_{2,1}), e_2 \rangle_Z = \langle \mathbf{H}_1 e_2, e_2 \rangle_Z.
$$

Therefore, $\lambda_2 = \frac{\langle \mathbf{H}_1 e_2, e_2 \rangle_Z}{\langle \mathbf{H}_2 e_2, e_2 \rangle_Z}$. Substituting $\mathbf{H}_1 = \mathbf{H}_2 + \delta \mathbf{H}$ gives

$$
\lambda_2 = 1 + \frac{\langle \delta \mathbf{H} e_2, e_2 \rangle_Z}{\langle \mathbf{H}_2 e_2, e_2 \rangle_Z} \leq 1 + a_K^{-1} \varepsilon.
$$

On the other hand, substituting $\mathbf{H}_1 = \mathbf{H}_2 - \delta \mathbf{H}$ gives

$$
\lambda_2 = \left(1 + \frac{\langle \delta \mathbf{H} e_2, e_2 \rangle_Z}{\langle \mathbf{H}_1 e_2, e_2 \rangle_Z}\right)^{-1} \geq (1 + a_1^{-1} \varepsilon)^{-1}.
$$

This proves the desired result. \(\square \)

Lemmas 6.8 and 6.9 imply the final upper bound on the spectral radius

$$
\rho(\mathbf{I} - \lambda \mathbf{H}_1^{-1} \mathbf{H}_2) \leq 1 - (1 + a_1^{-1} \varepsilon)^{-1}(1 + a_2^{-1} \varepsilon)^{-1} < 1.
$$

This result shows that the spectral radius is approximately zero for small ε.

THEOREM 6.10. Suppose (6.16) holds, and let $K = 2$. Then, one V-cycle of Algorithm 1 with pre- and post-smoothers performed by $T_{1,2}$ and $T_{2,2}$ iterations of CG, respectively, produces the iterate, z_2^*, satisfying

$$
\|z_2^* - z_2^+\|_{\mathbf{H}_2} \leq 4\sqrt{1 - (1 + a_1^{-1} \varepsilon)^{-1}(1 + a_2^{-1} \varepsilon)^{-1}} \left(\frac{\sqrt{A_2} - \sqrt{a_2}}{\sqrt{A_2} + \sqrt{a_2}}\right)^{T_{1,2} + T_{2,2}} \|z_2^* - z_2^-\|_{\mathbf{H}_2}.
$$

Proof. This follows from Lemmas 6.7, 6.8, and 6.9. \(\square \)

REMARK 6.11. The assumptions in Lemma 6.8 are reasonable for sparse grid approximation. In the context of Assumption 3.2, $\varepsilon \leq C(Q_1^{-\nu} + Q_2^{-\nu})$. It is thus important to choose an initial multi-index set \mathcal{I}_1 that results in a sparse grid N_1 with more than one point (i.e., $|N_1| = Q_1 > 1$).
7. Numerical Examples. The numerical examples presented in this section demonstrate the dramatic reduction in the total number of PDE solves required by Algorithm 1 when compared with other optimization routines. These examples are presented and analyzed in detail in [28]. Furthermore, all examples are implemented in MATLAB.

For each example, we compare the number of PDE solves required when solving the fixed high-fidelity discretized optimization problem using Newton-conjugate gradients (Newton-CG) with the number of PDE solves required by Algorithm 1. Furthermore, we compare two instances of Algorithm 1, V-cycles and F-cycles (FMG). The FMG algorithm first solves the problem on the coarsest grid, then increases the grid level after each V-cycle. FMG gives an efficient method for obtaining a good initial guess for the V-cycle. Figure 7.1 demonstrates both a single V-cycle and the FMG cycle.

7.1. Optimal Control of a 1D Elliptic PDE with Discontinuous Coefficients. In this example, the governing PDE is a steady 1D diffusion equation with discontinuous diffusion parameter for which the location of discontinuity is uncertain [27, 28]. The motivation for this problem is the control of subsurface flow in fractured media.

