
Scaling NWChem with Efficient and Portable
Asynchronous Communication in MPI RMA

Min Si,∗ Antonio J. Peña,† Jeff Hammond,‡ Pavan Balaji,† Yutaka Ishikawa§

∗University of Tokyo, Japan msi@il.is.s.u-tokyo.ac.jp
†Argonne National Laboratory, USA {apenya, balaji}@mcs.anl.gov

‡Intel Labs, USA jeff hammond@acm.org
§RIKEN AICS, Japan yutaka.ishikawa@riken.jp

Abstract—NWChem is one of the most widely used compu-
tational chemistry application suites for chemical and biological
systems. Despite its vast success, the computational efficiency of
NWChem is still low. This is especially true in higher accuracy
methods such as the CCSD(T) coupled cluster method, where it
currently achieves a mere 50% computational efficiency when
run at large scales. In this paper, we demonstrate the most
computationally efficient scaling of NWChem CCSD(T) to date,
and use it to solve large water clusters. We use our recently
proposed process-based asynchronous progress framework for
MPI RMA, called Casper, to scale the computation on water
clusters at near-100% computational efficiency on up to 12288
cores.

Keywords-NWChem; Global Arrays; CCSD(T); MPI RMA;
one-sided; asynchronous progress

I. INTRODUCTION

NWChem [1] quantum chemistry application is one of the
most widely used computational chemistry application suites
and offers extensive capabilities for large-scale simulations of
chemical and biological systems. However, such chemistry
applications are often operate on large data sets that easily
exceed the capacity of a single node, making resource sharing
across nodes necessary. The Global Arrays (GA) programming
model [2] was developed to address the large memory require-
ments in the NWChem and also has been widely used in other
scientific domains in recent years [3] [4]. GA provides global-
view access to multidimensional arrays distributed across the
memories of multiple nodes through asynchronous one-sided
operations such as put and get.

Application developers are increasingly looking at such
programming models for their large-scale applications because
of the more natural mapping to certain classes of irregular
algorithms as well as one-sided networks (e.g., RDMA). In
quantum chemical many-body methods, the dominant cost is
often block-sparse tensor contractions, which in NWChem
are implemented in terms of dense matrix operations (i.e.,
BLAS) performed driven by the get–compute–update pattern
common to many GA applications. Such application motifs
critically depend on the asynchronous completion of one-sided
operations in order to hide the overhead of frequent data
movements within intensive computations.

Dinan et al. [5] introduced a portable GA implementation
by interacting with the MPI runtime system, the de facto

standard communication interface for distributed-memory sys-
tems. This GA implementation is built on top of the MPI
one-sided communication primitives (also known as remote
memory access or RMA), whose one-sided semantics are
similar to those of the high-level GA programming model. The
RMA semantics allow a process to access memory regions of
other processes without the target process explicitly needing
to receive or process a message. Such a mode, however, is not
guaranteed to be completely asynchronous in the sense that
some MPI implementations still require the remote target to
make MPI calls in order to make progress on those operations
that cannot be offloaded to the underlying hardware. The lack
of asynchronous progress extremely limits the performance
and scalability of GA-based applications, often dominated
by intensive computation, and results in significant RMA
communication delays.

In this paper we analyze the impact of software-handled
MPI RMA communication on NWChem. The parallel effi-
ciency can be artificially high if it is calculated by using
an inefficient base execution (i.e., performs inefficient com-
munication). Thus, instead of the parallel efficiency, we use
Equation 1 to evaluate the computational efficiency E(N) of
an execution:

E(N) =
Tcomp/TN

N
=
Tαcomp

× α
TN ×N

(1)

in which Tcomp is the computation time on single cores and
TN is the total execution time including both communication
and computation on N cores. In practice, however, most
NWChem problems do not fit on a single core because of
large memory requirements, thus we determine the Tcomp by
using Tαcomp × α where α is the minimum number cores
measured for a given problem size and Tαcomp

is the time spent
in computation on α cores. A high computational efficiency
means the overhead of communication is relatively low, thus
the high parallel efficiency is meaningful.

