Distribution Category:
Mathematics and
Computer Science (UC-405)

ARGONNE NATIONAL LABORATORY
9700 South Cass Avenue
Argonne, IL 60439

ANL-

PETSc Developers Manual
by

The PETSc Team
http://www.mes.anl.gov/petsc

This document is intended for use with PETSc 3.7

April 2016

This work was supported in part by the Office of Advanced Scien-
tific Computing Research,

Office of Science, U.S. Department of Energy, under Contract DE-
AC02-06CH11357.

Abstract:

PETSc is a set of extensible software libraries for scientific computation. PETSc is designed
using an object-oriented architecture. This means that libraries consist of objects that have certain,
defined functionality. This document defines how these objects are implemented.

The text assumes that you are familiar with PETSc and have access to PETSc source code and
documentation (available via http://www.mcs.anl.gov/petsc).

Before contributing code to PETSc, please read Chapter 2, which contains the source code
style guide. http://www.mes.anl.gov/petsc/developers/index.html contains information on how to
submit patches and pull requests to PETSc.

Please direct all comments and questions regarding PETSc design and development to petsc-
dev@mcs.anl.gov. Note that all bug reports and questions regarding the use of PETSc should
continue to be directed to petsc-maint@mcs.anl.gov.

http://www.mcs.anl.gov/petsc
http://www.mcs.anl.gov/petsc/developers/index.html

Contents

1 Answering petsc-maint@mcs.anl.gov and petsc-users@mcs.anl.gov

2 Style Guide

2.1 Names o e e e e e e e e e
2.2 Coding Conventions and Style L o
2.2.1 CFormatting L
222 CUSAZE . . v v v v e e
2.2.3 Usage of PETSc Functions and Macros
2.3 Formatted Comments
2.3.1 Man Page Format
3 The PETSc Kernel
3.1 PETSc Types . . . o o o e e s e
3.2 Implementation of Error Handling
3.2.1 Simplified Interface Lo
3.2.2 Error Handlers
3.23 Error Codes o . e
3.2.4 Detailed Error Messageso e
3.3 Implementation of Profiling
3.3.1 Profiling Object Creation and Destruction
3.3.2 Profiling Events
3.3.3 Controlling Profiling
4 Basic Object Design
4.1 Introduction L e e e
4.2 Organization of the Source Code,
4.3 Common Object Header
4.4 Common Object Functions
4.5 Object Function Implementation0
4.5.1 Compose and QUEry e
4.5.2 Compose and Query Function
4.5.3 Simple PETSc Objects
5 PetscObjects
5.1 Elementary Objects: IS, Vec, Mat o
5.2 Solver Objects: PC, KSP, SNES, T'S
5.2.1 Preconditioners: PC
5.2.2 Krylov Solvers: KSP oL
5.2.3 ODE and DAE Solvers (Timesteppers): TS,

PETSc Developer’s Manual December 28, 2016

5.2.4 Registering New Methods o . 26

6 The Various Matrix Classes 27
6.1 Matrix Blocking Strategies. oo 27
6.1.1 Sequential AIJ Sparse Matrices 28

6.1.2 Parallel AIJ Sparse Matrices 28

6.1.3 Sequential Block AILJ Sparse Matrices 28

6.1.4 Parallel Block ALJ Sparse Matrices 29

6.1.5 Sequential Dense Matrices L L Lo 29

6.1.6 Parallel Dense Matrices e 29

Chapter 1

Answering petsc-maint@mecs.anl.gov
and petsc-users@mecs.anl.gov

e Try to be polite. (This is not always easy.)

e Address the person by name (when it is possible to determine their name).

e Apologize for the problem when it is appropriate (but not otherwise).

e Thank the person for their patience if it is more than six hours since the report came in.
e If the person drops the petsc-maint or petsc-users from the reply list, add it back in.

e Often, it pays to not ask too many questions or give too many suggestions in the same email.
The user often only responds to the first of them.

Chapter 2

Style Guide

The PETSc team uses certain conventions to make our source code consistent. Groups developing
code compatible with PETSc are, of course, free to organize their own source code anyway they

like.

2.1 Names

Consistency of names for variables, functions, etc. is extremely important in making the package
both usable and maintainable. We use several conventions:

1.

All function names and enum types consist of words, each of which is capitalized, for example
KSPSolve() and MatGetOrdering().

. All enum elements and macro variables are named with all capital letters. When they con-

sist of several complete words, there is an underscore between each word. For example,
MAT_FINAL_ASSEMBLY or PETSC_USE_COMPLEX

. Functions that are private to PETSc (not callable by the application code) either

e have an appended _Private (for example, StashValues_Private) or

e have an appended _Subtype (for example, MatMult_SeqAll).

In addition, functions that are not intended for use outside of a particular file are declared
static. Also see item 14 in Section 2.2.3.

. Function names in structures are the same as the base application function name without the

object prefix, and all are in small letters. For example, MatMultTranspose () has a structure
name of multtranspose().

. Each application usable function begins with the name of the class object, followed by any sub-

class name, for example, ISInvertPermutation(), MatMult () or KSPGMRESSetRestart ().

. Functions that PETSc provides as defaults for user providable functions end with Default

(for example, KSPMonitorDefault () or PetscSignalHandlerDefault())

Options database keys are lower case, have an underscore between words, and match the
function name associated with the option without the word “set” or “get”. For example,
-ksp_gmres_restart.

. XXXTypes (for example KSPType) do not have an underscore in them, unless they refer to

another package that uses an underscore, for example MATSOLVERSUPERLU_DIST.

http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/MatOrderings/MatGetOrdering.html#MatGetOrdering
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/IS/ISInvertPermutation.html#ISInvertPermutation

CHAPTER 2. STYLE GUIDE PETSc Developer’s Manual December 28, 2016

2.2 Coding Conventions and Style

Within the PETSc source code, we adhere to the following guidelines so that the code is uniform
and easily maintainable.

2.2.1 C Formatting

1.
2.

3.

10.

11.

All PETSc function bodies are indented two characters. No literal tabs should be used.
Each additional level of loops, if statements, etc. is indented two more characters.

Wrapping lines should be avoided whenever possible.

. Source code lines do not have a hard length limit; generally, we like them less than 150

characters wide.

. The local variable declarations should be aligned. For example, use the style

PetscScalar a;
PetscInt i,j;

instead of

PetscScalar a;
PetscInt i,j; /* Incorrect */

. The prototypes for functions should not include the names of the variables; for example write

PetscErrorCode MyFunction(PetscInt);

not

PetscErrorCode MyFunction(PetscInt myvalue); /* Incorrect */

All local variables of a particular type (e.g., int) should be listed on the same line if possible;
otherwise, they should be listed on adjacent lines.

