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Abstract—

The use of GPUs to accelerate general-purpose scientific and
engineering applications is mainstream today, but their adoption
in current high-performance computing clusters is impaired
primarily by acquisition costs and power consumption. Therefore,
the benefits of sharing a reduced number of GPUs among all the
nodes of a cluster can be remarkable for many applications.
This approach, usually referred to as remote GPU virtualization,
aims at reducing the number of GPUs present in a cluster, while
increasing their utilization rate.

The performance of the interconnection network is key to
achieving reasonable performance results by means of remote
GPU virtualization. To this end, several networking technolo-
gies with throughput comparable to that of PCI Express have
appeared recently. In this paper we analyze the influence of
InfiniBand FDR on the performance of remote GPU virtual-
ization, comparing its impact on a variety of GPU-accelerated
applications with other networking technologies, such as Infini-
Band QDR and Gigabit Ethernet. Given the severe limitations of
freely available remote GPU virtualization solutions, the rCUDA
framework is used as the case study for this analysis. Results show
that the new FDR interconnect, featuring higher bandwidth than
its predecessors, allows the reduction of the overhead of using
GPUs remotely, thus making this approach even more appealing.

I. INTRODUCTION

In the past few years, high-performance computing (HPC)
clusters have become heterogeneous platforms that integrate
both multicore CPUs and special-purpose hardware accelera-
tors, such as graphics processing units (GPUs). In this kind of
cluster, one or more accelerators are usually attached to each
node of the system. This system configuration has provided
promising results by noticeably reducing application execution
time in areas as diverse as finance [1], chemical physics [2],
computational fluid dynamics [3], computational algebra [4],
and image analysis [5].

The trend of including accelerators in all cluster nodes
presents several drawbacks, however. First, in addition to in-
creasing the acquisition costs, the use of accelerators increases
maintenance, administration, and space costs [6]. Second,
energy consumption is increased, as GPUs are known to be
power-hungry devices [7]. Third, GPUs in such a cluster may
present a relatively low utilization rate, given that it is unlikely
that all the accelerators in the cluster will be used all the
time, since few applications feature such an extreme data-
concurrency degree.

Virtualizing accelerators in the HPC context is an ap-
pealing strategy to deal with all these drawbacks simulta-
neously. By leveraging GPU virtualization, physical GPUs
are installed only in some nodes of the cluster, and they
are transparently shared among all the nodes. Hence, those
nodes equipped with GPUs become servers that provide GPU
services to all the nodes in the cluster. GPU virtualization
leads to the use of a lower number of GPUs across the
cluster, thus reducing acquisition costs and power consump-
tion, while increasing the accelerator utilization rate. Conse-
quently, GPU virtualization enables a more efficient use of
the available hardware. Several virtualization frameworks are
currently available, including rCUDA [8], [9], GVirtuS [10],
DS-CUDA [11], vCUDA [12], GViM [13], GridCuda [14],
V-GPU [15], SnuCL [16], dOpenCL [17], VOCL [18], and
VCL [19].

Obviously, using a remote GPU introduces some overhead,
mainly because of the virtualization framework and the net-
work. The GPU virtualization framework increases the latency
to the real GPU, since requests must be forwarded to the
remote GPU and responses delivered back to the application
demanding GPU services. Furthermore, since GPUs are no
longer located at the other end of a PCI Express (PCIe) link
within the host, but in a remote node, data must traverse at
least two PCIe links and two network interfaces, as well as
the entire network fabric between the node requesting GPU
services and the node where the actual GPU resides. Therefore,
in addition to latency, bandwidth also suffers, given that the
PCIe bandwidth is usually noticeably larger than network
bandwidth, thus increasing the performance gap between the
local and remote uses of GPUs.

In order to minimize the impact of the network overhead,
the latency and bandwidth of the interconnect should be
comparable to those of PCIe. Although the performance gap
between the internal PCIe interconnect and the external fabric
was considerable in the past, recently several networking
technologies have appeared with throughput comparable to that
of PCIe. As shown in Figure 1, the theoretical throughput of
the most recent version of InfiniBand (IB) FDR is close to
that of PCIe 2 (current PCIe version supported by GPUs).
This small performance difference motivates the present work,
in which we analyze the influence of different networking
technologies on the performance of GPU virtualization. Our
results show that remote GPU virtualization is a feasible option
if leveraging high-performance networks: although it increases
application execution time slightly, in return it provides a
noticeable flexibility for cluster configuration. Furthermore, the
analysis in this paper also offers insights into the behavior of978-1-4799-0898-1/13/$31.00 c©2013 IEEE
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Fig. 1. Theoretical throughput in GB/s for several versions of PCI Express
(16 lanes) compared with different InfiniBand connections.

remote GPU virtualization once the performance gap between
intranode and internode interconnects is again noticeable (for
example, when GPUs evolve to PCIe 3.0).