7.1.1. Infinite-Dimensional Formulation. Let \(D = (-1, 1) \), and let \(\rho(y) \) denote the uniform density on \(\Gamma = [-0.1, 0.1] \times [-0.5, 0.5] \). Consider the governing PDE

\[
\begin{align*}
-\partial_x (\epsilon(y, x) \partial_x u(y, x)) &= f(y, x) + z(x) \quad (y, x) \in \Gamma \times D, \\
u(y, -1) = u(y, 1) &= 0 \quad y \in \Gamma,
\end{align*}
\]

with random field coefficients

\[
\epsilon(y, x) = \begin{cases}
0.1 & \text{if } x \leq y_1 \\
10 & \text{if } x > y_1
\end{cases}
\]

and

\[f(y, x) = \exp(- (x - y_2)^2). \]

The optimization problem is

\[
\min_{z \in L^2(-1, 1)} \widehat{J}(z) = \frac{1}{2} \int_\Gamma \rho(y) \int_{-1}^{1} (u(z; y, x) - 1)^2 \, dx \, dy + \frac{\alpha}{2} \int_{-1}^{1} z(x)^2 \, dx,
\]

where \(u(y, x) = u(z; y, x) \) solves (7.1) and the penalty parameter is \(\alpha = 10^{-4} \). Relating (7.2) to (2.2), \(V = H_0^1(D) \), \(W = L^2(D) \), and \(Z = L^2(D) \). Furthermore, the operators in (2.1) are defined as

\[
(A(y)u, v)_{V^*, V} = 0.1 \int_{-1}^{y_1} u'(x)v'(x) \, dx + 10 \int_{y_1}^{1} u'(x)v'(x) \, dx,
\]
\[\mathbf{N}(u, y) \equiv 0, \text{ and } \mathbf{F}(z, y) = \mathbf{b}(y) - \mathbf{B}(y)z, \]
where
\[\langle \mathbf{b}(y), v \rangle_{V^*, V} = \int_{-1}^{1} f(y, x)v(x) \, dx \quad \text{and} \quad \langle \mathbf{B}(y)z, v \rangle_{V^*, V} = -\int_{-1}^{1} z(x)v(x) \, dx. \]

Additionally, \(\mathbf{C} \) is the canonical injection from \(H_0^1(D) \) into \(L^2(D) \) and \(\bar{w} \equiv 1 \). The solution to (7.1) is continuous with respect to \(y \in \Gamma \) but need not be differentiable. To circumvent this complication, we use the domain decomposition formulation described in [28].

7.1.2. Discretization.
We discretize the PDE (7.1) in \(D \) using piecewise linear finite elements. The finite-element mesh varies for each collocation point and is uniform on each subinterval \([-1, y_i] \) and \([y_i, 1] \). The control variable is also discretized by using continuous piecewise linear finite elements on a uniform mesh of \(N = 128 \) intervals. Furthermore, we construct the sparse-grid hierarchy using isotropic Smolyak sparse grids built on 1D Gauss-Patterson points with maximum level fixed to \(K = 8 \). The largest sparse grid has \(Q_8 = 1,793 \) points.

7.1.3. Spectral Analysis of the Discretized Hessians.
Since \(\hat{J}(z) \) is quadratic, the estimates derived in Section 6 apply when CG is used as smoothers in Algorithm 1. After discretization, the Hessian matrix at each sparse-grid level is bounded and positive-definite. The maximum and minimum eigenvalues of the Hessian matrices are relatively constant between levels. At each level, the maximum eigenvalue is approximately \(1.64 \times 10^{-2} \), and the minimum is approximately \(3.85 \times 10^{-7} \). Since the Hessians are positive definite, Theorem 6.1 and the work bounds derived in Section 6 apply. The V-cycle error bound in Theorem 6.1 depends on the generalized eigenvalues of the matrix pencils \((\nabla^2 \hat{J}_k(z), \nabla^2 \hat{J}_{k-1}(z)) \). The maximum and minimum generalized eigenvalues for each level for this hierarchy of matrix pencils are approximately one, as proven in Section 6. Figure 7.2 depicts the absolute difference between one and the maximum (solid red) and minimum (solid black) generalized eigenvalues.