. Equal signs should be aligned in regions where possible.

. There must be a single blank line between the local variable declarations and the body of the

function.
Indentation for if statements must be done as as

if () {

} else {

Never have

if ()
a single indented line /* Incorrect */

2.2. CODING CONVENTIONS AND STYLE PETSc Developer’s Manual December 28, 2016
or
for ()
a single indented line /* Incorrect */
instead use either
if () a single statement
or
if () {
a single indented line
}
Note that error checking is a separate statement, so the following is incorrect
if () ierr = XXX();CHKERRQ(ierr); /* Incorrect */
and instead one should use
if () Ao
ierr = XXX() ;CHKERRQ(ierr);
}
12. Always have a space between if or for and the following ().
13. No tabs are allowed in any of the source code.
14. The open brace should be on the same line as the if () test, for (), etc., never on its
own line. For example
} else {
never
}
else { /*x Incorrect */
See item 15 for an exception. The closing brace should always be on its own line.
15. In function declarations, the opening brace should be on the next line, not on the same line
as the function name and arguments. This is an exception to item 14.
16. Do not leave chunks of commented-out code in the source files.
17. Do not use C++-style comments (// Comment). Use only C-style comments (/* Comment
*/).
18. Do not include a space after a (or before a). Do not write

ierr = PetscMallocl1(10,&a) ;CHKERRQ(ierr); /* Incorrect */

but instead write

10

CHAPTER 2. STYLE GUIDE PETSc Developer’s Manual December 28, 2016

19.

20.

ierr = PetscMalloc1(10,&a) ;CHKERRQ(ierr);

Do not use a space after the) in a cast, or between the type and the * in a caste.

Do not include a space before or after a comma in lists That is, do not write
int a,b,c;

ierr = func(a, 22.0);CHKERRQ(ierr); /* Incorrect */

but instead write

int a,b,c;
ierr = func(a,22.0) ;CHKERRQ(ierr) ;

2.2.2 C Usage

1.

Array and pointer arguments where the array values are not changed should be labeled as
const arguments.

. Scalar values passed to functions should never be labeled as const.

. Subroutines that would normally have a void** argument to return a pointer to some data

should actually be prototyped as void*. This prevents the caller from having to put a
(voidx**) caste in each function call. See, for example, DMDAVecGetArray ().

. Do not use the register directive.

. Never use a local variable counter like PetscInt flops = 0; to accumulate flops and then

call PetscLogFlops(); always just call PetscLogFlops() directly when needed.

. Do not use if (rank == 0) or if (v == NULL) or if (flg == PETSC_TRUE) or if (flg

== PETSC_FALSE). Instead, use if (!rank) or if (!v) or if (flg) or if (!flg).

Do not use #ifdef or #ifndef. Rather, use #if defined(... or #if !defined(...

2.2.3 Usage of PETSc Functions and Macros

1.

Public PETSc includes, petsc*.h, should not include private PETSc petsc/private/*impl.
h includes.

. Public and private PETSc includes cannot include include files in the PETSc source tree.
. The first line of the executable statements in a function must be PetscFunctionBegin;
. Use PetscFunctionReturn(returnvalue) ; not return(returnvalue);

. Never put a function call in a return statement; do not do

PetscFunctionReturn(somefunction(...)); /* Incorrect *x/

. Do not put a blank line immediately after PetscFunctionBegin; or a blank line immediately

before PetscFunctionReturn(0) ;.

11

http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/DMDA/DMDAVecGetArray.html#DMDAVecGetArray
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/Profiling/PetscLogFlops.html#PetscLogFlops
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/Profiling/PetscLogFlops.html#PetscLogFlops

2.2. CODING CONVENTIONS AND STYLE PETSc Developer’s Manual December 28, 2016

7. Do not use sqrt (), pow(), sin(), etc. directly in PETSc source code or examples. Rather,
use PetscSqrtScalar (), PetscSqrtReal (), etc., depending on the context. See petscmath.
h for expressions to use.

8. assert.h should not be included in PETSc source and assert() should not be used. It
doesn’t play well in the parallel MPI world.

9. The macros SETERRQ() and CHKERRQ() should be on the same line as the routine to be
checked unless this violates the 150 character width rule. Try to make error messages short,
but informative.

10. Do not include a space before CHKXXX (). That is, do not write

ierr = PetscMalloc1(10,&a); CHKERRQ(ierr); /* Incorrect */

but instead write

ierr = PetscMalloc1(10,&a) ;CHKERRQ(ierr);

11. Except in code that may be called before PETSc is fully initialized, always use PetscMallocN()
(for example PetscMalloc1()), PetscCallocN(), PetscNew(), and PetscFree (), not malloc()
and free().

12. MPI routines and macros that are not part of the 1.0 or 1.1 standard should not be used in
PETSc without appropriate ./configure checks and #if defined() checks. Code should
also be provided that works if the MPI feature is not available. For example,

#if defined(PETSC_HAVE_MPI_IN_PLACE)

ierr = MPI Allgatherv(MPI_IN_PLACE,O,MPI_DATATYPE_NULL,lens,
recvcounts,displs,MPIU_INT, comm) ; CHKERRQ (ierr) ;
#else
ierr = MPI Allgatherv(lens,sendcount,MPIU_INT,lens,recvcounts,
displs,MPIU_INT, comm) ; CHKERRQ(ierr) ;
#endif

13. There shall be no PETSc routines introduced that provide essentially the same functionality
as an available MPI routine. For example, one should not write a routine PetscGlobalSum()
that takes a scalar value and performs an MPI_Allreduce () onit. One should use MPI_Allreduce ()
directly in the code.

14. Library functions should be declared PETSC_INTERN if they are intended to be visible only
within a single shared library. They should be declared PETSC_EXTERN if intended to be
visible across shared libraries. Note that PETSc can be configured to build a separate shared
library for each top-level class (Mat, Vec, KSP, etc.) and that plugin implementations of these
classes can be included as separate shared libraries; thus, private functions may be marked
PETSC_EXTERN. For example,

e MatStashCreate_Private is marked PETSC_INTERN as it is used across compilation
units, but only within the Mat package.

e All functions, such as KSPCreate (), included in the public headers (include/petsc*.h)
should be marked PETSC_EXTERN.

