
A New Parallel Programming Model for Computer Simulation

Argonne Report ANL/MCS-P5135-0414
Barry Smith

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL, USA
bsmith@mcs.anl.gov.

June 4, 2014

Abstract

The push for ever-increasing levels of concurrency and the increasing complexity of simula-
tion codes require a new parallel programming model that both simplifies the development of
extreme-scale codes and makes them more efficient and scalable on newly emerging architec-
tures as well as on GPUs and conventional computing systems. Presented here is a new parallel
programming model, inspired by ideas of Dmitry Karpeyev, Matt Knepley, and Jed Brown
my co-developers of the Portable Extensible Toolkit for Scientific computation (PETSc), for
computer simulation that is simpler than the message-passing-plus-threads parallel computing
model, yet still offers high performance while easily supporting telescoping of resources during
the computation – a situation that arises, for example, in adaptive mesh refinement codes.

The time has come to replace message passing plus threading as the programming model for
scalable computer simulation (also sometimes referred to as high performance computing), yet no
good candidates have caught on [4]. This manuscript introduces a new model, called the indexing
programming model (IPM), that
• allows for code in a mixture of C, Fortran, C++, CUDA, and OpenCL;
• removes any concept of number of processes or rank of a process from the user interface;
• removes any need for the user to direct the movement of data between processes or memories

or the placement of data onto particular processes or memories;
• removes the need for the user to worry about threads or data affinity;
• allows for straightforward and concise adaptive mesh refinement codes;
• provides a programming model that is simpler than MPI [3] plus OpenMP [1];
• is easy to debug with;
• is full featured, allowing complicated sophisticated programs to be written relatively easily;
• provides a resilience model that does not require extensive code from the user, and
• depends on a reasonably sized runtime system that can be written, optimized, and maintained.

In addition, the runtime system manages any resources needed for telescoping of the processor or
memory usage as the computation proceeds. For example, as an adaptive mesh refinement runs,
if the mesh becomes large enough to require more nodes, they are automatically brought into the
computation; and if the mesh becomes smaller, unneeded resources are automatically released. One
does not program with a fixed number of processes as is usually done with message-passing codes.

1

To realize this benefit, of course, the programmer has to give something up; in IPM array access is
managed by the runtime, not by pointer arithmetic.

The data in many numerical simulation codes can be thought of as consisting of two parts:
numerical values stored in arrays and indices into the numerical value arrays, also stored as arrays,
that define the relationship between or meaning of the numerical values (for example, lists of el-
ements in a mesh). Managing the decomposition and movement of the numerical values between
nodes in a distributed-memory computer is straightforward because the numerical values remain
the same and have the same meaning regardless of where they are located. Doing the same for
the indices is difficult, however, because the integer values used as indices have no meaning when
they are moved to a different memory without the exact same layout of the numerical arrays. IPM
simplifies the management of these indices by automatically remapping the indices to appropriate
values when the numerical data and indices are moved between memories. Thus IPM can move
the user data freely around the entire distributed-memory machine for data parallelism and load
balancing during a simulation without requiring any additional input from the application program-
mer. IPM provides a small application programmer interface (API) with which the user defines the
numerical values (arrays) to be managed and the indices that point into that data. IPM can then
move the data around as needed and calls the user’s data-parallel task functions on those chunks
of data.

One way to think about IPM is that it provides massive task parallelism with a particular API
that allows the runtime to efficiently deliver the correct data to the correct task at the correct time.
In addition, for many situations it automatically results in data (domain) decomposition parallelism
for much of the computation, thus providing excellent data locality. The IPM programming model
is intended to scale from modern laptop computers with several processing cores to extreme-scale
machines with millions of cores and possibly billions of concurrent operations. However, specific
simulations will inevitably be limited in their scalability by the particular algorithms used. To
achieve billion-way concurrency still requires appropriate scalable algorithms.

Two important questions about IPM arise:

• Is the model powerful enough to capture all the needs of numerical simulations? I
believe that the API can handle everything that can be done today with PETSc [2]. I hope it
could also be used to code dense matrix operations, sparse direct solvers, multipole methods,
and most other numerical schemes.

• Can one provide efficient implementations of the runtime needed by the model?
The runtime needs to manage partitioning and repartitioning of the data as well as efficient
data movement engines and task management. I believe an efficient runtime system can be
written on top of MPI and Pthreads or lower-level communication engines.

This document examines in an informal manner how IPM can be used to implement several
numerical schemes. The appendix of this document contains a concise description of the IPM API.
The sample code can be found at http://bitbucket.org/IndexingProgrammingModel/ipm. The
file ipm.c contains a crude toy emulator developed to design the IPM API. It uses MPI to manage
the distributed-memory emulation and simple sequential stages to emulate multiple threads.

1 Finite Element Method

Consider the representation of a finite element mesh of triangles defined by their vertices. A
numerical array would consist of floating-point numbers for each vertex written as

V = {x0, y0, x1, y1, ..., xp−1, yp−1},

2

where xi, yi are the vertices of point i. A list of triangles could be an array of indices that point
into the vertex array

E = {a0, b0, c0, a1, b1, c1, ..., an−1, bn−1, cn−1},

where ai, bi, ci are the indices that point into V of three vertices of triangle i. Now say one wishes
to evaluate a finite element function on this mesh that depends on a single numerical value ui at
each vertex

U = {u0, u1, ..., up−1}

and produces a single numerical value fi at each vertex

F = {f0, f1, ..., fp−1}.

The sequential code could look like the following.

F[] = 0

for i=0; i<n; i++

a,b,c = E[i] // extract the indices of the three vertices

F[a],F[b],F[c] += ElementFunction(U[a],U[b],U[c],V[a],V[b],V[c])

endfor

Note that one can think of “entries” in the E array as 3-tuples and in the V as 2-tuples; that
is, V [i] is both the xi and the yi numerical values. This approach is used extensively in IPM and
in fact goes even further: different “array entries” in IPM arrays may have different sizes. For
example, Q[1] might be a single numerical value, whereas Q[2] might have three numerical values.
This property is not needed for this simple example.

