A Scalable Multiphysics Modeling Package for Critical Networked Infrastructures Using PETSc DMNetwork
Getnet Betrie, Barry Smith, Hong Zhang

Introduction

Critical infrastructures involve multi-physics, cross-disciplinary, and interdependencies. Simulation of a system without accounting for the interaction is insufficient to support decision-making.

Existing tools are not suitable to understand the impact of one system failure on the other systems, simulate transient nature of the systems, or be applied for real-time problems at large spatial and temporal scales.

We are developing a scalable-multiphysics-modeling package using PETSc DMNetwork to address these limitations.

Package and Applications

PETSc DMNetwork allows simulating networked multiphysics systems that are represented by linear and nonlinear equations, as well as differential algebraic equations, on extreme-scale computers.

AC Power Flow

Solves real and reactive power balance equations.

\[
\begin{align*}
\sum_{k=1}^{N} P_I &= \sum_{k=1}^{N} V_l V_k \left(G_{ik} \cos(\theta_{ik}) + B_{ik} \sin(\theta_{ik}) \right) = \Delta P = 0 \\
\sum_{k=1}^{N} Q_I &= \sum_{k=1}^{N} V_l V_k \left(G_{ik} \sin(\theta_{ik}) - B_{ik} \cos(\theta_{ik}) \right) = \Delta Q = 0
\end{align*}
\]

Water Flow Flow Model

Solves continuity and momentum equations.

\[
\begin{align*}
\frac{\partial h}{\partial t} + \frac{\partial (hu)}{\partial x} &= 0 \\
\frac{\partial (hu)}{\partial t} + \frac{\partial (hu^2 + 1/2gh^2)}{\partial x} &= gh(S_h - S_f)
\end{align*}
\]

Results

Variables solved equal to half million.

Variables solved equal to half billion.

Summary

- Simplifies programming parallel code to solve complicated problems.
- Simulations of power and water networks show the robustness and the scalability of the data structures and solvers.

Future Work

Acknowledgement

The authors were supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing Research under Contract DE-AC02-06CH11357. This research was supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration. This research used resources of the Argonne Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.