As expected from the analysis in Section 6, the decay of the errors is approximately linear with respect to \(\log_{10} Q_k \). The red dashed line was fit by using the maximum eigenvalues and decays at a rate of \(\nu = 1.63 \). The black dashed line was fit by using the minimum eigenvalues and decays at a rate of \(\nu = 2.08 \).

7.1.4. Optimization Results.
We solve the high fidelity problem \((K = 8) \) using CG, which we terminate according to the relative residual stopping criterion
\[||\nabla^2 \hat{J}_K(z) s + \nabla \hat{J}_K(z)||_Z \leq 10^{-6} ||\nabla \hat{J}_K(z)||_Z. \] (7.3)

The multilevel collocation algorithm uses CG as pre- and post-smoothers at each level. Algorithm 1 also uses CG to solve (4.1) on the coarsest grid \((k = 1)\) using the relative residual condition (7.3). The smoothers are computed as in Theorem 6.4 with \(T_{1,k} = K - k + 1 = T_{2,k} \) iterations of CG at each level. The smoother exits early if the relative residual condition (7.3) is satisfied. Disregarding early exit of the smoothers results in the theoretical upper bound on the number of PDE solves for one V-cycle
\[W_K \lesssim 28Q_K + 2(N_{CG}^1 + 1) = 50,280 \text{ PDE solves}, \]
where the total number of CG iterations on the coarse grid was \(N_{CG}^1 = 37 \).

The results for this example are tabulated in Table 7.1. Solving the high-fidelity optimization problem with CG resulted in 100,408 PDE solves. For Algorithm 1, one
Fig. 7.2: Error between one and the minimum/maximum generalized eigenvalues of the matrix pencil \((\nabla^2 \hat{J}_k(z), \nabla^2 \hat{J}_{k-1}(z))\). The horizontal axis is the number of collocation points. The error for the minimum (black lines) and maximum (red lines) eigenvalues decays linearly with respect to \(\log_{10} Q_k\). The decay rate is \(\nu = 1.63\) for the minimum eigenvalues and \(\nu = 2.08\) for the maximum eigenvalues.

<table>
<thead>
<tr>
<th>(J_K(z))</th>
<th>PDE Solves</th>
<th>Ratio</th>
<th>Theoretical</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG</td>
<td>0.12638509</td>
<td>100,408</td>
<td>1.00</td>
<td>-</td>
</tr>
<tr>
<td>iCG</td>
<td>0.12638509</td>
<td>67,880</td>
<td>1.48</td>
<td>-</td>
</tr>
<tr>
<td>V-Cycle(1)</td>
<td>0.12638715</td>
<td>20,586</td>
<td>4.88</td>
<td>50.280</td>
</tr>
<tr>
<td>V-Cycle(2)</td>
<td>0.12638510</td>
<td>37,758</td>
<td>2.66</td>
<td>100,560</td>
</tr>
<tr>
<td>FMG</td>
<td>0.12638509</td>
<td>18,114</td>
<td>5.54</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 7.1: Final objective value, number of PDE solves, ratio of PDE solves compared with CG, and theoretical upper bound on the number of PDE solves for each algorithm: CG for the high-fidelity problem (CG), inexact CG (iCG), one and two V-cycles (V-Cycle(i), i=1,2), and one F-cycle of Algorithm 1 (FMG).