The rest of the paper is organized as follows. In Section II
we present some important software to virtualize GPUs, in-
troducing in more detail rCUDA, the solution leveraged in
this study. In Section III we compare the bandwidth and
latency of PCIe with those of the networks considered in this
work. In the next two sections we analyze the performance
of several GPU applications using remote GPUs, again with
different networks. We first use the NVIDIA CUDA Samples
in Section IV, and we then evaluate some GPU-accelerated
production applications in Section V. Section VI summarizes
the main conclusions of our work.

II. REMOTE GPU VIRTUALIZATION SOLUTIONS

Currently, programmers are assisted by CUDA [20] or
OpenCL [21] in order to use GPUs for general-purpose com-
puting (GPGPU). Although CUDA is a proprietary technology
from NVIDIA, it is more widely used than the open stan-
dard OpenCL. In the context of CUDA, several frameworks
grant access to GPUs installed in remote nodes to CUDA-
based applications, such as GVirtuS [10], DS-CUDA [11],
vCUDA [12], GViM [13], GridCuda [14], V-GPU [15], and
rCUDA [8], [9].

All these frameworks are usually structured following a
client-server distributed architecture, as illustrated in Figure 2.
In this manner, the client middleware runs in the same cluster
node as the application demanding GPGPU services, while the
server middleware runs in the cluster node where the physical
GPU resides. Ideally, the middleware client should present
to the application the same interface as the regular NVIDIA
CUDA Runtime API [22]. A common course of action could
then be the following:

1) The middleware client receives a CUDA request from
the application.

2) The request is processed and forwarded to the frame-
work server.

3) The server interprets the request and performs the
required processing by accessing the real GPU.

4) The GPU completes the execution of the request, and
the middleware server sends the results back to the
client.

5) The client forwards the results to the demanding
application.

Note that this sequence of events may occur concurrently
with similar ones from other applications, as GPUs are shared

Application
CLIENT SERVER

Framework daemon
SOFTWARE

Wrapper libraries

Application Framework daemon

CUDA libraries

HARDWARE GPUNetwork

Fig. 2. Overview of the general architecture of remote GPU virtualization
solutions.

among several nodes in the cluster. In order to support this con-
current scenario, the remote GPU virtualization frameworks
should provide the required mechanisms, such as managing
independent GPU contexts for each application.

Current virtualization frameworks present different char-
acteristics. For example, rCUDA supports the last release of
CUDA, version 5, and has specific communication modules for
Ethernet and InfiniBand. On the other hand, GVirtuS supports
CUDA 3.2 and is optimized for KVM virtual machines. DS-
CUDA supports CUDA 4.1 and has specific communication
libraries for InfiniBand; however, it has several limitations,
such as not permitting copies with page-locked memory (also
called pinned memory). V-GPU is a commercial tool that
seems to support CUDA 4. GViM, vCUDA, and GridCuda
apparently support obsolete versions of CUDA (1.1 to 2.3).
The only freely available virtualization solution that supports
the most recent version of CUDA is the rCUDA framework;
hence, we have adopted this technology for our analysis.

rCUDA Communication Architecture

The internal architecture of rCUDA accommodates several
underlying client-server communication technologies [23]. As
illustrated in Figure 3, it consists of a modular, layered ar-
chitecture wthich supports runtime-loadable, network-specific
communication libraries. rCUDA currently provides commu-
nication modules for Ethernet and InfiniBand.

rCUDA client engine

CUDA Runtime API

communication layer

rCUDA server engine

GPUNetwork

CUDA Runtime 

library

specific communication 

module

CUDA Driver 

library

specific comm. 

module

communication 

layer

Fig. 3. rCUDA modular architecture.