How could this computation be performed in shared-memory parallelism? Each thread would
be assigned a nonoverlap subset of the triangles and would call ElementFunction() for its triangles
using the exact same data structures as before. But since different threads would be accumulating
values into some of the same locations in F [], the threads each running independently at full speed
could result in inconsistent values being placed in those locations. In order to prevent this situation,
a ghosted representation of the F[] array is introduced, where vertices that would be accumulated
by multiple threads have separate locations in F[], indicated in the array S[]. The resulting code
could look like the following.

F[] = 0

for i=0; i<n; i++

a,b,c = E[i]

ao,bo,co = S[i]

F[ao],F[bo],F[co] += ElementFunction(U[a],U[b],U[c],V[a],V[b],V[c])

endfor

After all the tasks are completed, the values in the ghosted locations in F[] would be accumulated
in a nonghosted representation by the runtime system.

How could this be extended to distributed-memory processes with shared-memory threads?
One could simply introduce ghosted locations in U[] as well, so each node would have access to all
values of U[] needed by the triangles owned by that node. (Here a node refers to all threads that
share a common memory.) Again, once all the tasks are completed, the ghosted locations in F[]
need to be accumulated into a nonghosted representation.

Sadly, an efficient code for this simple computation in MPI plus OpenMP is a major undertaking.
It should not be; it should be trivial. It is not trivial because the user code must perform all the
following tasks using MPI calls.

3

• Partition the triangles among nodes.
• Partition the triangles inside nodes among threads.
• Determine which entries of U[] are needed for each node, and provide message passing to get

those values to the correct locations.
• Determine which entries of F[] will be computed for each node.
• Determine which entries of F[] must be ghosted on each memory to prevent contention between

different threads accumulating in the same locations.
• Accumulate the partial values for F[] from the ghosted locations for threads and for nodes to

compute the unique solution.
The next two subsections introduce the concepts that make these steps straightforward in IPM.

1.1 Creating and Using IPM Arrays

In IPM, data is stored in IPM array objects whose memory is managed by the runtime system. In
the main program one creates the abstract arrays to hold the needed quantities. For example,

IPM_ArrayNumeric v = IPM_ArrayNumericCreate(&err);

is the array that will contain the vertex coordinates1. Next one creates the array that will contain
the lists of elements.

IPM_ArrayIndex e = IPM_ArrayIndexCreate(&err);

This is an array whose entries represent indices into other IPM arrays. In this case they will be
indices into the v array. This is indicated as follows.

IPM_ArrayIndexSetOffset(e,IPM_ArrayNumericGetOffset(v,&err),&err);

When entries of e are partitioned for a computation among nodes and threads, the v are also
partitioned, and all needed ghost points of v will be automatically created and updated.

How does one actually add vertices and triangles to the arrays? This step cannot be done from
the main program because the main program has no access to the array entries: they are accessible
only from kernel functions. The following kernel function will put a single triangle and its vertices
into the arrays (by convention the name of all kernel functions begin with a k).

void kTriCreate(IPMK_ArrayNumeric v,IPMK_ArrayIndex e,IPMK_Error *err)

{

double xy[3][2] = {{0,1},{0,0},{1,0}};

IPMK_Index indices[3];

indices[0] = IPMK_ArrayNumericAdd(v,2,xy[0],err);

indices[1] = IPMK_ArrayNumericAdd(v,2,xy[1],err);

indices[2] = IPMK_ArrayNumericAdd(v,2,xy[2],err);

IPMK_ArrayIndexAdd(e,3,indices,err);

}

This routine adds three entries to the IPMK ArrayNumeric v, each consisting of two doubles and one
entry to e consisting of three IPMK Indexes2 pointing into v. Note that the code saves the indices
of the three vertices in the element array but ignores the index output of IPMK ArrayIndexAdd()

1For simplicity in this document we consider only a single numerical data type; supporting various precisions are
an obvious and easy extension.

2In this document a IPMK Index is a 64-bit integer; other choices are possible.

4

since they will not be needed in this example. In this manuscript all kernel functions are provided
in C. If the kernel function is provided in Fortran, however, the runtime system is responsible for
presenting the data to the kernel in a way directly accessible by the Fortran compiler. If the kernel
is written in CUDA or OpenCL, the runtime system is responsible for ensuring the data is accessible
to the GPU (possibly by moving it to the GPU memory) and accessible by the language. Note
that within the kernel functions the IPM objects and function names begin with IPMK while in
the main program they begin with IPM ; this nomenclature emphasizes the fact that although they
may refer to the same data, the format inside the kernel may be quite different from that in the
main program. For routines and objects that have forms both in the main program and in kernel
functions we will use IPM(K) to denote both possible forms.

The following is a kernel that will take arrays of vertices and triangles and refine each triangle
into three triangles by adding a vertex in the middle.

void kTriRefine(IPMK_ArrayNumeric v,IPMK_ArrayIndex e,IPMK_Error *err)

{

// loop over my triangles

for (IPMK_Index p=IPMK_ArrayStart(e,err); p<IPMK_ArrayEnd(e,err); p++){

const IPMK_Index *ps = IPMK_ArrayIndexGet(e,p,err); // vertices of elements

const double *xy0 = IPMK_ArrayNumericGet(v,ps[0],err); // coors of vertex

const double *xy1 = IPMK_ArrayNumericGet(v,ps[1],err);

const double *xy2 = IPMK_ArrayNumericGet(v,ps[2],err);

// add new vertex into vertex array

double xynew[2] = {(xy0[0]+xy1[0]+xy2[0])/3.0,(xy0[1]+xy1[1]+xy2[1])/3.0};

IPMK_Index newindex = IPMK_ArrayNumericAdd(v,2,xynew,err);

// change indices of the old triangle to be one of the three new triangles

IPMK_Indices indices[3] = {ps[0],ps[1],newindex};

IPMK_ArrayIndexChange(e,p,3,indices,err);

// add the two new triangles

indices[0] = ps[1]; indices[1] = ps[2]; indices[2] = newindex;

IPMK_ArrayIndexAdd(e,3,indices,err);

indices[0] = ps[0]; indices[1] = newindex; indices[2] = ps[2];

IPMK_ArrayIndexAdd(e,3,indices,err);

}

}

Note that the indices into the IPM arrays are abstract entities that have meaning only inside
the current instantiation of the kernel function. One can never save the indices (except inside
a IPM ArrayIndex) and use them elsewhere. The runtime system manages any transformations
of the indices needed between different kernel function calls. Note also there is absolutely no
communication between tasks during kernel functions. The runtime system has to ensure that
everything needed in a kernel function instance is available when the function begins.