Although NWChem provides highly efficient parallel al-
gorithms for a variety of chemistry simulation problems
especially for some computation-intensive methods such as
CCSD(T), significant performance scaling bottlenecks have
been observed in the water molecule problems on the time-
consuming (T) portion, achieved as low as 50% computational
efficiency, because of the lack of asynchronous progress in

RMA communication.
To address the scaling issue, we utilize “Casper,” an efficient

process-based asynchronous progress model for MPI RMA
on multicore and many-core architectures [6]. Casper allows
users to dedicate an arbitrary number of processor cores as
background “ghost processes” in order to effectively perform
RMA communication progress asynchronously on behalf of
the computing processes, thus providing an efficient solution
to help with asynchronous communication in GA-based appli-
cations without the overuse of computational resources.

Using the Casper framework, we scale the computation
on water molecule problems at close to 100% computational
efficiency. We show that this performance is maintained up to
(H2O)21 running on 12288 cores. Although we use NWChem
as our test case, we believe Casper’s benefits are generally
applicable to most GA-based applications on many-core ar-
chitectures.

II. BACKGROUND

We begin this section with an overview of the communica-
tion model in Global Arrays. Next we present the NWChem
application.

A. Global Arrays

The Global Arrays toolkit [2] is a partitioned global address
space library that provides users with distributed dense arrays
that can be accessed through one-sided operations. It is widely
used in many computational chemistry applications to address
their large memory requirements. In the GA model, large
array structures are stored in memory across multiple nodes.
A process can access remote subarrays through one-sided get,
put, and accumulate operations.

Common programming approaches in GA-based applica-
tions follow get–compute–update patterns. For example, as
shown in Algorithm 1, when multiple processes are involved in
a large matrix-matrix multiplication (MMM) C = A×B+C,
each process first gets submatrix a and submatrix b from global
arrays that are potentially located in the memory spaces of
remote processes, next performs a local matrix multiplication
c = a × b + c, and then updates submatrix c back to the
global memory, accumulating the values. In order to achieve
better scalability on modern parallel systems, the large matrix
is partitioned among hundreds or thousands of processes,
resulting in numerous one-sided operations.

B. NWChem

NWChem [1] is one of the most popular computational
chemistry application suites for chemical and biological sys-
tems. It is developed based on the GA model because of
the large memory needs that require memory sharing across
multiple nodes. The coupled cluster (CC) theory is one of
the most widely used approaches in quantum chemistry for
computing electron correlation in atoms and molecules, that
is, for the solution of the electronic Schrödinger equation with
arbitrary accuracy requirements. NWChem provides highly
efficient parallel implementations for a variety of complicated

Algorithm 1: CIJ = AIK × BKJ + CIJ matrix–matrix
multiplication in get–compute–update mode.

Global Arrays: A, B, C;
Local Buffers : a, b, c;
for i ∈ I do

for j ∈ J do
for k ∈ K do

GET a(i, k) from A;
GET b(k, j) from B;
Compute c(i, j) = a(i, k)× b(k, j) + c(i, j);

UPDATE c(i, j) to C;

0%

20%

40%

60%

80%

100%

W5 W16 W21

Ti
m

e

Problem Sizes

4-index CCSD (T) portion Others

Fig. 1. Analysis of CCSD(T) internal steps in varying Wn with pVDZ.

CC methods through the Tensor Contraction Engine (TCE).
The “gold standard” coupled cluster with singles and doubles
and perturbative triples method, known as CCSD(T), is one of
the most accurate CC methods applicable to large molecules
to date. It is particularly useful for describing accurate nonco-
valent interaction energies.

The CCSD(T) method performs a complex set of multidi-
mensional array computations organized in three internal steps:
four-index transformation, CCSD iteration, and the nonitera-
tive (T) portion. To understand the performance characteristics
of CCSD(T), we compared the time consumed by each step
on our experimental platform (see Section VI) for three water
molecule (H2O)n problems (n = 5, 16, 21, denoted as Wn)
with double-zeta basis sets (pVDZ). As shown in Figure 1, the
(T) portion consistently dominates the entire cost of CCSD(T)
by close to 80%, and the CCSD iteration takes the other 20%;
the four-index transformation and other internal steps represent
less than 3% of the execution time.