12

http://www.mcs.anl.gov/petsc/petsc-dev/docs/http://www.mpich.org/static/docs/latest/www3/MPI_Allgatherv.html#MPI_Allgatherv
http://www.mcs.anl.gov/petsc/petsc-dev/docs/http://www.mpich.org/static/docs/latest/www3/MPI_Allgatherv.html#MPI_Allgatherv
http://www.mcs.anl.gov/petsc/petsc-dev/docs/http://www.mpich.org/static/docs/latest/www3/MPI_Allreduce.html#MPI_Allreduce
http://www.mcs.anl.gov/petsc/petsc-dev/docs/http://www.mpich.org/static/docs/latest/www3/MPI_Allreduce.html#MPI_Allreduce

CHAPTER 2. STYLE GUIDE PETSc Developer’s Manual December 28, 2016

e MatHeaderReplace() is not intended for users (it is in include/petsc/private/matimpl.
h) but is marked PETSC_EXTERN since it is used both by implementations of the Mat class
(which could be defined in plugin implementations) and by functions in the DM and KSP
packages.

2.3 Formatted Comments

PETSc uses formatted comments and the Sowing packages to generate documentation (manual
pages) and the Fortran interfaces. Documentation for Sowing and the formatting may be found at
http://wgropp.cs.illinois.edu/projects/software/sowing/; in particular, see the documentation for
doctext.

e /%@
indicates a formatted comment of a function that will be used for both documentation and a
Fortran interface.

e /*@C
a formatted comment of a function that will be used only for documentation

e /*E
a formatted comment of an enum used for documentation only, note that each of these needs to
be listed in 1ib/petsc/conf/bfort-petsc.txt as a native and defined in the corresponding
include/petsc/finclude/petscxxx.h fortran include file and the values set as parameters
in the file include/petsc/finclude/petscxxx.h

e /%S
a formatted comment for a data type such as KSP, note that each of these needs to be listed
in 1lib/petsc/conf/bfort-petsc.txt as a nativeptr.

o /*xM
a formatted comment of a CPP macro used for both documentation and a Fortran interface.

e /*MC
a formatted comment of a CPP macro for documentation.

Functions that take char* or function pointer arguments must have the C symbol. The Fortran
interface generator cannot handle them, so the Fortran interface for them must be created manually.

The Fortran interface files go into the three directories depending on how they are created:
ftn-auto, ftn-custom, £tn-£90.

2.3.1 Man Page Format

Each function, typedef, class, macro, enum, etc. in the public API should include the following data,
correctly formatted in a block (see above) to generate complete man pages and Fortran interfaces
with Sowing. All entries below should be separated by blank lines.

e The item’s name, followed by a dash and brief (one-sentence) description

e (Optional for simple items) A longer description of the function. This should include literature
references if relevant.

e If documenting a function, a description of the function’s “collectivity” (whether all ranks in
an MPI communicator need to participate)

13

http://wgropp.cs.illinois.edu/projects/software/sowing/

2.3. FORMATTED COMMENTS PETSc Developer’s Manual December 28, 2016

e Not Collective if the function need not be called on all MPI ranks

e Collective [on XXX] if the function is a collective operation [with respect to the data
of class XXX]

e Logically Collective [on XXX] if the function is collective but does not require any
actual synchronization (say, setting class parameters uniformly).

If documenting a function with input parameters, a list of input parameter descriptions in an
Input Parameters: section

If documenting a function with output parameters, a list of output parameter descriptions in
an Output Parameters: section

If documenting a function which interacts with the options database, a list of options database
keys in an Options Database Keys: section

(Optional) a Notes: section. In-depth discussion, technical caveats, special cases, and so on
should be listed here. If it is ambiguous whether returned pointers need to be freed by the
user or not, this information should be mentioned here.

(If applicable) a Fortran Notes: section, detailing any relevant differences in calling or
using the item.

Level: followed by beginner, intermediate, advanced, or developer

(Optional) a list of Concepts:

(Optional) a list of Keywords:

e The .seealso: keyword and a list of related man pages. These man pages should usually
also point back to this man page.

14

Chapter 3

The PETSc Kernel

PETSc provides a variety of basic services for writing scalable, component based libraries; these
are referred to as the PETSc kernel. The source code for the kernel is in src/sys. It contains
systematic support for

e PETSc types

e error handling

e memory management

e profiling

e object management

e file IO

e an options database

e basic objects for viewing and drawing.

Each of these is discussed in a section below.

3.1 PETSc Types

For maximum flexibility, the basic data types int, double, etc. are generally not used in source
code. Rather it has:

e PetscScalar

e PetscInt

e PetscMPIInt

e PetscBLASInt

e PetscBool

e PetscBT - bit storage of logical true and false

PetscInt can be set using ./configure to be either int (32 bit, the default) or long long (64 bit,
with configure --with-64-bit-indices) to allow indexing into very large arrays. PetscMPIInt
are used for integers passed to MPI as counts, etc. These are always int since that is what the MPI
standard uses. Similarly, PetscBLASInt is for counts, etc. passed to BLAS and LAPACK routines.
These are almost always int unless one is using a special “64 bit integer” BLAS/LAPACK (this is
available, for example, on Solaris system and with Intel’s MKL).

In addition, there are special types:

e PetscClassId

15

3.2. IMPLEMENTATION OF ERROR HANDLINETSc Developer’s Manual December 28, 2016

o PetscErrorCode

e PetscLogEvent

These are currently always int but their use clarifies the code.

3.2 Implementation of Error Handling

PETSc uses a “call error handler; then (depending on result) return error code” model when
problems are detected in the running code.

The public include file for error handling is include/petscerror.h, and the source code for
the PETSc error handling is in src/sys/error/.

3.2.1 Simplified Interface

The simplified C/C++ macro-based interface consists of the following two calls:

e SETERRQ(comm,error code,"Error message");
e CHKERRQ(ierr);

The macro SETERRQ() is given by

return PetscError(comm,__LINE PETSC_FUNCTION_NAME FILE__,error code,error

g]) ——

type,"Error message") ;

It calls the error handler with the current function name and location: line number, file and
directory, plus an error code and an error message. Normally comm is PETSC_COMM_SELF; it can
only be another communicator if one is absolutely sure the same error will be generated on all
processes in the communicator. This is to prevent the same error message from being printed by
many processes. The error type is PETSC_ERROR_INITIAL on detection of the initial error and
PETSC_ERROR_REPEAT for any additional calls. This is so that the detailed error information is only
printed once instead of for all levels of returned errors.
The macro CHKERRQ() is defined by

if (ierr) PetscError (PETSC_COMM_SELF,__LINE__,PETSC_FUNC
ierr,PETSC_ERROR_REPEAT," ");

_FILE__,

—_—— —_— -

In addition to SETERRQ (), there are macros SETERRQ1 (), SETERRQ2 (), SETERRQ3 () and SETERRQ4 ()
that allow one to provide additional arguments to a formatted message string. For example,

SETERRQ2 (comm ,PETSC_ERR, "Iteration overflow: its \%d norm \%g",its,norm);

The reason for the numbered format is that CPP macros cannot handle a variable number of
arguments.