Regardless of the specific communication technology used,
data transfers between rCUDA clients and servers are pipelined
in order to improve performance. For this purpose, rCUDA
uses preallocated buffers of pinned memory [23], exploiting
its higher throughput. As reported in [23], a relationship exists
between the transfer size and the optimal pipeline block size.
In general, small block sizes favor latency, as pipeline buffers
are filled faster and data are moved earlier across the pipeline
stages. However, they are inefficient for large data payloads,
as large messages (i.e., large pipeline block sizes) are needed
to exploit the peak throughput of PCIe and the network.
Hence, the optimal block size should be chosen as small as
possible while still delivering the maximum PCIe and network
throughput.
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Fig. 4. Bandwidth test for copies from host to device with pinned host
memory, using both native CUDA and the rCUDA framework over InfiniBand
FDR, with different pipeline block sizes.

The optimal pipeline block size within rCUDA was already
determined for TCP/IP-based communications over Ethernet
(512 KB) and InfiniBand QDR (2 MB) in [23]. In this paper
we analyze GPU virtualization performance leveraging the new
InfiniBand FDR version; and therefore we must evaluate the
optimal pipeline block size for this new technology. For that
purpose, we have employed the bandwidthTest benchmark
from the NVIDIA CUDA Samples [24]. This test can measure
CPU memory (also called host memory) to GPU memory (also
referred to as device memory) copy bandwidth for pageable
and pinned memory. In particular, we use the shmoo option,
which measures bandwidth for a large range of values. CUDA
transfers between host memory and device memory are known
to attain different peak transfer rates depending on the direction
of the transfers (host to device or vice versa) and the type of
host memory (pageable or pinned). For clarity, we will present
results only for the host-to-device direction, using pinned host
memory.

Figure 4 shows the results of this test using native CUDA
and rCUDA over InfiniBand FDR for several pipeline block
sizes. The results show that for copy sizes less than 10 MB,
pipeline blocks of 1 MB deliver the best bandwidths for
rCUDA, whereas for transfers over 10 MB, block sizes of
1 MB, 2 MB, and 4 MB obtain similar results, very close to
the maximum throughput. On average, rCUDA with a pipeline
block size equal to 1 MB yields the best performance, while
being also the smallest block size. Consequently, hereafter we
use this pipeline block size for our tests using rCUDA over
InfiniBand FDR.

III. IMPACT OF INFINIBAND FDR ON THE BANDWIDTH
AND LATENCY OF REMOTE GPU USAGE

The performance of data transfers to/from the remote GPU
is influenced mainly by the bandwidth and latency of the
communication path. When transferring small amounts of data,
latency is the most important factor, whereas when transferring
large blocks, bandwidth is crucial. In this section we start
our analysis of the influence of a high bandwidth network
such as InfiniBand FDR on the performance of remote GPU
virtualization. To do so, we compare the bandwidth and latency
of PCIe when using CUDA, with those observed for rCUDA
over three different network technologies: InfiniBand FDR,
InfiniBand QDR, and Gigabit Ethernet.

A. Testbed System

The setup used for the experiments reported in this paper
consists of two servers, each with the following characteristics:

• Two Intel Xeon hexa-core processors E5-2620 (Sandy
Bridge) operating at 2.00 GHz

• 32 GB of DDR3 SDRAM memory at 1,333 MHz

• 1 Mellanox ConnectX-3 single-port InfiniBand
Adapter

• CentOS Linux Distribution release 6.3, with Mellanox
OFED 1.5.3 (InfiniBand drivers and administrative
tools), CUDA 5.0 with NVIDIA driver 285.05, and
rCUDA 4.0.1 (the latest stable release from February
2013)

Additionally, one of the nodes has an NVIDIA Tesla K20
GPU. On the other hand, both nodes are interconnected by
a Gigabit Ethernet network with a Cisco SLM2014 switch
and by an InfiniBand fabric. Two different Mellanox switches
are leveraged for the InfiniBand fabric: an MTS3600 switch
providing QDR compatibility and an SX6025 for FDR com-
patibility. Depending on which is used, QDR or FDR features
are leveraged.