To improve the scalability properties of NWChem on top of
MPI, we focus on optimizing the most time-consuming step:
(T), a computation-intensive stage that follows the typical get–
compute–update approach containing large MMM operations
(compute) with numerous one-sided operations (get) and a
number of reduce operations (update).

P0	
 P1	

MMM	
 GET	

MPI	
 call

delay
reply	
 data	

(a) Get.

P0	
 P1	

MMM	
 UPDATE	

MPI	
 call	

delay
reply	
 ACK	

(b) Update.

Fig. 2. Software-handled RMA in a GA environment.

100.0
93.6 94.4

88.6 56.9
53.3 53.7 50.4

0

20

40

60

80

100

0

4

8

12

16

20

1704 3072 6144 12288

Ef
fic

ie
nc

y
(%

)

Ti
m

e
(h

)

Number of Cores

Wall Time Para-E Comp-E

Fig. 3. Strong-scaling efficiency of (T) for W21 with pVDZ.

III. THE CHALLENGE

As noted in Section I, RMA operations are not always com-
pletely asynchronous. Many MPI implementations still require
the target process to make MPI calls in order to process RMA
operations issued on it as a target. For example, on RDMA-
supported networks such as InfiniBand, contiguous put/get
operations can be fully handled in hardware; however, complex
noncontiguous accumulate operations, such as an accumulate
operation on a 3D subarray, still have to be performed in
software within the MPI implementation. Moreover, some
MPI implementations, such as MPICH [7] or Cray MPI [8],
still implement all RMA operations in software by default.
Such software-handled RMA operations cannot complete at
the target without explicit MPI calls. Consequently, arbitrarily
long delays can occur if the target process is performing
intensive computations such as MMM operations, as depicted
in Figures 2(a) and 2(b).

The communication delay caused by software-handled
RMA can be large in the computation-intensive (T) calculation
in NWChem and can result in significant performance scaling
bottlenecks, especially for large-scale problems. Figure 3
shows the strong-scaling performance with a comparison of the
parallel efficiency (Para-E) and the computational efficiency
(Comp-E) for W21 with double-zeta basis sets in NWChem on
our experimental platform. As shown in the figure, although
the parallel efficiency is maintained at near-100%, its com-
putational efficiency is only about 50% for a range of core
counts, resulting in up to 6 hours of additional run time for
the 1,704-core case.

This low computational efficiency is caused by the lack

of asynchronous progress for software-handled MPI RMA
operations. While researchers have devised several approaches
to ensure the asynchronous completion of operations, not
all of these are efficient for GA-based applications. Indeed,
performance may be degraded in various ways. In Section IV
we discuss the impact of transitional asynchronous progress
techniques. We present our solution in Section V and a
complete evaluation in Section VI.

IV. RELATED APPROACHES

Traditional approaches to ensure asynchronous progress for
MPI communication have relied on thread-based or interrupt-
based models. These, however, feature performance limitations
when deployed on modern architectures.

A. Thread-Based Approach

In the thread-based model, each MPI process utilizes a
background thread in order to handle incoming messages
from other processes. This model is used by many MPI
implementations, including MPICH [7], MVAPICH [9], and
Intelr MPI [10]. While being a generic approach for various
MPI communication models, it raises performance concerns.
A background thread can make progress for only the MPI
process that spawned it. Thus, such a model requires deploying
at least as many background threads as MPI processes. On
current MPI implementations, where the progress engine polls
repeatedly the network for incoming messages, this approach
can waste half the computing resources. Oversubscribing the
computing cores with the MPI processes along with the
helper threads may result in further performance degradation.
These issues especially impact the performance and scalability
of applications with intensive computation (e.g., CCSD(T)
in NWChem). Furthermore, this model forces MPI imple-
mentations to implement multithreaded safety, which may
bring further bottlenecks because of thread synchronization
requirements [11].