3.2.2 Error Handlers

The error handling function PetscError () calls the “current” error handler with the code

PetscErrorCode PetscError (MPI_Comm,int line,const char *func,const char *file,
const char *dir,error code,error type,
const char *mess)

PetscErrorCode ierr;

16

http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/Profiling/PetscLogEvent.html#PetscLogEvent
http://www.mcs.anl.gov/petsc/petsc-master/include/petscerror.h.html

CHAPTER 3. THE PETSC KERNEL PETSc Developer’s Manual December 28, 2016

PetscFunctionBegin;
if ('eh) ierr = PetscTraceBackErrorHandler(line,func,file,dir,error code,
error type,mess,0);
else ierr = (*eh->handler) (line,func,file,dir,error code,error type,
mess,eh->ctx) ;
PetscFunctionReturn(ierr) ;

The variable eh is the current error handler context and is defined in src/sys/error/err.c as

typedef struct _EH* EH;
struct _EH {
PetscErrorCode handler (MPI_Comm,int,const char*,const char*,const charx*,
PetscErrorCode,PetscErrorType,const char*,voidx*);
void *ctx;
EH previous;

};

One can set a new error handler with the command PetscPushErrorHandler (), which main-
tains a linked list of error handlers. The most recent error handler is removed via PetscPopErrorHandler ().

PETSc provides several default error handlers:

e PetscTraceBackErrorHandler(),

e PetscAbortErrorHandler (), called with —on_error_abort,

e PetscReturnErrorHandler(),

e PetscEmacsClientErrorHandler(),

e PetscMPIAbortErrorHandler (), and

e PetscAttachDebuggerErrorHandler (), called with —on_error_attach_debugger.

3.2.3 Error Codes

The PETSc error handler takes a generic error code. The generic error codes are defined in include/
petscerror.h. The same generic error code is used many times in the libraries. For example, the
generic error code PETSC_ERR_MEM is used whenever requested memory allocation is not available.

3.2.4 Detailed Error Messages

In a modern parallel component-oriented application code, it does not make sense to simply print
error messages to the screen (and more than likely there is no “screen”, for example with Windows
applications). PETSc provides the replaceable function pointer

(¥*PetscErrorPrintf) ("Format",...);
that, by default prints to standard out. Thus, error messages should not be printed with printf ()

or fprintf (). Rather, they should be printed with (*PetscErrorPrintf) (). One can direct all
error messages to stderr with the command line options —error_output_stderr.

17

http://www.mcs.anl.gov/petsc/petsc-master/src/sys/error/err.c.html
http://www.mcs.anl.gov/petsc/petsc-master/include/petscerror.h.html
http://www.mcs.anl.gov/petsc/petsc-master/include/petscerror.h.html

3.3. IMPLEMENTATION OF PROFILING PETSc Developer’s Manual December 28, 2016

3.3 Implementation of Profiling

This section provides details about the implementation of event logging and profiling within the
PETSc kernel. The interface for profiling in PETSc is contained in the file include/petsclog.h.
The source code for the profile logging is in src/sys/plog/.

3.3.1 Profiling Object Creation and Destruction
The creation of objects is profiled with the command PetscLogObjectCreate()

PetscLogObjectCreate(PetscObject h);

which logs the creation of any PETSc object. Just before an object is destroyed, it should be logged
with with PetscLogObjectDestroy()

PetscLogObjectDestroy(PetscObject h);

These are called automatically by PetscHeaderCreate() and PetscHeaderDestroy() which are
used in creating all objects inherited off the basic object. Thus, these logging routines should never
be called directly.

If an object has a clearly defined parent object (for instance, when a work vector is generated for
use in a Krylov solver), this information is logged with the command PetscLogObjectParent ().

PetscLogObjectParent (PetscObject parent,PetscObject child) ;

It is also useful to log information about the state of an object, as can be done with the command
PetscLogObjectState().

PetscLogObjectState(PetscObject h,const char *format,...);

For example, for sparse matrices we usually log the matrix dimensions and number of nonzeros.

3.3.2 Profiling Events
Events are logged using the pair PetscLogEventBegin ()

PetscLogEventBegin(PetscLogEvent event,PetscObject ol,...,PetscObject o4);
PetscLogEventEnd (PetscLogEvent event,PetscObject ol,...,PetscObject 04);

This logging is usually done in the abstract interface file for the operations, for example, src/mat/
interface/matrix.c.

3.3.3 Controlling Profiling

Routines that control the default profiling available in PETSc include:

e PetscLogDefaultBegin();
e PetscLogAllBegin();
e PetscLogDump(const char *filename);

e PetscLogView(PetscViewer) ;

These routines are normally called by the PetscInitialize() and PetscFinalize() routines
when the option -log_view is given.

18

http://www.mcs.anl.gov/petsc/petsc-master/include/petsclog.h.html
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/Profiling/PetscLogEventBegin.html#PetscLogEventBegin
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/Profiling/PetscLogEventBegin.html#PetscLogEventBegin
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/Profiling/PetscLogEvent.html#PetscLogEvent
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/Profiling/PetscLogEventEnd.html#PetscLogEventEnd
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/Profiling/PetscLogEvent.html#PetscLogEvent
http://www.mcs.anl.gov/petsc/petsc-master/src/mat/interface/matrix.c.html
http://www.mcs.anl.gov/petsc/petsc-master/src/mat/interface/matrix.c.html
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/Profiling/PetscLogDefaultBegin.html#PetscLogDefaultBegin
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/Profiling/PetscLogAllBegin.html#PetscLogAllBegin
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/Profiling/PetscLogDump.html#PetscLogDump
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/Profiling/PetscLogView.html#PetscLogView
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/Viewer/PetscViewer.html#PetscViewer

Chapter 4

Basic Object Design

PETSc is designed using strong data encapsulation. Hence, any collection of data (for instance,
a sparse matrix) is stored in a way that is completely private from the application code. The
application code can manipulate the data only through a well-defined interface, as it does not
“know” how the data is stored internally.

