Actual source code: vecimpl.h
2: /*
3: This private file should not be included in users' code.
4: Defines the fields shared by all vector implementations.
6: */
8: #ifndef __VECIMPL_H
11: #include <petscvec.h>
14: /*S
15: PetscLayout - defines layout of vectors and matrices across processes (which rows are owned by which processes)
17: Level: developer
20: .seealso: PetscLayoutCreate(), PetscLayoutDestroy()
21: S*/
22: typedef struct _n_PetscLayout* PetscLayout;
23: struct _n_PetscLayout{
24: MPI_Comm comm;
25: PetscInt n,N; /* local, global vector size */
26: PetscInt rstart,rend; /* local start, local end + 1 */
27: PetscInt *range; /* the offset of each processor */
28: PetscInt bs; /* number of elements in each block (generally for multi-component problems) Do NOT multiply above numbers by bs */
29: PetscInt refcnt; /* MPI Vecs obtained with VecDuplicate() and from MatGetVecs() reuse map of input object */
30: ISLocalToGlobalMapping mapping; /* mapping used in Vec/MatSetValuesLocal() */
31: ISLocalToGlobalMapping bmapping; /* mapping used in Vec/MatSetValuesBlockedLocal() */
32: };
41: PetscPolymorphicFunction(PetscLayoutGetLocalSize,(PetscLayout m),(m,&s),PetscInt,s)
44: PetscPolymorphicFunction(PetscLayoutGetSize,(PetscLayout m),(m,&s),PetscInt,s)
54: /*@C
55: PetscLayoutFindOwner - Find the owning rank for a global index
57: Not Collective
59: Input Parameters:
60: + map - the layout
61: - idx - global index to find the owner of
63: Output Parameter:
64: . owner - the owning rank
66: Level: developer
68: Fortran Notes:
69: Not available from Fortran
71: @*/
72: PETSC_STATIC_INLINE PetscErrorCode PetscLayoutFindOwner(PetscLayout map,PetscInt idx,PetscInt *owner)
73: {
75: PetscMPIInt lo = 0,hi,t;
76: PetscInt bs = map->bs;
79: if (!((map->n >= 0) && (map->N >= 0) && (map->range))) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"PetscLayoutSetUp() must be called first");
80: if (idx < 0 || idx > map->N) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Index %D is out of range",idx);
81: MPI_Comm_size(map->comm,&hi);
82: while (hi - lo > 1) {
83: t = lo + (hi - lo) / 2;
84: if (idx < map->range[t]/bs) hi = t;
85: else lo = t;
86: }
87: *owner = lo;
88: return(0);
89: }
91: /* ----------------------------------------------------------------------------*/
92: typedef struct _n_PetscUniformSection *PetscUniformSection;
93: struct _n_PetscUniformSection {
94: MPI_Comm comm;
95: PetscInt pStart, pEnd; /* The chart: all points are contained in [pStart, pEnd) */
96: PetscInt numDof; /* Describes layout of storage, point --> (constant # of values, (p - pStart)*constant # of values) */
97: };
99: #if 0
100: // Should I protect these for C++?
103: #endif
105: /*S
106: PetscSection - This is a mapping from DMMESH points to sets of values, which is
107: our presentation of a fibre bundle.