B. Interrupt-Based Approach

In the interrupt-based model, hardware interrupts are issued
to awaken a thread in order to process the incoming RMA
messages. This model is used by Cray MPI [8] when RMA
uses the DMAPP conduit (not currently the default); in this
case, the interrupt wakes up a kernel thread. MPI on Blue
Gene/P [12, Chapter 7] and Blue Gene/Q [13] use special
hardware to cause a context switch that cause a special thread
to wake up and drive the network when a message arrives;
in this case, the thread is a user thread, which allows for
arbitrary code to run, unlike a kernel thread. While interrupt-
driven asynchrony does not require dedicated resources the
way polling threads do, handling interrupts on cores that are
otherwise devoted to computation causes those cores to stop
computing temporarily and leads to cache pollution. The over-
head can be high in large-scale GA-based applications that rely
on massive parallelism and frequent RMA operations [14].

Compu&ng	
 Node	
 1

Memory

Socket	
 0

P P

P G

Memory

Socket	
 1

P P

P G

Compu&ng	
 Node	
 2

Memory

Socket	
 0

P P

P G

Memory

Socket	
 1

P P

P G

(a) Topology-aware core deployment.

P0	
 P1	

MMM	
 RMA	

reply	

G	

MPI_Recv	

(b) Asynchronous progress.

Fig. 4. MPI RMA with Casper.

V. SOLUTION

Our recent work introduced Casper, a process-based asyn-
chronous progress model for MPI RMA communication on
multicore and many-core architectures [6]. In this paper we
use Casper to address the communication challenges existing
in NWChem on top of a portable communications layer that
effectively prevent its practical use in solving large problems.

Unlike traditional approaches, the rationale behind Casper
is centered on the notion that since more and more cores
are embedded into computing systems, some of these cores
may not always be busy performing computation, and hence
it may be more efficient to dedicate some of them to perform
progress on asynchronous communication. Figure 4(a) shows
an example of a topology-aware core deployment in Casper,
including user processes (P) and “ghost processes” (G).

Casper is designed as an external library through the PMPI
name-shifted profiling interface of MPI, which allows Casper
to transparently link with any MPI implementation by over-
loading the necessary MPI functions. The central idea of
Casper is to keep aside a small user-specified number of cores
as “ghost processes” at the MPI initialization stage. When the
user process (P) tries to allocate a remotely accessible memory
window, Casper intercepts the call and maps that memory
into the address space on ghost processes (G). Casper then
intercepts all RMA operations issued to the user processes on
this window and redirects them to the ghost processes. Since
Casper does not migrate or copy the memory regions but just
maps them into the ghost processes’ address space, it benefits
the RMA operations that are handled in MPI software stack
without changing the behavior of any RMA operations already
handled in hardware. This implementation can be summarized
in the following steps.

a) Deployment of Ghost Processes: When the applica-
tion is launched, Casper keeps aside a user-defined (through
an environment variable) number of ghost processes. This
strategy is implemented by generating at the MPI initialization
stage a subcommunicator including only user processes and
then transparently replacing COMM USER WORLD with this
subcommunicator in all MPI calls through PMPI redirection.
Then the ghost processes simply wait to receive any commands
from user processes in an MPI Recv loop during the whole
execution in order to force the MPI implementation to make
progress on any RMA operations that are targeted to those
ghost processes (see Figure 4(b)).

b) RMA Memory Allocation and Setup: When the appli-
cation creates an RMA window by using the MPI Win allocate
function, Casper internally allocates a shared-memory region
for each user process and its ghost processes (using MPI-
3 MPI Win allocate shared calls) in order to allow remote
access from ghost processes to the user window regions that
are located in the memories of the user processes. Then
Casper creates a new window with the same memory regions
that contains only the user processes, and returns it to the
application.

c) RMA Operation Redirection: Once the user windows
are shared with ghost processes, Casper transparently redirects,
through PMPI redirection, the communication synchronization
calls (i.e., lock, fence, post-start-complete-wait) and RMA
operations to the ghost processes on the target node.