4.1 Introduction

PETSc is designed around several classes (e.g. Vec (vectors), Mat (matrices, both dense and
sparse)). Each class is implemented using a C struct that contains the data and function pointers
for operations on the data (much like virtual functions in C++ classes). Each class consists of three
parts:

1. A (small) common part shared by all PETSc classes (for example both KSP and PC have this
same header),

2. another common part shared by all PETSc implementations of the class (for example both
KSP_GMRES and KSP_CG have this common sub-header), and

3. a private part used by only one particular implementation written in PETSc.

For example, all matrix (Mat) classes share a function table of operations that may be performed on
the matrix; all PETSc matrix implementations share some additional data fields, including matrix
size, while a particular matrix implementation in PETSc (say compressed sparse row) has its own
data fields for storing the actual matrix values and sparsity pattern. This will be explained in more
detail in the following sections. People providing new class implementations must use the PETSc
common part.

We will use <class>_<implementation> to denote the actual source code and data structures
used for a particular implementation of an object that has the <class> interface.

4.2 Organization of the Source Code

Each class has

e [ts own, application public, include file include/petsc<class>.h
e [ts own directory, src/<class>

e A data structure defined in the file include/petsc/private/<class>impl.h. This data
structure is shared by all the different PETSc implementations of the class. For example, for
matrices it is shared by dense, sparse, parallel, and sequential formats.

19

http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/PC/PC.html#PC

4.3.

COMMON OBJECT HEADER PETSc Developer’s Manual December 28, 2016

An abstract interface that defines the application-callable functions for the class. These are
defined in the directory src/<class>/interface. This is how polymorphism is supported
with code that implements the abstract interface to the operations on the object. Essentially,
these routines do some error checking of arguments and logging of profiling information and
then call the function appropriate for the particular implementation of the object. The
name of the abstract function is <class>0Operation, for instance, MatMult () or PCCreate (),
while the name of a particular implementation is <class>Operation_<implementation>,
for instance, MatMult_SeqAIJ() or PCCreate_ILU(). These naming conventions are used to
simplify code maintenance (Also see Section 2.1).

One or more actual implementations of the class (for example, sparse uniprocessor and parallel
matrices implemented with the AIJ storage format). These are each in a subdirectory of
src/<class>/impls. Except in rare circumstances data structures defined here should not
be referenced from outside this directory.

Each type of object, for instance a vector, is defined in its own public include file, by typedef

p<class>* <class>; (for example, typedef _p_Vec* Vec;). This organization allows the com-
piler to perform type checking on all subroutine calls while at the same time completely removing
the details of the implementation of _p_<class> from the application code. This capability is
extremely important because it allows the library internals to be changed without altering or re-
compiling the application code.

4.3 Common Object Header

All PETSc/PETSc objects have the following common header structures defined in include/
petsc/private/petscimpl.h:

Listing 4.1: Function table common to all PETSc compatible classes

typedef struct {
PetscErrorCode (*getcomm) (PetscObject,MPI_Commx) ;
PetscErrorCode (*view) (PetscObject,Viewer) ;
PetscErrorCode (*destroy) (PetscObject) ;
PetscErrorCode (*query) (PetscObject,const char*,PetscObject*);
PetscErrorCode (*compose) (PetscObject,const char*,PetscObject);
PetscErrorCode (*composefunction) (PetscObject,const char*,void(*) (void));
PetscErrorCode (*queryfunction) (PetscObject,const char*,void (**)(void));
} PetscOps;

Listing 4.2: Data structure header common to all PETSc compatible classes

struct _p_<class> {

PetscClassId classid;
PetscOps *bops;
<class>0ps *0ps;

MPI_Comm comm;
PetscLogDouble flops,time,mem;
int id;

int refct;

int tag;

DLList qlist;

20

http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/PC/PCCreate.html#PCCreate
http://www.mcs.anl.gov/petsc/petsc-master/include/petsc/private/petscimpl.h.html
http://www.mcs.anl.gov/petsc/petsc-master/include/petsc/private/petscimpl.h.html

CHAPTER 4. BASIC OBJECT DESIGN

PETSc Developer’s Manual December 28, 2016

OList

char
PetscObject
char

char

void

void

olist;

*type_name;

parent;

*name;

*prefix;

*Cpp;
**xfortran_func_pointers;

CLASS-SPECIFIC DATASTRUCTURES

};

Here <class>ops is a function table (like the PetscOps above) that contains the function pointers
for the operations specific to that class. For example, the PETSc vector class object operations in
include/petsc/private/vecimpl.h include the following:

Listing 4.3: Function table common to all PETSc compatible vector objects (truncated)

typedef struct _VecOps* VecOps;

struct _VecOps {
PetscErrorCode
PetscErrorCode
PetscErrorCode
PetscErrorCode
PetscErrorCode
y[j1 */
PetscErrorCode
PetscErrorCode
PetscErrorCode
y[j1 */
PetscErrorCode
PetscErrorCode
PetscErrorCode
PetscErrorCode
PetscErrorCode
PetscErrorCode
beta * y*/
PetscErrorCode

(*duplicate) (Vec,Vec*); /* get single vector */

(*duplicatevecs) (Vec,PetscInt,Vecx*); /* get array of vectors */
(*destroyvecs) (PetscInt,Vec[]); /* free array of vectors */
(*dot) (Vec,Vec,PetscScalar*); /* z = x"H * y */

(*mdot) (Vec,PetscInt,const Vec[],PetscScalarx); /* z[j] = x dot
(*norm) (Vec,NormType,PetscReal*); /* z = sqrt(x"H * x) */
(*tdot) (Vec,Vec,PetscScalar*); /* x’*y */

(*mtdot) (Vec,PetscInt,const Vec[],PetscScalarx*);/* z[j] = x dot

(*scale) (Vec,PetscScalar); /* x = x/
(*copy) (Vec,Vec); /x y = x */

(*set) (Vec,PetscScalar); /*x y = alpha */

(*swap) (Vec,Vec); /* exchange x and y */

(*axpy) (Vec,PetscScalar,Vec); /* y = y + alpha * x */

(*axpby) (Vec,PetscScalar,PetscScalar,Vec); /* y = alpha * x +

alpha * x

(*maxpy) (Vec,PetscInt,const PetscScalar*,Vecx); /* y =y +

alphalj]l x[jl =/

(ETC.)