After running the kernel kTriRefine() a number of times, one will have a large number of
vertices and triangles distributed across the computational nodes, and the number of nodes used in
the computation will increase based on both the problem size and available nodes in the computer
system. The runtime system is responsible for partitioning the data across the nodes and threads
and calling the kernel functions for each “kernel”’s worth of data.

5

1.2 Creating and Launching Kernel Functions

IPM has three types of functions:
• Conventional functions that are called directly by the user in C, C++, or Fortran; these can

create and destroy IPM arrays but have no access to values inside the IPM arrays.
• The same type as above but where the user can launch multiple functions and wait on their

completion while also running other functions; these functions handle higher-level task decom-
position such as divide and conquer.
• Kernel functions that are managed by the runtime system and have access to values inside

appropriate portions of the IPM arrays assigned to them; these functions handle low-level data
parallelism.

Note that from the programmer’s perspective only a “single instance” of the first two types of
functions is running, much like with MPI SIMD usage where in reality a copy of the program is
running on each node but conceptually it is often useful to think of it as a single running program.
For kernel functions the actual number of instances that are running is irrelevant to the user, much
like with “threads” on GPU systems.

Having created some (empty) arrays and written some kernel functions, one needs to call the
kernel functions. This is done by first creating a function object and then launching the function
with the following.

IPM_Function TriCreate = IPM_FunctionCreate(IPM_FUNCTION_REPARTITION,kTriCreate,

2,IPM_MEMORY_WRITE,IPM_MEMORY_WRITE,&err);

IPM_Launch(TriCreate,v,e,&err);

The first command tells the runtime system that the kernel function kTriCreate() takes two array
arguments, both of which can be changed by the function, and that after the kernel is complete,
the runtime system may repartition the resulting arrays. The IPM Launch() command then tells
the runtime system to run the kernel function with the given data. Based on the size and current
partitioning of the input data, the runtime system will decide how many shared nodes and threads
will be used to run the function. Each instance of the kernel function running is a task. In this case
with TriCreate(), since the arrays are currently empty, only a single thread will be used to run the
kernel function, hence a single task. Once the elements have been refined several times, the kernel
functions will be run in several tasks. The number of tasks is purely an implementation issue and
not something relevant to the application writer.

2 Vector Operations

Vector operations such as u = a ∗ u + v and d = v′ ∗ u are fundamental in numerical simulations.
These can easily be implemented in IPM. For vector operations often several arrays will have the
same number of entries and require access to the same subset of entries in each task. This situation
is handled by having these arrays share a common IPM Offset. IPM ArrayClone() results in a
new array that shares the previous array’s offset.

IPM_ArrayNumeric u = IPM_ArrayNumericClone(v,err);

Sometimes, the same data may be needed by all instances of the kernel, or values may need to
be accumulated across all instances of the kernel, such as in an inner product. These are handled
with

IPM_RArray A = IPM_RArrayCreate(1,&err);

6

where one indicates how many entries are in the array, in this case 1. The values can be accessed
in the main program or a kernel function with

double *a = IPM(K)_RArrayGet(rvalues,&err);

*a = 25.0;

The kernel function for u = a ∗ u + v can be implemented as follows.

void kAxpy(IPMK_ArrayNumeric u,IPMK_ArrayNumeric v,IPMK_RArray r,IPMK_Error *err)

{

double alpha = *IPMK_RArrayNumericGet(r,err);

for (IPMK_Index p=IPMK_ArrayStart(u,err); p<IPMK_ArrayEnd(u,err); p++){

*IPMK_ArrayNumericGet(v,p,err) += alpha*IPMK_ArrayGetDouble(u,p,err);

}

}

Note that the IPM functions used here can be in-lined, resulting in an efficient routine. The
IPM Function for this kernel can be created with

IPM_Function myAxpy = IPM_FunctionCreate(IPM_FUNCTION_KERNEL,kAxpy,3,

IPM_MEMORY_WRITE,IPM_MEMORY_READ,IPM_MEMORY_READ,&err);

The kernel for an inner product can be written as

void kInner(IPMK_ArrayNumeric u,IPMK_ArrayNumeric v,IPMK_RArray s,IPMK_Error *err)

{

double sum = 0;

for (IPMK_Index p=IPMK_ArrayNumericStart(u,err);p<IPMK_ArrayNumericEnd(u,err);p++){

sum += *IPMK_ArrayNumericGet(u,p,err)**IPMK_ArrayNumericGet(v,p,err);

}

*IPMK_RArrayGet(s,err) = sum;

}

and the function object created with

IPM_Function myInner = IPM_FunctionCreate(IPM_FUNCTION_KERNEL,kInner,3,

IPM_MEMORY_READ,IPM_MEMORY_READ,IPM_MEMORY_ADD,&err);

When a IPM RArray is passed to a kernel function launch, the runtime system is responsible for
passing the data to all the tasks. When the IPM RArray is used to accumulate values (indicated by
IPM MEMORY ADD in the function call IPM FunctionCreate), the runtime system is responsible for
adding the contributions from all the tasks together. Different tasks never share writable data and
hence never need to use locks.

3 Sparse Matrix Vector Products

A sparse matrix vector product produces vi =
∑

j Aijuj , where almost all the Aij are zero. The
most natural way to represent A in IPM is as one numerical IPM ArrayNumeric, A, with one entry
per nonzero location and two index IPM ArrayIndexs, Au and Av, to hold the indices for each i
and j associated with that numerical value. The kernel function for sparse matrix vector product
could then be the following.

7

void kMult(IPMK_ArrayNumeric u, IPMK_ArrayNumeric v,IPMK_ArrayNumeric A,

IPMK_ArrayIndex Au,IPMK_ArrayIndex Av,IPMK_Error *err)

{

for (IPMK_Index p=IPMK_ArrayNumericStart(Au,err);p<IPMK_ArrayNumericEnd(Au,err);p++){

IPMK_Index pu = *IPMK_ArrayIndexGet(Au,p,err);

IPMK_Index pv = *IPMK_ArrayIndexGet(Av,p,err);

*IPMK_ArrayNumericGet(v,pv,err) +=

*IPMK_ArrayNumericGet(A,p,err)*IPMK_ArrayNumericGet(u,pu,err);

}

}

The IPM Function would be created with

IPM_Function myMult = IPM_FunctionCreate(IPM_FUNCTION_KERNEL,kMult,5,

IPM_MEMORY_READ,IPM_MEMORY_ADD,IPM_MEMORY_READ,

IPM_MEMORY_READ,IPM_MEMORY_READ,&err);

Since the second argument is labeled as IPM MEMORY ADD, the runtime system is responsible for
ensuring that no two tasks will be adding to the same location (based on the locations indicated
in Av). The runtime system then accumulates the values at the completion of the tasks.