B. Influence on Bandwidth

In this section we analyze the memory copy (memcopy)
bandwidth between host memory and the device memory for
several scenarios:

• Local GPU: memcopy bandwidth across PCIe (re-
ferred to as “CUDA” in the figures)

• Remote GPU: memcopy bandwidth for different net-
works: Gigabit Ethernet (rCUDA GbE), InfiniBand
QDR (rCUDA QDR), and InfiniBand FDR (rCUDA
FDR)

• Both the local and remote scenarios, evaluated by
using pageable host memory as well as pinned host
memory

To analyze the bandwidth, we use the bandwidthTest
benchmark from the NVIDIA CUDA Samples, with the
shmoo option. Figure 5 presents the results of this test
using pinned host memory, and Figure 6 illustrates the results
for pageable host memory. As expected, rCUDA over GbE
provides the worst results, with its bandwidth reaching a
maximum of 113.1 MB/s in both cases (pinned and pageable).
When using pinned host memory, rCUDA over IB FDR
achieves a substantial gain (46.01%) with respect to IB QDR.
Furthermore, its throughput is close to that obtained by regular
CUDA over a local GPU, with a difference of only 0.5GB/s
(9.4%). When using pageable host memory, rCUDA over IB
renders a higher bandwidth than does native CUDA with a
local GPU. The reason is that memory copies between rCUDA
clients and remote GPUs are pipelined by using preallocated
buffers of pinned memory, as explained in Section II, thus
exploiting the higher throughput of this type of memory.

In summary, the higher bandwidth of InfiniBand FDR
allows remote GPU virtualization frameworks to experience
a bandwidth similar to that of PCIe all across the entire path
between the local application demanding GPGPU services and
the remote GPU.
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Fig. 5. Bandwidth test for copies from host to device with pinned host
memory, using CUDA and the rCUDA framework over different networks.
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Fig. 6. Bandwidth test for copies from host to device with pageable host
memory, using CUDA and the rCUDA framework over different networks.

C. Influence on Latency

To analyze the impact of the improvements on interconnect
latency, we employ a synthetic test similar to the previous
bandwidth test but using negligible volumes of data (con-
cretely, from 1 to 64 bytes). Table I shows the results for
this experiment, obtained from the average of 100 repetitions
of each scenario. Again, GbE presents the worst performance.
On the other hand, Table I also reveals that the use of rCUDA
over IB FDR does not improve latency with respect to IB QDR.
However, standard deviation values exhibit a more constant
behavior for FDR, demonstrating a higher stability.

To determine how latency to remote GPU affects ap-
plication performance, we have implemented one additional
synthetic benchmark that also copies a small dataset (64
bytes). In this case, however, it performs a varying number of
copies, from 100 to 102,400, doubling the number of copies
in each iteration (i.e., 100, 200, 400, etc.). This resembles the
behavior of applications, which typically will perform several
sequential requests to the GPU along its execution. As Figure 7
shows, rCUDA over GbE performs poorly starting from 25,000
iterations, whereas rCUDA over IB begins its degradation from
50,000 iterations. In general, the exact numbers show that IB
QDR achieves slightly better results (an average of 5 ms).

In summary, the latency results show that, although the
new InfiniBand FDR version noticeably improves performance
when the application can benefit from its superior bandwidth,

TABLE I. LATENCY TEST USING CUDA AND THE RCUDA
FRAMEWORK OVER DIFFERENT NETWORKS

Time (µs)
Copy size (bytes) CUDA rCUDA: FDR QDR GbE
1 (100-copy average) 11.62 50.73 50.34 130.63
2 (100-copy average) 11.56 50.53 50.49 130.05
4 (100-copy average) 11.59 50.32 50.32 130.59
8 (100-copy average) 11.55 50.69 50.26 130.68
16 (100-copy average) 11.56 50.71 50.06 130.50
32 (100-copy average) 11.67 50.64 50.22 133.03
64 (100-copy average) 11.71 50.87 50.12 135.18
Max. standard deviation 0.06 0.18 1.55 2.15
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Fig. 7. Latency test varying the number of iterations for CUDA and the
rCUDA framework over different networks. X-axis in logarithmic scale.

this new interconnect does not enhance performance when the
application is sensitive to latency.

IV. NVIDIA CUDA SAMPLES

In this section we leverage the entire NVIDIA CUDA
Samples suite, also referred to as CUDA SDK samples, to
analyze remote GPU virtualization performance in a compre-
hensive way. The NVIDIA CUDA Samples contain simple
code programs covering a wide range of applications and
techniques using CUDA, which we consider useful for an
initial study.