109: Level: developer
111: .seealso: PetscSectionCreate(), PetscSectionDestroy()
112: S*/
113: typedef struct _n_PetscSection *PetscSection;
114: struct _n_PetscSection {
115: struct _n_PetscUniformSection atlasLayout; /* Layout for the atlas */
116: PetscInt *atlasDof; /* Describes layout of storage, point --> # of values */
117: PetscInt *atlasOff; /* Describes layout of storage, point --> offset into storage */
118: PetscSection bc; /* Describes constraints, point --> # local dofs which are constrained */
119: PetscInt *bcIndices; /* Local indices for constrained dofs */
120: PetscInt refcnt; /* Vecs obtained with VecDuplicate() and from MatGetVecs() reuse map of input object */
121: };
140: /* ----------------------------------------------------------------------------*/
142: typedef struct _VecOps *VecOps;
143: struct _VecOps {
144: PetscErrorCode (*duplicate)(Vec,Vec*); /* get single vector */
145: PetscErrorCode (*duplicatevecs)(Vec,PetscInt,Vec**); /* get array of vectors */
146: PetscErrorCode (*destroyvecs)(PetscInt,Vec[]); /* free array of vectors */
147: PetscErrorCode (*dot)(Vec,Vec,PetscScalar*); /* z = x^H * y */
148: PetscErrorCode (*mdot)(Vec,PetscInt,const Vec[],PetscScalar*); /* z[j] = x dot y[j] */
149: PetscErrorCode (*norm)(Vec,NormType,PetscReal*); /* z = sqrt(x^H * x) */
150: PetscErrorCode (*tdot)(Vec,Vec,PetscScalar*); /* x'*y */
151: PetscErrorCode (*mtdot)(Vec,PetscInt,const Vec[],PetscScalar*);/* z[j] = x dot y[j] */
152: PetscErrorCode (*scale)(Vec,PetscScalar); /* x = alpha * x */
153: PetscErrorCode (*copy)(Vec,Vec); /* y = x */
154: PetscErrorCode (*set)(Vec,PetscScalar); /* y = alpha */
155: PetscErrorCode (*swap)(Vec,Vec); /* exchange x and y */
156: PetscErrorCode (*axpy)(Vec,PetscScalar,Vec); /* y = y + alpha * x */
157: PetscErrorCode (*axpby)(Vec,PetscScalar,PetscScalar,Vec); /* y = alpha * x + beta * y*/
158: PetscErrorCode (*maxpy)(Vec,PetscInt,const PetscScalar*,Vec*); /* y = y + alpha[j] x[j] */
159: PetscErrorCode (*aypx)(Vec,PetscScalar,Vec); /* y = x + alpha * y */
160: PetscErrorCode (*waxpy)(Vec,PetscScalar,Vec,Vec); /* w = y + alpha * x */
161: PetscErrorCode (*axpbypcz)(Vec,PetscScalar,PetscScalar,PetscScalar,Vec,Vec); /* z = alpha * x + beta *y + gamma *z*/
162: PetscErrorCode (*pointwisemult)(Vec,Vec,Vec); /* w = x .* y */
163: PetscErrorCode (*pointwisedivide)(Vec,Vec,Vec); /* w = x ./ y */
164: PetscErrorCode (*setvalues)(Vec,PetscInt,const PetscInt[],const PetscScalar[],InsertMode);
165: PetscErrorCode (*assemblybegin)(Vec); /* start global assembly */
166: PetscErrorCode (*assemblyend)(Vec); /* end global assembly */
167: PetscErrorCode (*getarray)(Vec,PetscScalar**); /* get data array */
168: PetscErrorCode (*getsize)(Vec,PetscInt*);
169: PetscErrorCode (*getlocalsize)(Vec,PetscInt*);
170: PetscErrorCode (*restorearray)(Vec,PetscScalar**); /* restore data array */
171: PetscErrorCode (*max)(Vec,PetscInt*,PetscReal*); /* z = max(x); idx=index of max(x) */
172: PetscErrorCode (*min)(Vec,PetscInt*,PetscReal*); /* z = min(x); idx=index of min(x) */
173: PetscErrorCode (*setrandom)(Vec,PetscRandom); /* set y[j] = random numbers */
174: PetscErrorCode (*setoption)(Vec,VecOption,PetscBool );
175: PetscErrorCode (*setvaluesblocked)(Vec,PetscInt,const PetscInt[],const PetscScalar[],InsertMode);
176: PetscErrorCode (*destroy)(Vec);
177: PetscErrorCode (*view)(Vec,PetscViewer);
178: PetscErrorCode (*placearray)(Vec,const PetscScalar*); /* place data array */