A drawback to this kernel function is that it may run inefficiently since each nonzero in the
sparse matrix results in both a load in u and a store in v. IPM provides kernel contexts that allow
tasks to store once-computed information, which can be reused whenever the same task is executed
on the same IPMK Offset data.3 The call

IPMK_OffsetCreatePerKernelContext(IPMK_Offset,size_t,const char name[]);

allocates memory that will be available to the task on future calls that see this exact offset data
with a call to

void* IPMK_OffsetGetPerKernelContext(IPMK_Offset,const char name[]);

If the offset data is changed as a result of repartitioning or any other reason, the runtime system
automatically deletes the context. Thus, to optimize the matrix multiply, the kernel function can
store the local part of the matrix in compressed row format in the kernel context and then use that
format for the actual local part of the multiply multiple times. The IPM API also provides the
ability to create and use contexts associated with offsets and IPM RArrays; see the appendix.

In certain cases it is necessary to have a IPM ArrayIndex point into another PMM ArrayIndex

that points into a PMM ArrayNumeric that holds floating-point numbers. The runtime system is
responsible for managing all ghost-point setups required for this case as well.

4 Discussion

Accessing Array Entries: From the examples one can see there are two ways of accessing
entries in a IPMK ArrayNumeric. They may be accessed “contiguously” via an “iterator” or via
“indirection” as in

3For simplicity we consider names of the context to be simple C/Fortran character strings; more efficient approaches
are obviously possible for naming and accessing the contexts.

8

for (IPMK_Index p=IPMK_ArrayNumericStart(Au,err);p<IPMK_ArrayNumericEnd(Au,err);p++){

IPMK_Index pu = *IPMK_ArrayIndexGet(Au,p,err);

IPMK_Index pv = *IPMK_ArrayIndexGet(Av,p,err);

*IPMK_ArrayNumericGet(v,pv,err) +=

*IPMK_ArrayNumericGet(A,p,err)**IPMK_ArrayNumericGet(u,pu,err);

}

Note that A is being accessed via the iterator p, while u and v are accessed via indirection with
pu and pv, which must be obtained from IPM ArrayIndexs. Indirection indices can never be
computed via pointer arithmetic; they can be obtained only via IPMK ArrayAddXXX() and stored
in IPMK ArrayIndexs. The only indices that a kernel may provide to IPMK ArrayNumericGet()

or IPMK ArrayIndexGet() are those within the ranges of calls to IPMK ArrayNumericStart() and
IPMK ArrayNumericEnd() or IPMK ArrayNumericGhostStart() and IPMK ArrayNumericGhostEnd()

or are obtained from a IPMK ArrayIndexGet() for a IPMK ArrayIndex, which is associated with
the offset of the array using IPM ArrayIndexSetOffset().

Additionally with the calls

double *A = IPMK_ArrayNumericGet(v,pv,err)

int64_t len = IPMK_ArrayLength(v,pv,err)

one can access only values of A between A[0] and A[len-1]; any other values are not defined. That
is, one cannot access other entries in v by accessing values of A outside the legitimate range. This
constraint also holds for IPMK ArrayIndexGet(). Note that this gives the runtime system a great
deal of freedom in how it actually manages and stores the data, although in a simple implementation
values for the next index are likely to be stored adjacent to the values for the previous index.

Resilience and Debugging: Since the runtime system is responsible for the storage locations
of all the array data, it can manage resiliency by, for example, storing duplicate copies of the entries
across different parts of the machine and hence recover the data from elsewhere if a portion of the
machine is lost. Should a failure occur during the running of a kernel function, the runtime system
could restart that instance of the kernel function with the original data. This approach won’t allow
recovery from a failure in the main program; but since essentially all computation takes place in
the kernel functions, it could recover from most failures.

For debugging and testing the runtime could serialize its data movement and the launching of
the tasks allowing reproducibility (at an enormous performance hit) and the ability to attach a
debugger at the launch of any particular task with a known previous state. This approach would
eliminate one of the frustrating aspects of debugging message passing and conventional threading
code where each time one attaches a debugger (to debug the same problem, with the exact same
runtime parameters), one may have a different state in the debugger.

Granularity of Indexing: In the finite element and sparse matrix computations presented
here the granularity of the data indicated by a IPMK Index may be small: a single or a handful of
double precision numbers. For dense matrix computations in the style of LAPACK, a single index
may refer to a substantially large block of say 50 × 50 doubles. Thus one will see that the IPM
model, just like any other programming model, will deliver higher floating-point rates for dense
matrix computations than for sparse since the relative cost of the indirection is much lower.

Optimization and Vectorization: The programming model provides a great deal of freedom
in the form of the kernel functions. If these are suboptimal, then clearly the performance of the
entire code will suffer. Thus attention to performance of the kernels is crucial, and they must be
optimized with respect to memory motion as well as vectorization and all the other standard issues
that come up in providing efficient sequential code.

9

Libraries: MPI was carefully designed to allow and support an ecology of libraries. Hence
many MPI application codes can avoid having much direct use of MPI and users can avoid having
to reinvent the wheel for many common algorithms. We envision a similar model of software
libraries around IPM that would require little direct use of IPM by end users.

Acknowledgments

This work was supported by the U.S. Department of Energy, Office of Science, Advanced Scientific
Computing Research, under Contract DE-AC02-06CH11357. I thank Dmitry Karpeyev, Matt
Knepley, [5] and Jed Brown for their contributions to PETSc that inspired this new unifying model
for computer simulation.