Figure 8a presents the normalized sample execution time
for CUDA and for rCUDA over IB FDR, IB QDR, and GbE.
Times are normalized to those obtained with a local CUDA.
The average of 10 repetitions is used. The maximum relative
standard deviation (RSD) observed was 0.390 for sample
boxFilterNPP (BN) when executed with CUDA, 0.147 for
sample transpose (TA) in the case of rCUDA over FDR,
0.187 for sample volumeRender (VR) with rCUDA over
QDR, and 0.563 for sample simpleCUFFT (FF) with rCUDA
over GbE. To complete the data in Figure 8a, we have also
measured the amount of bytes transferred between the rCUDA
client and server (to take into account bandwidth) and the
number of requests sent from the rCUDA client to the rCUDA
server (to consider latency). The results for this experiment are
displayed in Figure 8b.

Comparing rCUDA over GbE, we observe in these
figures that most of the samples that exhibit poor behavior
(i.e., normalized time greater than or equal to 1.5) whether
they exceed more than 100 MB of transfers (sent or
received) or 1,000 requests to the rCUDA server. This is
the case of 19 out of the 28 samples: bandwidthTest
(BT), simpleStreams (IE), alignedTypes (AT), TA,
FF, smokeParticles (SK), simpleCUBLAS (CB),
matrixMulCUBLAS (MC), cdpLUDecomposition
(LU), Mandelbrot (MB), scan (SC),
freeImageInteropNPP (FI), histEqualizationNPP
(HE), BN, imageSegmentationNPP (IS),
simpleDevLibCUBLAS (LC), conjugateGradient
(CG), segmentationTreeThrust (TT), and interval
(IN).

Although sample reduction (RE) does not exceed these
thresholds, it is close to both of them, 65 MB of data and 749
requests sent to the rCUDA server, thus explaining the over-
head. Samples sortingNetworks (SN) and FDTD3d (FD)
transfer more than 100 MB, but in these cases the overhead of
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using GbE is canceled by the long execution time of the sam-
ples, 9.93 and 17.47 seconds, respectively. For the same reason,
sample convolutionFFT2D (F2), which takes almost 6
seconds, is not much affected by its large number of requests
(over 1,300). On the contrary, samples bilateralFilter
(BF), VR, recursiveGaussian (RG), and simpleMPI
(MI) are too short, less than 1 second, thus distorting their
overheads, in spite of performing neither more than 100 MB
of transfers nor 1,000 requests.

Concerning rCUDA over IB, the figures reveal that the
samples performing worst are TA, FF, SK, CB, MC, LU, MB,
BF, RG, and MI. The reason for some of them (CB, MC,
LU, and MB) is a large number of requests to the rCUDA
server (over 2,800). The execution time of the rest of samples
is too short, less than 1 second, thus distorting their overheads,
despite not going beyond this limit. Samples SC, FI, HE, BN,
IS, LC, CG, and TT also have a large number of requests; but
these samples use CUDA libraries [25], and the vast majority
of the requests are originated by the load of these libraries,
which are optimized by rCUDA, resulting in lower overhead.
Considering the amount of bytes transferred in these samples,
they are insufficient to penalize rCUDA over IB. Sample IE
is the only one that transfers a considerable amount of data,
over 12 GB, but the network overhead is hidden by the long
duration of the sample, nearly 20 seconds.

When comparing the different networking technologies,
almost all the samples perform as expected: rCUDA over
IB always runs faster than rCUDA over GbE. Sample
stereoDisparity (DI) takes similar time to rCUDA over
the different networks because it performs very few transfers
and very few requests to the remote server. These two factors,
added to its long duration, nearly 50 seconds, hide the network
overhead. Regarding rCUDA over IB, the FDR executions are,

in general, faster than the QDR runs, except for samples TA,
MB, SC, and IS. These cases perform few transfers and a
large number of requests to the rCUDA server, 1,729, 4,020,
6,669, and 6,048, respectively. Thus, they can benefit from the
slightly lower latency of QDR.

In conclusion, although the samples analyzed in this section
are simple and usually involve few transfers and requests to
the rCUDA server, they reveal the following insights:

• For rCUDA over GbE, transfers over 100 MB and
requests from 1,000 up drive to bad performance,
because of the low bandwidth and high latency of this
interconnect.

• For rCUDA over IB, these samples do not present
enough transfers to raise IB throughput constraints. In
terms of latency, however, samples with 2,800 or more
requests start showing higher overheads.