Listing 4.4: Data structure header common to all PETSc vector classes

struct _p_Vec {
PetscClassId
PetscOps
VecOps
MPI_Comm
PetscLogDouble
int
int

classid;

*bops;

*0ps;

comm;
flops,time,mem;
id;

refct;

21

http://www.mcs.anl.gov/petsc/petsc-master/include/petsc/private/vecimple.h.html

4.4, COMMON OBJECT FUNCTIONS PETSc Developer’s Manual December 28, 2016

int tag;

DLList qlist;

OList olist;

char *type_name;

PetscObject parent;

char *name;

char *prefix;

void **fortran_func_pointers;

void *xdata; /* implementation-specific data */
PetscLayout map;

ISLocalToGlobalMapping mapping; /* mapping used in VecSetValuesLocal() */
ISLocalToGlobalMapping bmapping; /* mapping used in
VecSetValuesBlockedLocal() */
¥;

Each PETSc object begins with a PetscClassId which is used for error checking. Each different
class of objects has its value for classid; these are used to distinguish between classes. When a
new class is created one needs to call

ierr = PetscClassIdRegister(const char *classname,PetscClassId
*classid) ;CHKERRQ(ierr) ;

For example,

ierr = PetscClassIdRegister("index set",&IS_CLASSID) ; CHKERRQ(ierr);

One can verify that an object is valid of a particular class with PetscValidHeaderSpecific, for
example

PetscValidHeaderSpecific(x,VEC_CLASSID,1);

The third argument to this macro indicates the position in the calling sequence of the function the
object was passed in. This is to generate more complete error messages.
To check for an object of any type use

PetscValidHeader (x,1);

4.4 Common Object Functions

Several routines are provided for manipulating data within the header. These include the specific
functions in the PETSc common function table.

e getcomm(PetscObject,MPI_Comm*) obtains the MPI communicator associated with this ob-
ject.

o view(PetscObject,Viewer) allows one to store or visualize the data inside an object. If the
Viewer is null than should cause the object to print information on the object to standard
out. PETSc provides a variety of simple viewers.

e destroy(PetscObject) causes the reference count of the object to be decreased by one or
the object to be destroyed and all memory used by the object to be freed when the reference
count drops to zero. If the object has any other objects composed with it then they are each
sent a destroy(), i.e. the destroy() function is called on them also.

22

http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/IS/PetscLayout.html#PetscLayout
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/IS/ISLocalToGlobalMapping.html#ISLocalToGlobalMapping
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/IS/ISLocalToGlobalMapping.html#ISLocalToGlobalMapping
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/Profiling/PetscClassIdRegister.html#PetscClassIdRegister
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/Profiling/PetscClassIdRegister.html#PetscClassIdRegister

CHAPTER 4. BASIC OBJECT DESIGN PETSc Developer’s Manual December 28, 2016

e compose (PetscObject,const char *name,PetscObject) associates the second object with

the first object and increases the reference count of the second object. If an object with
the same name was previously composed, that object is dereferenced and replaced with the
new object. If the second object is null and an object with the same name has already been
composed that object is dereferenced (the destroy() function is called on it, and that object
is removed from the first object); i.e. this is a way to remove, by name, an object that was
previously composed.

query (PetscObject,const char *name,PetscObject*) retrieves an object that was pre-
viously composed with the first object. Retrieves a null if no object with that name was
previously composed.

composefunction(PetscObject,const char *name,const char *fname,void *func) as-
sociates a function pointer to an object. If the object already had a composed function with
the same name, the old one is replaced. If func is NULL the existing function is removed from
the object. The string fname is the character string name of the function; it may include the
path name or URL of the dynamic library where the function is located. The argument name
is a “short” name of the function to be used with the queryfunction() call. On systems
that support dynamic libraries the func argument is ignored; otherwise func is the actual
function pointer.

For example, fname may be 1ibpetscksp:PCCreate_LUor http://www.mcs.anl.gov/petsc/
libpetscksp:PCCreate_LU.

queryfunction(PetscObject,const char *name,void **func) retrieves a function pointer
that was associated with the object. If dynamic libraries are used, the function is loaded into
memory at this time (if it has not been previously loaded), not when the composefunction()

routine was called.

Since the object composition allows one to only compose PETSc objects with PETSc objects
rather than any arbitrary pointer, PETSc provides the convenience object PetscContainer, created
with the routine PetscContainerCreate (MPI_Comm,PetscContainer*) to allow one to wrap any
kind of data into a PETSc object that can then be composed with a PETSc object.

4.5

Object Function Implementation

This section discusses how PETSc implements the compose (), query(), composefunction(), and
queryfunction() functions for its object implementations. Other PETSc compatible class imple-
mentations are free to manage these functions in any manner; but generally they would use the
PETSc defaults so that the library writer does not have to “reinvent the wheel.”

4.5.1 Compose and Query

In src/sys/objects/olist.c, PETSc defines a C struct

typedef struct _PetscObjectList* PetscObjectList;
struct _PetscObjectlList {

};

char name [128] ;
PetscObject obj;
PetscObjectList next;

from which linked lists of composed objects may be constructed. The routines to manipulate these
elementary objects are

23

http://www.mcs.anl.gov/petsc/petsc-master/src/objects/olist.c.html

4.5. OBJECT FUNCTION IMPLEMENTATIONPETSc Developer’s Manual December 28, 2016

int PetscObjectListAdd(PetscObjectList *fl,const char *name,PetscObject obj);
int PetscObjectListDestroy(PetscObjectList f1);

int PetscObjectListFind(PetscObjectList fl,const char *name,PetscObject *obj)
int PetscObjectListDuplicate(PetscObjectlList fl,PetscObjectList #*nl);

The function PetscObjectListAdd() will create the initial PetscObjectList if the argument f1
points to a null.

The PETSc object compose() and query() functions are then simply (defined in src/sys/
objects/inherit.c)

PetscErrorCode PetscObjectCompose_Petsc(PetscObject obj,const char
*name ,PetscObject ptr)
{

PetscErrorCode ierr;

PetscFunctionBegin;
ierr = PetscObjectListAdd(&obj->o0list,name,ptr) ; CHKERRQ(ierr) ;
PetscFunctionReturn(0) ;

PetscErrorCode PetscObjectQuery_Petsc(PetscObject obj,const char
xname ,PetscObject *ptr)
{

PetscErrorCode ierr;

PetscFunctionBegin;
ierr = PetscObjectListFind(obj->o0list,name,ptr) ;CHKERRQ(ierr);
PetscFunctionReturn(0) ;

4.5.2 Compose and Query Function

PETSc allows one to compose functions by specifying a name and function pointer. In src/sys/
d1ll/reg.c, PETSc defines the linked list structure

struct _n_PetscFunctionlList {

void (*routine) (void) ; /* the routine */

char *name ; /* string to identify routine */
PetscFunctionlList next; /* next pointer */

PetscFunctionList next_list; /* used to maintain list of all lists

for freeing */

};

Each PETSc object contains a PetscFunctionList object. The composefunction() and
queryfunction() are given by