10

A
p
p
e
n
d
ix
:
T
h
e
A
P
I
o
f
IP

M

I
P
M
(
K
)
_
A
r
r
a
y
N
u
m
e
r
i
c

i
s

a
n

"
a
r
r
a
y
"

o
f

v
a
r
i
a
b
l
e

s
i
z
e
d

n
u
m
e
r
i
c

i
t
e
m
s

i
n
d
e
x
e
d

b
y

a
I
P
M
K
_
I
n
d
e
x
,

v
a
l
u
e
s

i
n

t
h
e

a
r
r
a
y

a
r
e

o
n
l
y

a
v
a
i
l
a
b
l
e

i
n

t
h
e

k
e
r
n
e
l

f
u
n
c
t
i
o
n
s

I
P
M
(
K
)
_
A
r
r
a
y
I
n
d
e
x

i
s

a
n

"
a
r
r
a
y
"

o
f

i
n
d
i
c
e
s

i
n
d
e
x
e
d

b
y

a
I
P
M
K
_
I
n
d
e
x
,

v
a
l
u
e
s

i
n

t
h
e

a
r
r
a
y

a
r
e

a
v
a
i
l
a
b
l
e

o
n
l
y

i
n

t
h
e

k
e
r
n
e
l

f
u
n
c
t
i
o
n
s

I
P
M
_
A
r
r
a
y
N
u
m
e
r
i
c

I
P
M
_
A
r
r
a
y
N
u
m
e
r
i
c
C
r
e
a
t
e
(
I
P
M
_
E
r
r
o
r
*
)

I
P
M
_
A
r
r
a
y
N
u
m
e
r
i
c
C
l
o
n
e
(
I
P
M
_
A
r
r
a
y
N
u
m
e
r
i
c
,
I
P
M
_
E
r
r
o
r
*
)

v
o
i
d

I
P
M
_
A
r
r
a
y
N
u
m
e
r
i
c
C
o
p
y
(
I
P
M
_
A
r
r
a
y
N
u
m
e
r
i
c
,
I
P
M
_
A
r
r
a
y
N
u
m
e
r
i
c
,
I
P
M
_
E
r
r
o
r
*
)

I
P
M
_
A
r
r
a
y
I
n
d
e
x

I
P
M
_
A
r
r
a
y
I
n
d
e
x
C
r
e
a
t
e
(
I
P
M
_
E
r
r
o
r
*
)

I
P
M
_
A
r
r
a
y
I
n
d
e
x
C
l
o
n
e
(
I
P
M
_
A
r
r
a
y
I
n
d
e
x
,
I
P
M
_
E
r
r
o
r
*
)

v
o
i
d

I
P
M
_
A
r
r
a
y
I
n
d
e
x
C
o
p
y
(
I
P
M
_
A
r
r
a
y
I
n
d
e
x
,
I
P
M
_
A
r
r
a
y
I
n
d
e
x
,
I
P
M
_
E
r
r
o
r
*
)

d
o
u
b
l
e
*

I
P
M
K
_
A
r
r
a
y
N
u
m
e
r
i
c
G
e
t
(
I
P
M
K
_
A
r
r
a
y
N
u
m
e
r
i
c
,
I
P
M
K
_
I
n
d
e
x

i
n
d
e
x
,
I
P
M
K
_
E
r
r
o
r
*
)

a
c
c
e
s
s

v
a
l
u
e
s

i
n

t
h
e

a
r
r
a
y

a
t

a
p
a
r
t
i
c
u
l
a
r

i
n
d
e
x

I
P
M
K
_
I
n
d
e
x
*

I
P
M
K
_
A
r
r
a
y
I
n
d
e
x
G
e
t
(
I
P
M
K
_
A
r
r
a
y
I
n
d
e
x
,
I
P
M
K
_
I
n
d
e
x

i
n
d
e
x
,
I
P
M
K
_
E
r
r
o
r
*
)

i
n
t
6
4
_
t

I
P
M
K
_
A
r
r
a
y
N
u
m
e
r
i
c
G
e
t
L
e
n
g
t
h
(
I
P
M
K
_
A
r
r
a
y
N
u
m
e
r
i
c
,
I
P
M
K
_
I
n
d
e
x
,
I
P
M
K
_
E
r
r
o
r
*
)

h
o
w

m
a
n
y

v
a
l
u
e
s

a
r
e

a
t

t
h
a
t

i
n
d
e
x

i
n
t
6
4
_
t

I
P
M
K
_
A
r
r
a
y
I
n
d
e
x
G
e
t
L
e
n
g
t
h
(
I
P
M
K
_
A
r
r
a
y
I
n
d
e
x
,
I
P
M
K
_
I
n
d
e
x
,
I
P
M
K
_
E
r
r
o
r
*
)

I
P
M
K
_
I
n
d
e
x

I
P
M
K
_
A
r
r
a
y
N
u
m
e
r
i
c
S
t
a
r
t
(
I
P
M
K
_
A
r
r
a
y
N
u
m
e
r
i
c
,
I
P
M
K
_
E
r
r
o
r
*
)

f
i
r
s
t

i
n
d
e
x

o
f

l
o
c
a
l
l
y

o
w
n
e
d

v
a
l
u
e
s

I
P
M
K
_
A
r
r
a
y
N
u
m
e
r
i
c
E
n
d
(
I
P
M
K
_
A
r
r
a
y
N
u
m
e
r
i
c
,
I
P
M
K
_
E
r
r
o
r
*
)

o
n
e

m
o
r
e

t
h
a
n

l
a
s
t

i
n
d
e
x

o
f

l
o
c
a
l
l
y

o
w
n
e
d

v
a
l
u
e
s

I
P
M
K
_
A
r
r
a
y
N
u
m
e
r
i
c
G
h
o
s
t
S
t
a
r
t
(
I
P
M
K
_
A
r
r
a
y
N
u
m
e
r
i
c
,
I
P
M
K
_
E
r
r
o
r
*
)

f
i
r
s
t

i
n
d
e
x

o
f

l
o
c
a
l
l
y

o
w
n
e
d

g
h
o
s
t

v
a
l
u
e
s

I
P
M
K
_
A
r
r
a
y
N
u
m
e
r
i
c
G
h
o
s
t
E
n
d
(
I
P
M
K
_
A
r
r
a
y
N
u
m
e
r
i
c
,
I
P
M
K
_
E
r
r
o
r
*
)