When multiple ghost processes are available on the target
node, Casper spreads communication operations across them.
This approach allows the software processing required for
these operations to be divided among the different ghost
processes, thus improving performance.

We believe Casper is a more suitable approach than other
traditional attempts for GA-based applications on modern
multicore and many-core architectures. Casper allows users to
flexibly control the number of cores dedicated to asynchronous
communication and computation, thus minimizing the per-
formance impact to GA-based applications, which are often
dominated by intensive computation that relies heavily on the
computational resources. Furthermore, since Casper does not
require multithreaded safety or system interrupts, the overhead
resulting from asynchronous progress is greatly reduced.

VI. EVALUATION

In this section we first describe the experimental platform
and the software used. We then describe the experimental
scenario and compare our solution with two thread-based
approaches in both strong-scaling and weak-scaling forms.

A. Experimental Environment

Our experiments are executed on the NERSC Edison Cray
XC30 supercomputer. Each node of Edison has 64 GB of
DDR3 memory and two Intelr Xeonr E5-2695 v2 processors.
The sockets are populated with running at 2.4 GHz, yielding
a 19.2 GFLOPS/core performance. Edison employs a Cray
Aries interconnect, and its nodes are disposed following a
Dragonfly topology, leveraging up to 9.7 GB/s unidirectional
MPI bandwidth and 1.3 µs internode MPI latency.

We use NWChem version 6.3 on top of Cray MPI 6.3.1 as
the underlying MPI implementation. On its “regular mode”
Cray MPI executes all RMA operations in software with
asynchronous progress possible through background threads
(by setting the MPICH ASYNC PROGRESS environment vari-
able). Cray MPI can be also executed in a “DMAPP-based
mode” that executes contiguous put and get operations in
hardware—although still executing accumulate and noncon-
tiguous operations in software—leveraging interrupt-based

TABLE I
CORE DEPLOYMENT IN NWCHEM EVALUATION ON CRAY XC30

Approach Computing Cores Async. Cores
Original MPI 24 0

Casper 23 1
Thread (O) 24 24
Thread (D) 12 12

asynchronous progress. As discussed in Section IV, GA ap-
plications have difficulty benefiting from an interrupt-based
approach because of the large overhead brought by frequent
interrupts. Therefore, in this paper we focus on the regular
mode.

B. Scenarios

We evaluated the improvement of NWChem by com-
paring Casper with two thread-based approaches. The first
approach—Thread (O)—employs oversubscribed cores where
every thread and its associated MPI process execute on the
same core. The second approach—Thread (D)—deploys ded-
icated cores where threads and MPI processes are executed
on separate cores. We use the same total number of cores in
all approaches, some of which are dedicated to asynchronous
ghost processes/threads as listed in Table I. To compare the
computational efficiency, we use the Tcomp measured for
the original NWChem as the base and use the number of
cores including both the computing and the asynchronous
cores employed in each experiment as N . We focus on the
(T) portion of the CCSD(T) method and measure different
water molecule (H2O)n problems—denoted Wn for short—
with double-zeta basis sets (cc-pVDZ from the NWChem basis
set library).

C. Results

We first focus on the strong-scaling performance in large
W21 (with pVDZ) problems by using a varying number of
cores. Figures 5(a) and 5(b) show the execution time and
computational efficiency, respectively. Relative to the original
version, Casper is almost twice as fast, attaining close to 100%
computational efficiency, whereas the thread-based approaches
cannot improve the efficiency and perform even worse than the
original implementation.

To determine the reason for these results, we measured sep-
arately the time consumed by the internal MMM computation
and that of the RMA communication. As shown in Table II, al-
though both Casper and the thread-based approaches eliminate
the delay in RMA communication with asynchronous progress,
the performance of the computation is negatively impacted.
Since Casper spends only one core as a ghost process on
each node, this degradation is reduced. With the thread-based
approaches, however, performance is twice as bad because of
oversubscribed cores or appropriation of half of the computing
cores.