179: PetscErrorCode (*replacearray)(Vec,const PetscScalar*); /* replace data array */
180: PetscErrorCode (*dot_local)(Vec,Vec,PetscScalar*);
181: PetscErrorCode (*tdot_local)(Vec,Vec,PetscScalar*);
182: PetscErrorCode (*norm_local)(Vec,NormType,PetscReal*);
183: PetscErrorCode (*mdot_local)(Vec,PetscInt,const Vec[],PetscScalar*);
184: PetscErrorCode (*mtdot_local)(Vec,PetscInt,const Vec[],PetscScalar*);
185: PetscErrorCode (*load)(Vec,PetscViewer);
186: PetscErrorCode (*reciprocal)(Vec);
187: PetscErrorCode (*conjugate)(Vec);
188: PetscErrorCode (*setlocaltoglobalmapping)(Vec,ISLocalToGlobalMapping);
189: PetscErrorCode (*setvalueslocal)(Vec,PetscInt,const PetscInt *,const PetscScalar *,InsertMode);
190: PetscErrorCode (*resetarray)(Vec); /* vector points to its original array, i.e. undoes any VecPlaceArray() */
191: PetscErrorCode (*setfromoptions)(Vec);
192: PetscErrorCode (*maxpointwisedivide)(Vec,Vec,PetscReal*); /* m = max abs(x ./ y) */
193: PetscErrorCode (*pointwisemax)(Vec,Vec,Vec);
194: PetscErrorCode (*pointwisemaxabs)(Vec,Vec,Vec);
195: PetscErrorCode (*pointwisemin)(Vec,Vec,Vec);
196: PetscErrorCode (*getvalues)(Vec,PetscInt,const PetscInt[],PetscScalar[]);
197: PetscErrorCode (*sqrt)(Vec);
198: PetscErrorCode (*abs)(Vec);
199: PetscErrorCode (*exp)(Vec);
200: PetscErrorCode (*log)(Vec);
201: PetscErrorCode (*shift)(Vec);
202: PetscErrorCode (*create)(Vec);
203: PetscErrorCode (*stridegather)(Vec,PetscInt,Vec,InsertMode);
204: PetscErrorCode (*stridescatter)(Vec,PetscInt,Vec,InsertMode);
205: PetscErrorCode (*dotnorm2)(Vec,Vec,PetscScalar*,PetscScalar*);
206: PetscErrorCode (*getsubvector)(Vec,IS,Vec*);
207: PetscErrorCode (*restoresubvector)(Vec,IS,Vec*);
208: };
210: /*
211: The stash is used to temporarily store inserted vec values that
212: belong to another processor. During the assembly phase the stashed
213: values are moved to the correct processor and
214: */
216: typedef struct {
217: PetscInt nmax; /* maximum stash size */
218: PetscInt umax; /* max stash size user wants */
219: PetscInt oldnmax; /* the nmax value used previously */
220: PetscInt n; /* stash size */
221: PetscInt bs; /* block size of the stash */
222: PetscInt reallocs; /* preserve the no of mallocs invoked */
223: PetscInt *idx; /* global row numbers in stash */
224: PetscScalar *array; /* array to hold stashed values */
225: /* The following variables are used for communication */
226: MPI_Comm comm;
227: PetscMPIInt size,rank;
228: PetscMPIInt tag1,tag2;
229: MPI_Request *send_waits; /* array of send requests */
230: MPI_Request *recv_waits; /* array of receive requests */
231: MPI_Status *send_status; /* array of send status */
232: PetscInt nsends,nrecvs; /* numbers of sends and receives */
233: PetscScalar *svalues,*rvalues; /* sending and receiving data */
234: PetscInt *sindices,*rindices;
235: PetscInt rmax; /* maximum message length */
236: PetscInt *nprocs; /* tmp data used both during scatterbegin and end */
237: PetscInt nprocessed; /* number of messages already processed */
238: PetscBool donotstash;
239: PetscBool ignorenegidx; /* ignore negative indices passed into VecSetValues/VetGetValues */
240: InsertMode insertmode;
241: PetscInt *bowners;
242: } VecStash;
244: #if defined(PETSC_HAVE_CUSP)
245: /* Defines the flag structure that the CUSP arch uses. */
246: typedef enum {PETSC_CUSP_UNALLOCATED,PETSC_CUSP_GPU,PETSC_CUSP_CPU,PETSC_CUSP_BOTH} PetscCUSPFlag;
247: #endif
249: struct _p_Vec {