o
n
e

m
o
r
e

t
h
a
n

l
a
s
t

i
n
d
e
x

o
f

l
o
c
a
l
l
y

o
w
n
e
d

g
h
o
s
t

v
a
l
u
e
s

I
P
M
K
_
I
n
d
e
x

I
P
M
K
_
A
r
r
a
y
I
n
d
e
x
S
t
a
r
t
(
I
P
M
K
_
A
r
r
a
y
I
n
d
e
x
,
I
P
M
K
_
E
r
r
o
r
*
)

f
i
r
s
t

i
n
d
e
x

o
f

l
o
c
a
l
l
y

o
w
n
e
d

v
a
l
u
e
s

I
P
M
K
_
A
r
r
a
y
I
n
d
e
x
E
n
d
(
I
P
M
K
_
A
r
r
a
y
I
n
d
e
x
,
I
P
M
K
_
E
r
r
o
r
*
)

o
n
e

m
o
r
e

t
h
a
n

l
a
s
t

i
n
d
e
x

o
f

l
o
c
a
l
l
y

o
w
n
e
d

v
a
l
u
e
s

I
P
M
K
_
A
r
r
a
y
I
n
d
e
x
G
h
o
s
t
S
t
a
r
t
(
I
P
M
K
_
A
r
r
a
y
I
n
d
e
x
,
I
P
M
K
_
E
r
r
o
r
*
)

f
i
r
s
t

i
n
d
e
x

o
f

l
o
c
a
l
l
y

o
w
n
e
d

g
h
o
s
t

v
a
l
u
e
s

I
P
M
K
_
A
r
r
a
y
I
n
d
e
x
G
h
o
s
t
E
n
d
(
I
P
M
K
_
A
r
r
a
y
I
n
d
e
x
,
I
P
M
K
_
E
r
r
o
r
*
)

o
n
e

m
o
r
e

t
h
a
n

l
a
s
t

i
n
d
e
x

o
f

l
o
c
a
l
l
y

o
w
n
e
d

g
h
o
s
t

v
a
l
u
e
s

I
P
M
K
_
I
n
d
e
x

I
P
M
K
_
A
r
r
a
y
N
u
m
e
r
i
c
A
d
d
(
I
P
M
K
_
A
r
r
a
y
N
u
m
e
r
i
c
,
i
n
t
6
4
_
t
,
d
o
u
b
l
e
*
,
I
P
M
K
_
E
r
r
o
r
*
)

a
d
d

n
e
w

e
n
t
r
y

t
o

t
h
e

a
r
r
a
y
;

r
e
t
u
r
n
s

i
n
d
e
x

t
o

n
e
w

l
o
c
a
t
i
o
n

c
r
e
a
t
e
d

I
P
M
K
_
A
r
r
a
y
I
n
d
e
x
A
d
d
(
I
P
M
K
_
A
r
r
a
y
I
n
d
e
x
,
i
n
t
6
4
_
t
,
I
P
M
K
_
I
n
d
e
x
*
,
I
P
M
K
_
E
r
r
o
r
*
)

v
o
i
d

I
P
M
K
_
A
r
r
a
y
N
u
m
e
r
i
c
C
h
a
n
g
e
(
I
P
M
K
_
A
r
r
a
y
N
u
m
e
r
i
c
,
I
P
M
K
_
I
n
d
e
x
,
i
n
t
6
4
_
t
,
d
o
u
b
l
e
*
,
I
P
M
K
_
E
r
r
o
r
*
)

c
h
a
n
g
e

v
a
l
u
e
s

i
n

a
I
P
M
K
_
A
r
r
a
y

I
P
M
K
_
A
r
r
a
y
I
n
d
e
x
C
h
a
n
g
e
(
I
P
M
K
_
A
r
r
a
y
I
n
d
e
x
,
I
P
M
K
_
I
n
d
e
x
,
i
n
t
6
4
_
t
,
I
P
M
K
_
I
n
d
e
x
*
,
I
P
M
K
_
E
r
r
o
r
*
)

I
P
M
(
K
)
_
O
f
f
s
e
t

p
r
o
v
i
d
e
s

t
h
e

p
a
r
a
l
l
e
l
/
t
a
s
k

"
l
a
y
o
u
t
"

o
f

o
n
e

o
r

m
o
r
e

I
P
M

a
r
r
a
y
s
.

F
o
r

t
a
s
k
s

t
o

o
p
e
r
a
t
e

o
n

s
e
v
e
r
a
l

I
P
M

a
r
r
a
y
s

t
h
e
y

g
e
n
e
r
a
l
l
y

h
a
v
e

t
h
e

s
a
m
e

I
P
M
(
K
)
_
O
f
f
s
e
t

I
P
M
(
K
)
_
O
f
f
S
e
t

I
P
M
(
K
)
_
A
r
r
a
y
N
u
m
e
r
i
c
G
e
t
O
f
f
s
e
t
(
I
P
M
_
A
r
r
a
y
N
u
m
e
r
i
c
,
I
P
M
_
E
r
r
o
r
*
)

I
P
M
(
K
)
_
O
f
f
S
e
t

I
P
M
(
K
)
_
A
r
r
a
y
I
n
d
e
x
G
e
t
O
f
f
s
e
t
(
I
P
M
_
A
r
r
a
y
I
n
d
e
x
,
I
P
M
_
E
r
r
o
r
*
)

v
o
i
d

I
P
M
_
A
r
r
a
y
I
n
d
e
x
S
e
t
O
f
f
s
e
t
(
I
P
M
_
A
r
r
a
y
I
n
d
e
x
,
I
P
M
_
O
f
f
s
e
t
,
I
P
M
_
E
r
r
o
r
*
)

t
h
e

i
n
d
i
c
e
s

a
r
e

w
i
t
h

r
e
s
p
e
c
t

t
o

t
h
e

l
a
y
o
u
t

d
e
f
i
n
e
d

i
n

s
u
p
p
l
i
e
d

o
f
f
s
e
t

I
P
M
_
O
f
f
s
e
t
C
r
e
a
t
e
C
o
n
t
e
x
t
(
I
P
M
_
O
f
f
s
e
t
,
s
i
z
e
_
t
,
c
o
n
s
t

c
h
a
r

n
a
m
e
[
]
)
;