PetscErrorCode PetscObjectComposeFunction_Petsc(PetscObject obj,const char
*name,void *ptr)
{

PetscErrorCode ierr;

24

http://www.mcs.anl.gov/petsc/petsc-master/src/objects/inherit.c.html
http://www.mcs.anl.gov/petsc/petsc-master/src/objects/inherit.c.html
http://www.mcs.anl.gov/petsc/petsc-master/src/sys/dll/reg.c.html
http://www.mcs.anl.gov/petsc/petsc-master/src/sys/dll/reg.c.html

CHAPTER 4. BASIC OBJECT DESIGN PETSc Developer’s Manual December 28, 2016

PetscFunctionBegin;
ierr = PetscFunctionListAdd(&obj->qlist,name,fname,ptr) ;CHKERRQ(ierr);
PetscFunctionReturn(0) ;

¥

PetscErrorCode PetscObjectQueryFunction_Petsc(PetscObject obj,const char
*name,void (*xptr) (void))
{

PetscErrorCode ierr;

PetscFunctionBegin;
ierr = PetscFunctionListFind(obj->qlist,name,ptr);CHKERRQ(ierr) ;
PetscFunctionReturn(0) ;

In addition to using the PetscFunctionList mechanism to compose functions into PETSc
objects, it is also used to allow registration of new class implementations; for example, new pre-
conditioners - see Section 5.2.4.

4.5.3 Simple PETSc Objects

There are some simple PETSc objects that do not need PETSCHEADER and the associated function-
ality. These objects are internally named as _n_<class> as opposed to _p_<class>. For example,
_n_PetscTable vs _p_Vec.

25

Chapter 5

PetscObjects

5.1 Elementary Objects: IS, Vec, Mat
5.2 Solver Objects: PC, KSP, SNES, TS

5.2.1 Preconditioners: PC

The base PETSc PC object is defined in the include/petsc/private/pcimpl.h include file. A
carefully commented implementation of a PC object can be found in src/ksp/pc/impls/jacobi/
jacobi.c.

5.2.2 Krylov Solvers: KSP

The base PETSc KSP object is defined in the include/petsc/private/kspimpl.h include file. A
carefully commented implementation of a KSP object can be found in src/ksp/ksp/impls/cg/cg.c.

5.2.3 ODE and DAE Solvers (Timesteppers): TS

The base PETSc TS object is defined in the include/petsc/private/tsimpl.h include file.

5.2.4 Registering New Methods

See src/ksp/examples/tutorials/ex12.c for an example of registering a new preconditioning
(PC) method.

26

http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/PC/PC.html#PC
http://www.mcs.anl.gov/petsc/petsc-master/include/petsc/private/pcimpl.h.html
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/PC/PC.html#PC
http://www.mcs.anl.gov/petsc/petsc-master/src/ksp/pc/impls/jacobi/jacobi.c.html
http://www.mcs.anl.gov/petsc/petsc-master/src/ksp/pc/impls/jacobi/jacobi.c.html
http://www.mcs.anl.gov/petsc/petsc-master/include/petsc/private/kspimpl.h.html
http://www.mcs.anl.gov/petsc/petsc-master/src/ksp/ksp/impls/cg/cg.c.html
http://www.mcs.anl.gov/petsc/petsc-master/include/petsc/private/tsimpl.h.html
http://www.mcs.anl.gov/petsc/petsc-master/src/ksp/ksp/examples/tutorials/ex12.c.html
http://www.mcs.anl.gov/petsc/petsc-dev/docs/manualpages/PC/PC.html#PC

Chapter 6

The Various Matrix Classes

PETSc provides a variety of matrix implementations, since no single matrix format is appropriate
for all problems. This section first discusses various matrix blocking strategies, and then describes
the assortment of matrix types within PETSc.

6.1 Matrix Blocking Strategies

In today’s computers, the time to perform an arithmetic operation is dominated by the time to
move the data into position, not the time to compute the arithmetic result. For example, the time
to perform a multiplication operation may be one clock cycle, while the time to move the floating
point number from memory to the arithmetic unit may take 10 or more cycles. To help manage
this difference in time scales, most processors have at least three levels of memory: registers, cache,
and random access memory, RAM. (In addition, some processors have external caches, and the
complications of paging introduce another level to the hierarchy.)

Thus, to achieve high performance, a code should first move data into cache, and from there
move it into registers and use it repeatedly while it remains in the cache or registers before returning
it to main memory. If one reuses a floating point number 50 times while it is in registers, then the
“hit” of 10 clock cycles to bring it into the register is not important. But if the floating point number
is used only once, the “hit” of 10 clock cycles becomes very noticeable, resulting in disappointing
flop rates.

Unfortunately, the compiler controls the use of the registers, and the hardware controls the use
of the cache. Since the user has essentially no direct control, code must be written in such a way
that the compiler and hardware cache system can perform well. Good quality code is then be said
to respect the memory hierarchy.

The standard approach to improving the hardware utilization is to use blocking. That is,
rather than working with individual elements in the matrices, one employs blocks of elements.
Since the use of implicit methods in PDE-based simulations leads to matrices with a naturally
blocked structure (with a block size equal to the number of degrees of freedom per cell), blocking
is extremely advantageous. The PETSc sparse matrix representations use a variety of techniques
for blocking, including

e storing the matrices using a generic sparse matrix format, but storing additional information
about adjacent rows with identical nonzero structure (so called I-nodes); this I-node informa-
tion is used in the key computational routines to improve performance (the default for the
MATSEQAIJ and MATMPIAIJ formats); and

27

6.1. MATRIX BLOCKING STRATEGIES PETSc Developer’s Manual December 28, 2016

e storing the matrices using a fixed (problem dependent) block size (via the MATSEQBAIJ and
MATMPIBAIJ formats);

The advantage of the first approach is that it is a minimal change from a standard sparse
matrix format and brings a large percent of the improvement one obtains via blocking. Using a
fixed block size gives the best performance, since the code can be hardwired with that particular
size (for example, in some problems the size may be 3, in others 5, etc.), so that the compiler will
then optimize for that size, removing the overhead of small loops entirely.