250: PETSCHEADER(struct _VecOps);
251: PetscLayout map;
252: void *data; /* implementation-specific data */
253: PetscBool array_gotten;
254: VecStash stash,bstash; /* used for storing off-proc values during assembly */
255: PetscBool petscnative; /* means the ->data starts with VECHEADER and can use VecGetArrayFast()*/
256: #if defined(PETSC_HAVE_CUSP)
257: PetscCUSPFlag valid_GPU_array; /* indicates where the most recently modified vector data is (GPU or CPU) */
258: void *spptr; /* if we're using CUSP, then this is the special pointer to the array on the GPU */
259: #endif
260: };
270: #if defined(PETSC_HAVE_CUSP)
272: #endif
276: PETSC_STATIC_INLINE PetscErrorCode VecGetArrayRead(Vec x,const PetscScalar *a[])
277: {
281: if (x->petscnative){
282: #if defined(PETSC_HAVE_CUSP)
283: if (x->valid_GPU_array == PETSC_CUSP_GPU || !*((PetscScalar**)x->data)){
284: VecCUSPCopyFromGPU(x);
285: }
286: #endif
287: *a = *((PetscScalar **)x->data);
288: } else {
289: (*x->ops->getarray)(x,(PetscScalar**)a);
290: }
291: return(0);
292: }
296: PETSC_STATIC_INLINE PetscErrorCode VecRestoreArrayRead(Vec x,const PetscScalar *a[])
297: {
301: if (x->petscnative){
302: #if defined(PETSC_HAVE_CUSP)
303: if (x->valid_GPU_array != PETSC_CUSP_UNALLOCATED) {
304: x->valid_GPU_array = PETSC_CUSP_BOTH;
305: }
306: #endif
307: } else {
308: (*x->ops->restorearray)(x,(PetscScalar**)a);
309: }
310: return(0);
311: }
315: PETSC_STATIC_INLINE PetscErrorCode VecGetArray(Vec x,PetscScalar *a[])
316: {
320: if (x->petscnative){
321: #if defined(PETSC_HAVE_CUSP)
322: if (x->valid_GPU_array == PETSC_CUSP_GPU || !*((PetscScalar**)x->data)){
323: VecCUSPCopyFromGPU(x);
324: }
325: #endif
326: *a = *((PetscScalar **)x->data);
327: } else {
328: (*x->ops->getarray)(x,a);
329: }
330: return(0);
331: }
335: PETSC_STATIC_INLINE PetscErrorCode VecRestoreArray(Vec x,PetscScalar *a[])
336: {
340: if (x->petscnative){
341: #if defined(PETSC_HAVE_CUSP)
342: if (x->valid_GPU_array != PETSC_CUSP_UNALLOCATED) {
343: x->valid_GPU_array = PETSC_CUSP_CPU;
344: }
345: #endif
346: } else {
347: (*x->ops->restorearray)(x,a);
348: }
349: PetscObjectStateIncrease((PetscObject)x);
350: return(0);
351: }
354: /*
355: Common header shared by array based vectors,
356: currently Vec_Seq and Vec_MPI
357: */
358: #define VECHEADER \
359: PetscScalar *array; \
360: PetscScalar *array_allocated; /* if the array was allocated by PETSc this is its pointer */ \
361: PetscScalar *unplacedarray; /* if one called VecPlaceArray(), this is where it stashed the original */
363: /* Default obtain and release vectors; can be used by any implementation */
371: /* --------------------------------------------------------------------*/
372: /* */
373: /* Defines the data structures used in the Vec Scatter operations */
375: typedef enum { VEC_SCATTER_SEQ_GENERAL,VEC_SCATTER_SEQ_STRIDE,
376: VEC_SCATTER_MPI_GENERAL,VEC_SCATTER_MPI_TOALL,
377: VEC_SCATTER_MPI_TOONE} VecScatterType;
379: /*
380: These scatters are for the purely local case.
381: */
382: typedef struct {
383: VecScatterType type;
384: PetscInt n; /* number of components to scatter */
385: PetscInt *vslots; /* locations of components */
386: /*
387: The next three fields are used in parallel scatters, they contain
388: optimization in the special case that the "to" vector and the "from"
389: vector are the same, so one only needs copy components that truly
390: copies instead of just y[idx[i]] = y[jdx[i]] where idx[i] == jdx[i].