• Compared with IB FDR, rCUDA over IB QDR ben-
efits from its lower latency when samples imply
thousands of requests to the rCUDA server. Never-
theless, in general, FDR takes advantage of its higher
bandwidth, overcoming QDR in 87.5% of the studied
samples.

• The actual execution time of the samples introduces
considerable noise in this study and modifies the
thresholds mentioned above concerning transfers and
requests. Thus, longer samples minimize the impact
of these limits, while shorter ones maximize it.

V. INFLUENCE OF INFINIBAND FDR ON PRODUCTION
APPLICATIONS

To study more thoroughly the influence of the network on
remote GPU virtualization, in this section we analyze some



production codes selected from the NVIDIA Popular GPU-
Accelerated Applications [26].

A. CUDASW++

CUDASW++ [27] is a bioinformatics software for Smith-
Waterman protein database searches that takes advantage of the
massively parallel CUDA architecture of NVIDIA Tesla GPUs
to perform sequence searches. In particular, we have used its
last release, version 3.0, for our study, along with the Latest
Swiss-Prot database and the example query sequences avail-
able in the application’s website: http://cudasw.sourceforge.net.

Figure 9 shows CUDASW++ execution time for queries
of different sequence lengths using CUDA and rCUDA over
different networks. The average of 10 repetitions is presented.
The maximum RSD observed was 0.019 for a sequence of
length 222 when executed with CUDA, 0.010 for a sequence
of length 464 in the case of rCUDA over FDR, 0.010 for a
sequence of length 144 with rCUDA over QDR, and 0.009
for a sequence of length 657 with rCUDA over GbE. The
figure also presents the overhead of using rCUDA: over IB the
execution time is very close to that of CUDA. FDR and QDR
introduce average overheads of 0.67% and 1.37%, respectively.
For rCUDA over GbE, the average overhead is significantly
higher, however: 21.88%.

The reason for rCUDA over IB performing only slightly
worse than the native CUDA is the small number of transfers
and the reduced number of requests done by the application to
the rCUDA server (see Figure 10). For GbE, this small transfer
size (around 160 MB) is enough to penalize rCUDA because
of the low bandwidth of this technology. With respect to the
different IB networks, QDR presents an average overhead 0.7%
higher than FDR.

We can also observe that longer query sequences reduce the
overhead introduced by rCUDA. Figure 11 reveals that this is
due to the fact that the time spent in transfers (i.e., time spent in
memory copies between host memory and the device memory,
also referred to as CUDA memcopy) remains the same for all
the query lengths, but the time employed by computations (i.e.,
time employed by CUDA kernels) increases with the query
sequence length. Performing more computations helps rCUDA
in the sense that the time spent in computations in the GPU
is the same for CUDA and rCUDA, thus compensating the
overhead of rCUDA due to the transfers across the network.

B. GPU-BLAST

GPU-BLAST [28] has been designed to accelerate the
gapped and ungapped protein sequence alignment algorithms
of the NCBI-BLAST (http://www.ncbi.nlm.nih.gov) imple-
mentation using GPUs. It is integrated into the NCBI-BLAST
code and produces identical results. We utilize release 1.1
in the next experiments, where we have followed the in-
stallation instructions for sorting a database and creating a
GPU database. To search the database, we then use the query
sequences that come with the application package.

Figure 12 depicts the GPU-BLAST execution time for
queries of different sequence lengths using CUDA and rCUDA
over the three networks. The average of 10 repetitions is
presented. The maximum RSD observed was 0.207 for a
sequence of length 100 when executed with CUDA, 0.031 for a
sequence of length 200 in the case of rCUDA over FDR, 0.051
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Fig. 9. CUDASW++ execution time for queries of different sequence lengths,
using CUDA and rCUDA over different networks. Primary y-axis shows
rCUDA’s overhead and secondary y-axis execution time.
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Fig. 10. rCUDA profiling measurements for CUDASW++ executing queries
of different sequence lengths. Primary y-axis shows MB sent/received by
CUDASW++ to/from server when using the rCUDA framework. Secondary
y-axis presents requests sent to the rCUDA server.
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Fig. 11. NVIDIA profiling result for CUDASW++ executing queries of
different sequence lengths. In particular, time employed by computations (i.e.,
CUDA kernels) and memory transfers (i.e., CUDA memcopy).

for a sequence of length 700 with rCUDA over QDR, and
0.012 for a sequence of length 1400 with rCUDA over GbE.
From our results we also extract that the average overhead of
using rCUDA is 7.07%, 8.63%, and 113.71% for IB FDR, IB
QDR, and GbE, respectively. Data transfers over 1.2GB (see
Figure 13) hurt performance for rCUDA over GbE. Concerning
rCUDA over IB, QDR presents an average overhead 1.56%
higher than does FDR.