The following table presents the floating point performance for a basic matrix-vector product
using these three approaches: a basic compressed row storage format (using the PETSc runtime
options -mat_seqaij -mat_no_unroll); the same compressed row format using I-nodes (with the
option -mat_seqaij); and a fixed block size code, with a block size of three for these problems
(using the option -mat_segbaij). The rates were computed on one node of an older IBM SP, using
two test matrices. The first matrix (ARCO1), courtesy of Rick Dean of Arco, arises in multiphase
flow simulation; it has 1501 degrees of freedom, 26,131 matrix nonzeros, a natural block size of 3,
and a small number of well terms. The second matrix (CFD), arises in a three-dimensional Euler
flow simulation and has 15,360 degrees of freedom, 496,000 nonzeros, and a natural block size of
5. In addition to displaying the flop rates for matrix-vector products, we also display them for
triangular solve obtained from an ILU(0) factorization.

’ Problem ‘ Block size ‘ Basic ‘ I-node version ‘ Fixed block size
Matriz-Vector Product (Mflop/sec)

Multiphase 3 27 43 70
Euler 5 28 58 90
Triangular Solves from ILU(0) (Mflop/sec)
Multiphase 3 22 31 49
Euler) 22 39 65

These examples demonstrate that careful implementations of the basic sequential kernels in
PETSc can dramatically improve overall floating point performance, and users can immediately
benefit from such enhancements without altering a single line of their application codes. Note
that the speeds of the I-node and fixed block operations are several times that of the basic sparse
implementations. The disappointing rates for the variable block size code occur because even on
a sequential computer, the code performs the matrix-vector products and triangular solves using
the coloring introduced above and thus does not utilize the cache particularly efficiently. This is
an example of improving the parallelization capability at the expense of using each processor less
efficiently.

6.1.1 Sequential AIJ Sparse Matrices

The default matrix representation within PETSc is the general sparse ALJ format (also called the
Yale sparse matrix format or compressed sparse row format, CSR).

6.1.2 Parallel AIJ Sparse Matrices

This matrix type, which is the default parallel matrix format; additional implementation details
are given in [1].

6.1.3 Sequential Block AIJ Sparse Matrices

The sequential and parallel block AlJ formats, which are extensions of the AlJ formats described
above, are intended especially for use with multiclass PDEs. The block variants store matrix

28

CHAPTER 6. THE VARIOUS MATRIX CLASSER¥TSc Developer’s Manual December 28, 2016

elements by fixed-sized dense nb X nb blocks. The stored row and column indices begin at zero.
The routine for creating a sequential block AIJ matrix with m rows, n columns, and a block size
of nb is

ierr = MatCreateSeqBAIJ(MPI_Comm comm,int nb,int m,int n,int nz,int #*nnz,Mat *A)

The arguments nz and nnz can be used to preallocate matrix memory by indicating the number
of block nonzeros per row. For good performance during matrix assembly, preallocation is crucial;
however, the user can set nz=0 and nnz=NULL for PETSc to dynamically allocate matrix memory
as needed. The PETSc users manual discusses preallocation for the AIJ format; extension to the
block AIJ format is straightforward.

Note that the routine MatSetValuesBlocked () can be used for more efficient matrix assembly
when using the block ALJ format.

6.1.4 Parallel Block AIJ Sparse Matrices
Parallel block AIJ matrices with block size b can be created with the command MatCreateBAIJ()

ierr = MatCreateBAIJ(MPIComm comm,int nb,int m,int n,int M,int N,int d_nz,
int *d_nnz,int o_nz,int *o_nnz,Mat *A);

A is the newly created matrix, while the arguments m, n, M, and N, indicate the number of local rows
and columns and the number of global rows and columns, respectively. Either the local or global
parameters can be replaced with PETSC_DECIDE, so that PETSc will determine PETSC_DECIDE them.
The matrix is stored with a fixed number of rows on each processor, given by m, or determined by
PETSc if m is PETSC_DECIDE.

If PETSC_DECIDE is not used for m and n then the user must ensure that they are chosen to be
compatible with the vectors. To do this, one first considers the product y = Ax. The m that one
uses in MatCreateBAIJ() must match the local size used in the VecCreateMPI() for y. The n used
must match that used as the local size in VecCreateMPI() for x.

The user must set d_nz=0, o_nz=0, d_nnz=NULL, and o_nnz=NULL for PETSc to control dynamic
allocation of matrix memory space. Analogous to nz and nnz for the routine MatCreateSeqBAIJ(),
these arguments optionally specify block nonzero information for the diagonal (d_nz and d_nnz)
and off-diagonal (o_nz and o_nnz) parts of the matrix. For a square global matrix, we define
each processor’s diagonal portion to be its local rows and the corresponding columns (a square
submatrix); each processor’s off-diagonal portion encompasses the remainder of the local matrix (a
rectangular submatrix). The PETSc users manual gives an example of preallocation for the parallel
AlJ matrix format; extension to the block parallel AIJ case is straightforward.

6.1.5 Sequential Dense Matrices

PETSc provides both sequential and parallel dense matrix formats, where each processor stores its
entries in a column-major array in the usual Fortran77 style.

6.1.6 Parallel Dense Matrices

The parallel dense matrices are partitioned by rows across the processors, so that each local rect-
angular submatrix is stored in the dense format described above.

29

Bibliography

[1] Satish Balay, William D. Gropp, Lois Curfman McInnes, and Barry F. Smith. Efficient manage-
ment of parallelism in object oriented numerical software libraries. In E. Arge, A. M. Bruaset,
and H. P. Langtangen, editors, Modern Software Tools in Scientific Computing, pages 163—202.
Birkhauser Press, 1997.

30

	Answering petsc-maint@mcs.anl.gov and petsc-users@mcs.anl.gov
	Style Guide
	Names
	Coding Conventions and Style
	C Formatting
	C Usage
	Usage of PETSc Functions and Macros

	Formatted Comments
	Man Page Format

	The PETSc Kernel
	PETSc Types
	Implementation of Error Handling
	Simplified Interface
	Error Handlers
	Error Codes
	Detailed Error Messages

	Implementation of Profiling
	Profiling Object Creation and Destruction
	Profiling Events
	Controlling Profiling

	Basic Object Design
	Introduction
	Organization of the Source Code
	Common Object Header
	Common Object Functions
	Object Function Implementation
	Compose and Query
	Compose and Query Function
	Simple PETSc Objects

	PetscObjects
	Elementary Objects: IS, Vec, Mat
	Solver Objects: PC, KSP, SNES, TS
	Preconditioners: PC
	Krylov Solvers: KSP
	ODE and DAE Solvers (Timesteppers): TS
	Registering New Methods

	The Various Matrix Classes
	Matrix Blocking Strategies
	Sequential AIJ Sparse Matrices
	Parallel AIJ Sparse Matrices
	Sequential Block AIJ Sparse Matrices
	Parallel Block AIJ Sparse Matrices
	Sequential Dense Matrices
	Parallel Dense Matrices