391: */
392: PetscBool nonmatching_computed;
393: PetscInt n_nonmatching; /* number of "from"s != "to"s */
394: PetscInt *slots_nonmatching; /* locations of "from"s != "to"s */
395: PetscBool is_copy;
396: PetscInt copy_start; /* local scatter is a copy starting at copy_start */
397: PetscInt copy_length;
398: } VecScatter_Seq_General;
400: typedef struct {
401: VecScatterType type;
402: PetscInt n;
403: PetscInt first;
404: PetscInt step;
405: } VecScatter_Seq_Stride;
407: /*
408: This scatter is for a global vector copied (completely) to each processor (or all to one)
409: */
410: typedef struct {
411: VecScatterType type;
412: PetscMPIInt *count; /* elements of vector on each processor */
413: PetscMPIInt *displx;
414: PetscScalar *work1;
415: PetscScalar *work2;
416: } VecScatter_MPI_ToAll;
418: /*
419: This is the general parallel scatter
420: */
421: typedef struct {
422: VecScatterType type;
423: PetscInt n; /* number of processors to send/receive */
424: PetscInt *starts; /* starting point in indices and values for each proc*/
425: PetscInt *indices; /* list of all components sent or received */
426: PetscMPIInt *procs; /* processors we are communicating with in scatter */
427: MPI_Request *requests,*rev_requests;
428: PetscScalar *values; /* buffer for all sends or receives */
429: VecScatter_Seq_General local; /* any part that happens to be local */
430: MPI_Status *sstatus,*rstatus;
431: PetscBool use_readyreceiver;
432: PetscInt bs;
433: PetscBool sendfirst;
434: PetscBool contiq;
435: /* for MPI_Alltoallv() approach */
436: PetscBool use_alltoallv;
437: PetscMPIInt *counts,*displs;
438: /* for MPI_Alltoallw() approach */
439: PetscBool use_alltoallw;
440: #if defined(PETSC_HAVE_MPI_ALLTOALLW)
441: PetscMPIInt *wcounts,*wdispls;
442: MPI_Datatype *types;
443: #endif
444: PetscBool use_window;
445: #if defined(PETSC_HAVE_MPI_WIN_CREATE)
446: MPI_Win window;
447: PetscInt *winstarts; /* displacements in the processes I am putting to */
448: #endif
449: } VecScatter_MPI_General;
451: struct _p_VecScatter {
452: PETSCHEADER(int);
453: PetscInt to_n,from_n;
454: PetscBool inuse; /* prevents corruption from mixing two scatters */
455: PetscBool beginandendtogether; /* indicates that the scatter begin and end function are called together, VecScatterEnd()
456: is then treated as a nop */
457: PetscBool packtogether; /* packs all the messages before sending, same with receive */
458: PetscBool reproduce; /* always receive the ghost points in the same order of processes */
459: PetscErrorCode (*begin)(VecScatter,Vec,Vec,InsertMode,ScatterMode);
460: PetscErrorCode (*end)(VecScatter,Vec,Vec,InsertMode,ScatterMode);
461: PetscErrorCode (*copy)(VecScatter,VecScatter);
462: PetscErrorCode (*destroy)(VecScatter);
463: PetscErrorCode (*view)(VecScatter,PetscViewer);
464: void *fromdata,*todata;
465: void *spptr;
466: };
477: /*
478: VecStashValue_Private - inserts a single value into the stash.
480: Input Parameters:
481: stash - the stash
482: idx - the global of the inserted value
483: values - the value inserted
484: */
485: PETSC_STATIC_INLINE PetscErrorCode VecStashValue_Private(VecStash *stash,PetscInt row,PetscScalar value)
486: {
488: /* Check and see if we have sufficient memory */
489: if (((stash)->n + 1) > (stash)->nmax) {
490: VecStashExpand_Private(stash,1);
491: }
492: (stash)->idx[(stash)->n] = row;
493: (stash)->array[(stash)->n] = value;
494: (stash)->n++;
495: return 0;
496: }
498: /*
499: VecStashValuesBlocked_Private - inserts 1 block of values into the stash.
501: Input Parameters:
502: stash - the stash
503: idx - the global block index
504: values - the values inserted
505: */
506: PETSC_STATIC_INLINE PetscErrorCode VecStashValuesBlocked_Private(VecStash *stash,PetscInt row,PetscScalar *values)
507: {
508: PetscInt jj,stash_bs=(stash)->bs;
509: PetscScalar *array;
511: if (((stash)->n+1) > (stash)->nmax) {
512: VecStashExpand_Private(stash,1);
513: }
514: array = (stash)->array + stash_bs*(stash)->n;
515: (stash)->idx[(stash)->n] = row;
516: for (jj=0; jj<stash_bs; jj++) { array[jj] = values[jj];}
517: (stash)->n++;
518: return 0;
519: }
525: #if defined(PETSC_HAVE_MATLAB_ENGINE)
530: #endif
534: /* Reset __FUNCT__ in case the user does not define it themselves */
538: #endif