As was the case for CUDASW++, Figure 14 illustrates that
the time spent in transfers is constant for all the queries with
GPU-BLAST; only the time required by computations varies.
Again, we can observe that rCUDA’s overhead decreases as
computation time increases. Figure 14 also reveals a peak in
time spent in GPU computations when running GPU-BLAST
with a sequence of length 600, which explains a similar peak
in Figure 12 for this sequence length.

C. LAMMPS

LAMMPS [29] is a classic molecular dynamics simulator
that can be used to model atoms or, more generically, as
a parallel particle simulator at the atomic, mesoscopic, or
continuum scale. For the tests below, we use the release
from Feb. 19, 2013, and benchmarks in.eam and in.lj
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Fig. 12. GPU-BLAST execution time for queries of different sequence
lengths, using CUDA and rCUDA over different networks. Primary y-axis
shows rCUDA’s overhead, while secondary y-axis represents execution time.
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Fig. 13. rCUDA profiling measurements for GPU-BLAST executing queries
of different sequence lengths. Primary y-axis shows MB sent/received by GPU-
BLAST to/from server when using the rCUDA framework. Secondary y-axis
presents requests sent to the rCUDA server.

2 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
0

200

400

600

800

1000

1200

1400

0

20

40

60

80

100

120

140
Sent Received Requests

Sequence Length

S
iz

e
 (

M
B

)

#
 o

f R
e

q
u

e
st

s 
to

 S
e

rv
e

r

2 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400
0

2

4

6

8

10

12

14

16
Computation Transfers

Sequence Length

T
im

e
 (

s)

Fig. 14. NVIDIA profiling result for GPU-BLAST executing queries of
different sequence lengths. In particular, time employed by computations (i.e.,
CUDA kernels) and memory transfers (i.e., CUDA memcopy).

installed with the application. We run the benchmarks with one
processor and scaling by a factor of 5 in all three dimensions
(i.e., a problem size of 4 million atoms).

Table II reports the execution time for these benchmarks us-
ing CUDA and rCUDA over the three networks, and Table III
shows rCUDA’s overhead for the same tests. The average of
10 executions is presented. The maximum RSD observed was
0.013 for benchmark in.lj, when executed with rCUDA over
GbE. 0.005 for benchmark in.eam in the case of rCUDA
over FDR, 0.009 for benchmark in.eam with rCUDA over
QDR, and 0.004 for benchmark in.lj with CUDA. Again,
rCUDA over GbE exhibits poor performance because of the
large transfers involved and the huge number of requests sent
to the rCUDA server, as shown in Figure 15. For rCUDA over
IB, QDR has an average overhead 2.39% higher than does
FDR. Despite the large amount of requests, which could help
QDR in terms of latency, these experiments reveal that FDR’s
better bandwidth has more influence than its worse latency
when data transfers are of a considerable size, as also pointed
out in previous sections.

In this application, the benchmark presenting greater over-
head, in.eam, also spends significantly more time in com-
putations (see Figure 16) than does benchmark in.lj, which

TABLE II. LAMMPS EXECUTION TIME FOR BENCHMARKS IN.EAM
AND IN.LJ, SCALED BY A FACTOR OF 5 IN ALL THREE DIMENSIONS

LAMMPS Execution Time (s)
Benchmark CUDA rCUDA FDR rCUDA QDR rCUDA GbE

in.eam 52.33 56.36 57.60 102.09
in.lj 36.39 38.02 38.90 79.37

TABLE III. RCUDA OVERHEAD FOR THE BENCHMARKS IN.EAM AND
IN.LJ, SCALED BY A FACTOR OF 5 IN ALL THREE DIMENSIONS

LAMMPS Overhead (%)
Benchmark rCUDA FDR rCUDA QDR rCUDA GbE

in.eam 7.71 10.07 95.10
in.lj 4.50 6.90 118.12
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Fig. 15. rCUDA profiling measurements for LAMMPS executing benchmarks
in.eam and in.lj, scaled by a factor of 5 in all three dimensions. Primary y-axis
shows MB sent/received by LAMMPS to/from server when using the rCUDA
framework. Secondary y-axis presents requests sent to the rCUDA server.
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Fig. 16. NVIDIA profiling result for LAMMPS executing benchmarks in.eam
and in.lj, scaled by a factor of 5 in all three dimensions. Time employed
by computations (i.e., CUDA kernels) and by memory transfers (i.e., CUDA
memcopy) is shown.