Figures 6(a) and 6(b) demonstrate the weak-scaling perfor-
mance of the (T) portion with different problem sizes and

1
4
.1

8
.3

4
.1

2
.2

8
.2

4
.6

2
.3

1
.2

0

3

6

9

12

15

18

1704 3072 6144 12288

T
im

e
 (

h
)

Number of Cores

Original MPI Casper

Thread(O) Thread(D)

(a) Execution Time.

56.9 53.3 53.7 50.4

97.5 96.4 97.0 94.4

0

20

40

60

80

100

120

1704 3072 6144 12288

C
om

pu
ta

tio
na

l E
ffi

ci
en

cy
 (%

)
Number of Cores

Original MPI Casper
Thread(O) Thread(D)

(b) Strong-scaling computational efficiency.

Fig. 5. (T) portion in CCSD(T) for W21 with pVDZ.

TABLE II
(T) PORTION PROFILING FOR W21 WITH PVDZ

Approach
1714 3072 6144

MMM (h) RMA (h) MMM RMA MMM RMA
Original 8.01 6.62 4.46 3.83 2.10 1.94

Casper 8.15 0.03 4.52 0.03 2.24 0.01

Thread(O) 15.49 0.12 8.57 0.08 4.23 0.04

Thread(D) 15.75 0.04 8.53 0.04 4.20 0.02

core counts listed in Table III. Similar to the trend we ob-
served in the first experiment, Casper doubles the performance
and delivers close to 100% computational efficiency in all
problem sizes, while the thread-based approaches impose a
performance penalty with respect to the original MPI for all
problem sizes. Hence, Casper enables large-scale executions
at much more appealing run times.

VII. CONCLUSION AND FUTURE WORK

Chemistry computational applications, such as NWChem,
often require large memory and disk space that exceed the
capacity of a single node. The Global Arrays programming
model is designed to solve this issue. It allows the user to build

TABLE III
CASPER RESOURCE USAGE IN NWCHEM EVALUATION ON CRAY XC30

Resource W5 W10 W14 W16 W21

Nodes 1 5 16 25 71

Cores 24 120 384 600 1, 704

0
.1

4

1
.8

4
.6

 6
.7

1
4
.1

0
.0

7

1
.0

 2
.6

 3
.9

8
.2

0

3

6

9

12

15

18

24 120 384 600 1704

T
im

e
 (

h
)

Number of Cores

Original MPI Casper

Thread(O) Thread(D)

(a) Execution Time.

42.3
52.1 52.8 54.1 56.9

87.2 92.9 94.1 93.1 97.5

0

20

40

60

80

100

120

24 120 384 600 1704

C
om

pu
ta

tio
na

l E
ffi

ci
en

cy
 (%

)

Number of Cores

Original MPI Casper
Thread(O) Thread(D)

(b) Weak-scaling computational efficiency.

Fig. 6. (T) portion in CCSD(T) for varying Wn with pVDZ.

global dense arrays that are distributed across the memories of
multiple nodes. MPI one-sided communication is the approach
used to implement portable GA on various platforms.

In this paper, we have analyzed the gold standard CCSD(T)
method in NWChem, one of the most important CC simula-
tions implemented with highly efficient algorithms. We have
observed close to 100% parallel efficiency on large water
problems, however, with only 50% computational efficiency
in the traditional approaches. Such scaling bottlenecks are
caused by the lack of fully asynchronous communication
capabilities in most MPI implementations. That is, the target
process still has to make MPI progress to complete any
one-sided operations issued on it as a target. This lack of
asynchronous progress severely restricts the performance and
scalability of GA-based applications, which often perform
intensive computation interleaved with numerous one-sided
operations.

We have utilized “Casper,” an efficient process-based
asynchronous progress model for MPI RMA communi-
cation to scale the computation on water clusters. Un-
like traditional thread-based or interrupt-based asynchronous
progress approaches, Casper provides low-overhead asyn-
chronous progress without overuse of computational resources,
an approach that is more suitable for large-scale GA-based
applications. With Casper, we have scaled the water molecule
problems at close to 100% computational efficiency on up to
12288 cores. We have also shown that for a very large water

problem W21, we can reduce the execution time around 50%.
After addressing the most time-consuming part of the

NWChem analysis, in future work we plan to address the com-
bined performance of the CCSD and (T) portions: featuring
widely different communication-computation workloads, their
optimal number of ghost processes differs. So far, however,
Casper does not incorporate a dynamic solution.