V-cycle required 36,760 PDE solves and reduced the norm of the gradient on the finest level \(K = 8\) to approximately \(10^{-5}\). Two V-cycles required 64,940 PDE solves and satisfied the relative residual condition \(7.3\). FMG required 24,558 PDE solves and also satisfied the relative residual condition \(7.3\). All instances of Algorithm 1 resulted in a reduction in PDE solves when compared with CG on the fixed high-fidelity grid, but FMG was the clear winner with a savings of over 4 times fewer PDE solves.

7.2. Optimal Control of Steady Burger’s Equation. We now consider the optimal control of the steady Burger’s equation. Optimal control of the deterministic Burger’s equation is analyzed in [46].
7.2.1. Infinite-Dimensional Formulation. Let $D = (0,1)$, and let $\rho(y)$ denote the uniform density on $\Gamma = [-1,1]^4$. Consider the governing PDE

\begin{align}
-\nu(y)\partial_{xx}u(y,x) + u(y,x)\partial_x u(y,x) &= f(y,x) + z(x) \quad (y,x) \in \Gamma \times D, \\
u(y,0) &= d_0(y), \quad u(y,1) = d_1(y) \quad y \in \Gamma,
\end{align}

where the random field coefficients are

\[\nu(y) = 10^{y_1-2}, \quad f(y,x) = \frac{y_2}{100}, \quad d_0(y) = 1 + \frac{y_3}{1000}, \quad \text{and} \quad d_1(y) = \frac{y_4}{1000}. \]

The optimization problem is

\[\min_{z \in L^2(-1,1)} J(z) = \frac{1}{2} \int_\Gamma \rho(y) \int_{-1}^1 (u(z; y, x) - 1)^2 \, dx \, dy + \frac{\alpha}{2} \int_{-1}^1 z(x)^2 \, dx, \]

where $u(y,x) = u(z; y, x)$ solves (7.4) and the penalty parameter is $\alpha = 10^{-3}$. Relating (7.5) to (2.2), the function spaces are $\mathcal{V} = H^1_0(D)$, $\mathcal{W} = L^2(D)$, and $\mathcal{Z} = L^2(D)$. For each $y \in \Gamma$, the control operator, $\mathbf{F}(\cdot, y) : \mathcal{Z} \to \mathcal{V}^*$, can be written as

\[\mathbf{F}(z, y) = -b(y) - Bz. \]

The operators $\mathbf{A} : \Gamma \to \mathcal{L}(\mathcal{V}, \mathcal{V}^*)$, $\mathbf{B} : \Gamma \to \mathcal{L}(\mathcal{Z}, \mathcal{V}^*)$, $\mathbf{N} : \mathcal{V} \to \mathcal{V}^*$ and $\mathbf{b} : \Gamma \to \mathcal{V}^*$ are defined in [28]. Moreover, the observation operator \mathbf{C} is the canonical injection of $H^1_0(D)$ into $L^2(D)$ and $\bar{w} \equiv 1$.

7.2.2. Discretization. We discretize the state and control variables using continuous piecewise linear finite elements on a uniform partition of $D = (0,1)$. To sufficiently resolve the possible stiff behavior of (7.4), we use a mesh of $N = 512$ uniform intervals. To solve the resulting system of finite-dimensional nonlinear equations, we use Newton’s method with a backtracking line search. Furthermore, we construct the sparse-grid hierarchy using isotropic Smolyak sparse grids built on 1D Clenshaw-Curtis points with maximum level fixed to $K = 8$. The largest sparse grid has $Q_K = 7,537$ points.