shows a lower overhead. Apparently, this behavior does not
obey the conclusions obtained in previous sections with respect
to the time employed by computations and rCUDA’s overhead.
The explanation lies in the fact that here, unlike in preceding
experiments, the number of bytes sent is almost the same
for both benchmarks, but the number of bytes received and
requests to the server is significantly higher for in.eam, thus
making a higher use of the network fabric than for in.lj.

D. Summary

Table IV summarizes the most important results for the
applications under study. In this case, we have analyzed
applications with low, medium, and high volumes of data
transfers. This analysis reveals that rCUDA over GbE has
a high overhead independent of the amount of transfers. In



contrast, rCUDA over IB exploits the much higher throughput
than GbE, exposing a very small overhead for applications
with a low amount of transfers. For applications that involve
a moderate to high volume of transfers, the overhead of using
rCUDA over IB depends on the time spent in computations.
Thus, if the amount of computations is enough to compensate
for the extra time spent transferring data across the network,
then the overhead of rCUDA over IB is very low. Otherwise,
the overhead becomes significant.

TABLE IV. SUMMARY OF RCUDA OVERHEAD USING DIFFERENT
NETWORKS, RELATED WITH AVERAGE NUMBER OF RCUDA TRANSFERS
AND REQUESTS TO RCUDA SERVER, FOR THE STUDIED APPLICATIONS

Application rCUDA rCUDA rCUDA Overhead (%)
Transfers Requests FDR QDR GbE

CUDASW++ ∼160 MB ∼100 0.67 1.37 21.88
GPU-BLAST ∼1200 MB ∼130 7.07 8.63 113.71
LAMMPS ∼3000 MB ∼16000 6.10 8.49 106.61

Concerning the two IB versions examined in these tests,
QDR and FDR, it appears that as the size of transfers increases,
FDR’s higher throughput is more important. Hence, for the
applications considered in this study, QDR average overhead in
comparison to FDR grows together with the level of transfers:
0.7%, 1.56%, and 2.39%, for low, medium, and high volumes
of transfers, respectively.

VI. CONCLUSIONS

Remote GPU virtualization is rising interest in the HPC and
datacenter community given the flexibility it provides to cluster
administrators regarding acquisition, space, and maintenance
costs as well as the corresponding energy savings. However,
despite the many benefits it provides, remote GPU virtualiza-
tion also introduces some overheads due to the virtualization
framework and also the network fabric connecting the cluster
node running the accelerated application and the node owning
the actual GPU.

In this paper we have analyzed how the current bandwidth
matching between PCIe 2.0 and InfiniBand FDR influences
the performance of remote GPU virtualization, using both
synthetic tests and real GPU-accelerated applications. Syn-
thetic tests have revealed that FDR achieves a substantial
gain (over 40% with respect to the previous InfiniBand QDR
version) in terms of bandwidth to/from the remote GPU.
This bandwidth gain, when incorporated into the context of a
GPU-accelerated application, which performs computations in
addition to transfers between main memory and GPU memory,
reduces overhead up to 2.39% with respect to InfiniBand QDR,
clearly showing that the new interconnect not only serves
traditional applications running in the cluster but also remotely
accelerated ones.

Nevertheless, it is also important to consider that GPUs
will support PCIe 3.0 soon, probably doubling their actual
maximum bandwidth to the local GPU. This upgrade to PCIe
3.0 will increase again the performance gap between the intra-
node and the inter-node interconnects, leading to higher over-
heads when using GPUs remotely. This overhead, according
to the analysis carried out in this paper, will mainly depend on
the amount of information transferred between main memory
and GPU memory and the requests sent to the GPU server.
However, other factors apart from bandwidth, such as the time
spent in GPU computations or how efficiently is the application
designed, will be key to achieve good performance.
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