c
r
e
a
t
e

m
e
m
o
r
y

t
h
a
t

w
i
l
l

b
e

v
i
s
i
b
l
e

i
n

a
l
l

f
u
n
c
t
i
o
n
s

t
h
a
t

u
s
e

t
h
e

o
f
f
s
e
t

v
o
i
d
*

I
P
M
(
K
)
_
O
f
f
s
e
t
G
e
t
C
o
n
t
e
x
t
(
I
P
M
_
O
f
f
s
e
t
,
c
o
n
s
t

c
h
a
r

n
a
m
e
[
]
)
;

t
h
i
s

m
e
m
o
r
y

i
s

r
e
a
d

o
n
l
y

i
n

t
h
e

k
e
r
n
e
l
s

v
o
i
d

I
P
M
K
_
O
f
f
s
e
t
C
r
e
a
t
e
P
e
r
K
e
r
n
e
l
C
o
n
t
e
x
t
(
I
P
M
K
_
O
f
f
s
e
t
,
s
i
z
e
_
t
,
c
o
n
s
t

c
h
a
r

n
a
m
e
[
]
)
;

c
r
e
a
t
e

m
e
m
o
r
y

t
h
a
t

w
i
l
l

b
e

v
i
s
i
b
l
e

t
o

k
e
r
n
e
l

f
u
n
c
t
i
o
n
s

w
i
t
h

E
X
A
C
T
L
Y

t
h
i
s

s
a
m
e

o
f
f
s
e
t

d
a
t
a

v
o
i
d
*

I
P
M
K
_
O
f
f
s
e
t
G
e
t
P
e
r
K
e
r
n
e
l
C
o
n
t
e
x
t
(
I
P
M
K
_
O
f
f
s
e
t
,
c
o
n
s
t

c
h
a
r

n
a
m
e
[
]
)
;

a
s

s
o
o
n

a
s

a
r
r
a
y
s

a
r
e

r
e
p
a
r
t
i
t
i
o
n
e
d

t
h
i
s

m
e
m
o
r
y

i
s

f
r
e
e
d
.

T
h
i
s

i
s

i
n
t
e
n
d
e
d

a
s

a

p
l
a
c
e

a
k
e
r
n
e
l

w
r
i
t
e
r

c
a
n

s
t
a
s
h

d
a
t
a

t
h
e
y

o
n
l
y

w
a
n
t

t
o

c
o
m
p
u
t
e

o
n
c
e

t
h
a
t

c
o
u
l
d

b
e

r
e
u
s
e
d

w
h
e
n

t
h
e

k
e
r
n
e
l

f
u
n
c
t
i
o
n

i
s

r
e
-
e
n
t
e
r
e
d
.

I
n

a
m
u
l
t
i
t
h
r
e
a
d
e
d

i
m
p
l
e
m
e
n
t
a
t
i
o
n

e
a
c
h

t
h
r
e
a
d

h
a
s

i
t
s

o
w
n

c
o
n
t
e
x
t

I
P
M
(
K
)
_
R
A
r
r
a
y

i
s

a
"
r
e
d
u
n
d
a
n
t
"

a
r
r
a
y

t
h
a
t

i
s

a
v
a
i
l
a
b
l
e

i
n

a
l
l

r
u
n
n
i
n
g

k
e
r
n
e
l

f
u
n
c
t
i
o
n
s
,

i
t
s

v
a
l
u
e
s

a
r
e

a
c
c
e
s
s
i
b
l
e

i
n

b
o
t
h

t
h
e

k
e
r
n
e
l
s

a
n
d

m
a
i
n

p
r
o
g
r
a
m

11

I
P
M
_
R
A
r
r
a
y

I
P
M
_
R
A
r
r
a
y
C
r
e
a
t
e
(
i
n
t
6
4
_
t
,
I
P
M
_
E
r
r
o
r
*
)

v
o
i
d

I
P
M
_
R
A
r
r
a
y
D
e
s
t
r
o
y
(
I
P
M
_
R
A
r
r
a
y
*
,
I
P
M
_
E
r
r
o
r
*
)

d
o
u
b
l
e
*

I
P
M
(
K
)
_
R
A
r
r
a
y
G
e
t
(
I
P
M
(
K
)
_
R
A
r
r
a
y
,
I
P
M
_
E
r
r
o
r
*
)

v
o
i
d

I
P
M
_
R
A
r
r
a
y
C
r
e
a
t
e
C
o
n
t
e
x
t
(
I
P
M
_
R
A
r
r
a
y
,
s
i
z
e
_
t
,
c
o
n
s
t

c
h
a
r

n
a
m
e
[
]
)
;

c
r
e
a
t
e

s
o
m
e

m
e
m
o
r
y

t
h
a
t

w
i
l
l

b
e

v
i
s
i
b
l
e

i
n

a
l
l

t
a
s
k
s

t
h
a
t

u
s
e

t
h
e

R
A
r
r
a
y

v
o
i
d
*

I
P
M
(
K
)
_
R
A
r
r
a
y
G
e
t
C
o
n
t
e
x
t
(
I
P
M
(
K
)
_
R
A
r
r
a
y
,
c
o
n
s
t

c
h
a
r

n
a
m
e
[
]
)
;

I
P
M
_
F
u
n
c
t
i
o
n

i
s

a
f
u
n
c
t
i
o
n

o
b
j
e
c
t

t
h
a
t

c
a
n

l
a
u
n
c
h
e
d

(
s
t
a
r
t
e
d
)

i
n

t
h
e

p
r
o
g
r
a
m

t
o

p
e
r
f
o
r
m

a
c
o
m
p
u
t
a
t
i
o
n
.

B
a
s
e
d

o
n

i
t
s

a
r
g
u
m
e
n
t
s

t
h
e

r
u
n
t
i
m
e

s
y
s
t
e
m

d
e
t
e
r
m
i
n
e
s

w
h
e
r
e

a
n
d

o
n

h
o
w

m
a
n
y

"
c
o
r
e
s
"

t
h
e

f
u
n
c
t
i
o
n

i
s

r
u
n

o
n

I
P
M
_
F
u
n
c
t
i
o
n

I
P
M
_
F
u
n
c
t
i
o
n
C
r
e
a
t
e
(
I
P
M
_
F
u
n
c
t
i
o
n
O
p
t
i
o
n
,
v
o
i
d

(
*
f
u
n
c
)
(
I
P
M
_
A
r
r
a
y
,
.
.
.
,
I
P
M
_
E
r
r
o
r
*
)
,
i
n
t
6
4
_
t

n
a
r
g
s
,
I
P
M
_
M
e
m
o
r
y
t
y
p
e
,

.
.
.
)