7.2.3. Optimization Results. We solve the high-fidelity optimization problem ($K = 8$) and the coarse-grid problem (4.1) using Newton-CG. We terminate CG using the relative residual stopping condition,

\[\|\nabla^2 J_k(z)s + \nabla J_k(z)\|_Z \leq \eta_k(z)\|\nabla J_k(z)\|_Z, \]

where the forcing function, $\eta_k : \mathcal{Z} \to (0,1)$, is defined as

\[\eta_k(z) = \min\{10^{-2}, \|\nabla J_k(z)\|_Z\}. \]

This choice of η_k ensures q-quadratic convergence of Newton-CG whenever the initial guess $z_0 \in \mathcal{Z}$ is sufficiently close to the optimal solution $z_* \in \mathcal{Z}$ [38, Thm. 7.2]. To globalize Newton-CG, we employ a backtracking line search. Furthermore, we exit Newton-CG if the norm of the gradient of the objective function is less than the gradient tolerance gtol. For the high-fidelity problem $\text{gtol} = 10^{-6}$ whereas for the coarse-grid problem $\text{gtol} = 10^{-8}$.

Similarly, we use a finite number of iterations of inexact Newton with inexact CG (Newton-iCG) for pre- and post-smoothing. We require inexact CG because we use Algorithm 2 for Hessian-times-vector computations. To apply the smoothers, we
Table 7.2: Number of nonlinear and linear PDE solves required by the four different algorithms: Newton-CG with a backtracking line search, Newton with inexact CG and backtracking line search (Newton-iCG), one V-cycle of Algorithm 1 (V-Cycle(1)), and one F-cycle of Algorithm 1 (FMG). “Ratio” refers to the ratio of the number of solves for Newton-CG with the number of solves for the other algorithms.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Nonlinear</th>
<th>Ratio</th>
<th>Linear</th>
<th>Ratio</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newton-CG</td>
<td>30,148</td>
<td>1.00</td>
<td>678,330</td>
<td>1.00</td>
</tr>
<tr>
<td>Newton-iCG</td>
<td>30,148</td>
<td>1.00</td>
<td>45,556</td>
<td>14.89</td>
</tr>
<tr>
<td>V-Cycle(1)</td>
<td>34,198</td>
<td>0.88</td>
<td>37,708</td>
<td>17.99</td>
</tr>
<tr>
<td>FMG</td>
<td>12,473</td>
<td>2.42</td>
<td>14,903</td>
<td>45.52</td>
</tr>
</tbody>
</table>

These results are tabulated in Table 7.2.

8. Conclusions. In this work, we present a hierarchical sparse-grid discretization for optimization problems governed by PDEs with uncertain coefficients, and we apply the MG/OPT framework [33, 30] to exploit this multilevel-in-sample-space discretization. The MG/OPT algorithm, Algorithm 1, is provably first-order con-
D. P. KOURI

vergent under standard assumptions. The hierarchical sparse-grid discretized optimization problems can similarly be handled with other globally convergent variants of MG/OPT such as recursive trust-regions [21, 22, 23, 24] and the multilevel line-search approach [47].

In the case of quadratic optimal control of linear PDEs, we derived explicit upper bounds on the number of PDE solves required for a single V-cycle of Algorithm 1. We also proved error bounds for one V-cycle when CG is used as a pre- and post-smoother. We present numerical examples that confirm these upper bounds, and we demonstrate the immense reduction in the number of PDE solves required by Algorithm 1 when compared with Newton-CG applied to a fixed high-fidelity discretized problem.

The number of PDE solves can further be reduced by using the adaptive collocation approach in [27, 28] as a pre- and post-smoother. Alternatively, with slight modification, one can apply the MG/OPT algorithm to solve the trust-region sub-problems that arise in the adaptive collocation framework of [27, 28]. The framework in [27, 28] adaptively builds a hierarchy of sparse-grid index sets that can be used in the multilevel framework presented here. This coupling of the multilevel and adaptive approach is ideal as both methods perform a majority of their work on coarse sparse grids, resulting in significantly fewer PDE solves. In addition, the adaptive approach exploits any anisotropic features of the sample space to further reduce the number of collocation points. This coupling is left as future work.

REFERENCES

[34] ——, Convergence and descent properties for a class of multilevel optimization algorithms, tech. report, Systems Engineering and Operators Research Department, George Mason University, 2010.

[37] ——, A sparse grid stochastic collocation method for partial differential equations with ran-