Besides CCSD(T), we plan to study other modules of
NWChem, which may have different performance character-
istics. Specifically, as our next step we will focus on the
self-consistent field module [15], another important module
in NWChem.

ACKNOWLEDGMENTS

This material is based upon work supported by the U.S.
Dept. of Energy, Office of Science, Advanced Scientific
Computing Research (SC-21), under contract DE-AC02-
06CH11357. The experimental resource for this research was
provided by the National Energy Research Scientific Comput-
ing Center (NERSC) on the Edison Cray XC30 computer.

REFERENCES

[1] E. J. Bylaska et. al., “NWChem, a computational chemistry package for
parallel computers, version 6.3,” 2013.

[2] J. Nieplocha, R. J. Harrison, and R. J. Littlefield, “Global Arrays: A
portable “shared-memory” programming model for distributed memory
computers,” in ACM/IEEE conference on Supercomputing, 1994.

[3] C. Oehmen and J. Nieplocha, “ScalaBLAST: a scalable implementation
of BLAST for high-performance data-intensive bioinformatics analysis,”
IEEE Transactions on Parallel and Distributed Systems, vol. 17, no. 8,
pp. 740–749, 2006.

[4] H. E. Trease, “Code development for NWGrid/NWPhys,” Laboratory
Directed Research and Development Annual Report-Fiscal Year 2000,
p. 103, 2001.

[5] J. S. Dinan, P. Balaji, J. R. Hammond, S. Krishnamoorthy, and V. Tip-
paraju, “Supporting the global arrays PGAS model using MPI one-sided
communication,” in Parallel and Distributed Processing (IPDPS), 2012.

[6] M. Si, A. J. Peña, J. Hammond, P. Balaji, M. Takagi, and Y. Ishikawa,
“Casper: An asynchronous progress model for MPI RMA on many-core
architectures,” in Parallel and Distributed Processing (IPDPS), 2015.

[7] Argonne National Laboratory, “MPICH — high-performance portable
MPI,” http://www.mpich.org, 2015.

[8] Cray Inc., “Cray Message Passing Toolkit,” http://docs.cray.com/books/
S-3689-24, Cray Inc., Tech. Rep., 2004.

[9] The Ohio State University, “MVAPICH: MPI over InfiniBand, 10GigE/
iWARP and RoCE,” http://mvapich.cse.ohio-state.edu, 2015.

[10] Intel Corporation, “Intel MPI library,” http://software.intel.com/en-us/
intel-mpi-library, 2015.

[11] W. Gropp and R. Thakur, “Thread-safety in an MPI implementation:
Requirements and analysis,” Parallel Comput., vol. 33, no. 9, pp. 595–
604, Sep. 2007.

[12] M. Gilge, IBM System Blue Gene Solution: Blue Gene/P Application
Development. IBM, Jun. 2013.

[13] S. Kumar and M. Blocksome, “Scalable MPI-3.0 RMA on the Blue
Gene/Q supercomputer,” in EuroMPI/Asia, 2014.

[14] J. R. Hammond, S. Krishnamoorthy, S. Shende, N. A. Romero, and
A. D. Malony, “Performance characterization of global address space
applications: A case study with NWChem,” Concurrency and Compu-
tation: Practice and Experience, vol. 24, no. 2, pp. 135–154, 2012.

[15] J. L. Tilson, M. Minkoff, A. F. Wagner, R. Shepard, P. Sutton,
R. J. Harrison, R. A. Kendall, and A. T. Wong, “High-performance
computational chemistry: Hartree-Fock electronic structure calculations
on massively parallel processors,” International Journal of High
Performance Computing Applications, vol. 13, no. 4, pp. 291–302, 1999.
[Online]. Available: http://hpc.sagepub.com/content/13/4/291.abstract