I
P
M
_
M
e
m
o
r
y
t
y
p
e

I
P
M
_
M
E
M
O
R
Y
_
R
E
A
D

-
k
e
r
n
e
l

f
u
n
c
t
i
o
n
s

c
a
n

o
n
l
y

r
e
a
d

v
a
l
u
e
s

i
n

t
h
e

a
r
r
a
y
,

n
o
t

w
r
i
t
e

t
h
e
m

I
P
M
_
M
E
M
O
R
Y
_
W
R
I
T
E

-
k
e
r
n
e
l
s

c
a
n

r
e
a
d

a
n
d

w
r
i
t
e

v
a
l
u
e
s

i
n

t
h
e

a
r
r
a
y

I
P
M
_
M
E
M
O
R
Y
_
A
D
D

-
k
e
r
n
e
l
s

c
a
n

w
r
i
t
e

v
a
l
u
e
s

i
n
t
o

t
h
e

a
r
r
a
y
,

o
n
c
e

t
h
e

k
e
r
n
e
l

f
u
n
c
t
i
o
n
s

a
r
e

c
o
m
p
l
e
t
e

t
h
e

r
e
s
u
l
t
s

a
r
e

s
u
m
m
e
d

I
P
M
_
F
u
n
c
t
i
o
n
O
p
t
i
o
n

I
P
M
_
F
U
N
C
T
I
O
N
_
D
E
F
A
U
L
T

I
P
M
_
F
U
N
C
T
I
O
N
_
K
E
R
N
E
L

-
i
t

i
s

a
k
e
r
n
e
l

f
u
n
c
t
i
o
n

a
n
d

h
a
s

a
c
c
e
s
s

t
o

t
h
e

a
r
r
a
y

e
n
t
r
i
e
s

o
t
h
e
r
w
i
s
e

i
t

i
s

a
s
u
b
p
r
o
g
r
a
m

a
n
d

r
u
n
s

a
s
y
n
c
h
r
o
n
o
u
s
l
y
,

c
a
l
l

I
P
M
_
L
a
u
n
c
h
W
a
i
t
(
)

t
o

w
a
i
t

u
n
t
i
l

t
h
e

s
u
b
p
r
o
g
r
a
m

i
s

c
o
m
p
l
e
t
e

I
P
M
_
F
U
N
C
T
I
O
N
_
S
E
Q
U
E
N
T
I
A
L

-
e
a
c
h

t
a
s
k

t
h
a
t

r
u
n
s

t
h
e

f
u
n
c
t
i
o
n

w
a
i
t
s

f
o
r

p
r
e
v
i
o
u
s

t
a
s
k

t
o

c
o
m
p
l
e
t
e

b
e
f
o
r
e

s
t
a
r
t
i
n
g

(
o
n
l
y

f
o
r

d
e
b
u
g
g
i
n
g

A
S
C
I
I

o
u
t
p
u
t
)

I
P
M
_
F
U
N
C
T
I
O
N
_
R
E
P
A
R
T
I
T
I
O
N

-
a
f
t
e
r

t
h
e

f
u
n
c
t
i
o
n

i
s

c
o
m
p
l
e
t
e

r
e
p
a
r
t
i
t
i
o
n

t
h
e

d
a
t
a

a
c
r
o
s
s

n
o
d
e
s

a
n
d

t
h
r
e
a
d
s
,

u
s
u
a
l
l
y

u
s
e
d

w
h
e
n

t
h
e

f
u
n
c
t
i
o
n

a
d
d
s

o
r

d
e
l
e
t
e
s

m
a
n
y

e
n
t
r
i
e
s

i
n

t
h
e

a
r
r
a
y
s

v
o
i
d

I
P
M
_
L
a
u
n
c
h
(
I
P
M
_
F
u
n
c
t
i
o
n
,
I
P
M
_
A
r
r
a
y
,
.
.
.
.
,
I
P
M
_
E
r
r
o
r

*
e
r
r
)

r
u
n

t
h
e

f
u
n
c
t
i
o
n

o
n

t
h
e

i
n
p
u
t

a
r
r
a
y
s

I
P
M
_
L
a
u
n
c
h
W
a
i
t
(
P
M
M
_
F
u
n
c
t
i
o
n
,
I
P
M
_
E
r
r
o
r

*
e
r
r
)

w
a
i
t

u
n
t
i
l

t
h
e

l
a
u
n
c
h

f
u
n
c
t
i
o
n

i
s

f
i
n
i
s
h
e
d

I
P
M
_
A
r
r
a
y

i
s

a
s
p
e
c
i
a
l

v
a
l
u
e

t
h
a
t

i
s

u
s
e
d

p
u
b
l
i
c
l
y

o
n
l
y

t
o

c
a
s
t

t
h
e

s
e
c
o
n
d

a
r
g
u
m
e
n
t

o
f

I
P
M
_
L
a
u
n
c
h

12

References

[1] OpenMP Application Program Interface, Version 4.0, OpenMP Architecture Review Board,
2013.

[2] S. Balay, M. F. Adams, J. Brown, P. Brune, K. Buschelman, V. Eijkhout, W. D.
Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, K. Rupp, B. F. Smith, and
H. Zhang, PETSc users manual, Tech. Rep. ANL-95/11 - Revision 3.4, Argonne National
Laboratory, 2013.

[3] M. P. I. Forum, MPI: A Message-Passing Interface Standard, Version 3.0, High Performance
Computing Center Stuttgart (HLRS), 2012.

[4] W. Gropp and M. Snir, Programming for exascale computers, Computing in Science and
Engineering, 15 (2013), pp. 27–35.

[5] M. G. Knepley and D. A. Karpeev, Mesh algorithms for PDE with Sieve I: Mesh distri-
bution, Scientific Programming, 17 (2009), pp. 215–230. http://arxiv.org/abs/0908.4427.

13

http://arxiv.org/abs/0908.4427

Government License. The submitted manuscript has been created by UChicago Argonne,
LLC, Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of En-
ergy Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S.
Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative works, distribute copies to the
public, and perform publicly and display publicly, by or on behalf of the Government.

14

	Finite Element Method
	Creating and Using IPM Arrays
	Creating and Launching Kernel Functions

	Vector Operations
	Sparse Matrix Vector Products
	Discussion

