Actual source code: da3.c

  2: /*
  3:    Code for manipulating distributed regular 3d arrays in parallel.
  4:    File created by Peter Mell  7/14/95
  5:  */

  7: #include <private/daimpl.h>     /*I   "petscdmda.h"    I*/

 11: PetscErrorCode DMView_DA_3d(DM da,PetscViewer viewer)
 12: {
 14:   PetscMPIInt    rank;
 15:   PetscBool      iascii,isdraw,isbinary;
 16:   DM_DA          *dd = (DM_DA*)da->data;
 17: #if defined(PETSC_HAVE_MATLAB_ENGINE)
 18:   PetscBool      ismatlab;
 19: #endif

 22:   MPI_Comm_rank(((PetscObject)da)->comm,&rank);

 24:   PetscTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
 25:   PetscTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
 26:   PetscTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
 27: #if defined(PETSC_HAVE_MATLAB_ENGINE)
 28:   PetscTypeCompare((PetscObject)viewer,PETSCVIEWERMATLAB,&ismatlab);
 29: #endif
 30:   if (iascii) {
 31:     PetscViewerFormat format;

 33:     PetscViewerASCIISynchronizedAllow(viewer,PETSC_TRUE);
 34:     PetscViewerGetFormat(viewer, &format);
 35:     if (format != PETSC_VIEWER_ASCII_VTK && format != PETSC_VIEWER_ASCII_VTK_CELL) {
 36:       DMDALocalInfo info;
 37:       DMDAGetLocalInfo(da,&info);
 38:       PetscViewerASCIISynchronizedPrintf(viewer,"Processor [%d] M %D N %D P %D m %D n %D p %D w %D s %D\n",rank,dd->M,dd->N,dd->P,dd->m,dd->n,dd->p,dd->w,dd->s);
 39:       PetscViewerASCIISynchronizedPrintf(viewer,"X range of indices: %D %D, Y range of indices: %D %D, Z range of indices: %D %D\n",
 40:                                                 info.xs,info.xs+info.xm,info.ys,info.ys+info.ym,info.zs,info.zs+info.zm);
 41: #if !defined(PETSC_USE_COMPLEX)
 42:       if (dd->coordinates) {
 43:         PetscInt        last;
 44:         const PetscReal *coors;
 45:         VecGetArrayRead(dd->coordinates,&coors);
 46:         VecGetLocalSize(dd->coordinates,&last);
 47:         last = last - 3;
 48:         PetscViewerASCIISynchronizedPrintf(viewer,"Lower left corner %G %G %G : Upper right %G %G %G\n",coors[0],coors[1],coors[2],coors[last],coors[last+1],coors[last+2]);
 49:         VecRestoreArrayRead(dd->coordinates,&coors);
 50:       }
 51: #endif
 52:       PetscViewerFlush(viewer);
 53:       PetscViewerASCIISynchronizedAllow(viewer,PETSC_FALSE);
 54:     } else {
 55:       DMView_DA_VTK(da,viewer);
 56:     }
 57:   } else if (isdraw) {
 58:     PetscDraw       draw;
 59:     PetscReal     ymin = -1.0,ymax = (PetscReal)dd->N;
 60:     PetscReal     xmin = -1.0,xmax = (PetscReal)((dd->M+2)*dd->P),x,y,ycoord,xcoord;
 61:     PetscInt        k,plane,base,*idx;
 62:     char       node[10];
 63:     PetscBool  isnull;

 65:     PetscViewerDrawGetDraw(viewer,0,&draw);
 66:     PetscDrawIsNull(draw,&isnull); if (isnull) return(0);
 67:     PetscDrawSetCoordinates(draw,xmin,ymin,xmax,ymax);
 68:     PetscDrawSynchronizedClear(draw);

 70:     /* first processor draw all node lines */
 71:     if (!rank) {
 72:       for (k=0; k<dd->P; k++) {
 73:         ymin = 0.0; ymax = (PetscReal)(dd->N - 1);
 74:         for (xmin=(PetscReal)(k*(dd->M+1)); xmin<(PetscReal)(dd->M+(k*(dd->M+1))); xmin++) {
 75:           PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_BLACK);
 76:         }
 77: 
 78:         xmin = (PetscReal)(k*(dd->M+1)); xmax = xmin + (PetscReal)(dd->M - 1);
 79:         for (ymin=0; ymin<(PetscReal)dd->N; ymin++) {
 80:           PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_BLACK);
 81:         }
 82:       }
 83:     }
 84:     PetscDrawSynchronizedFlush(draw);
 85:     PetscDrawPause(draw);

 87:     for (k=0; k<dd->P; k++) {  /*Go through and draw for each plane*/
 88:       if ((k >= dd->zs) && (k < dd->ze)) {
 89:         /* draw my box */
 90:         ymin = dd->ys;
 91:         ymax = dd->ye - 1;
 92:         xmin = dd->xs/dd->w    + (dd->M+1)*k;
 93:         xmax =(dd->xe-1)/dd->w + (dd->M+1)*k;

 95:         PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_RED);
 96:         PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_RED);
 97:         PetscDrawLine(draw,xmin,ymax,xmax,ymax,PETSC_DRAW_RED);
 98:         PetscDrawLine(draw,xmax,ymin,xmax,ymax,PETSC_DRAW_RED);

100:         xmin = dd->xs/dd->w;
101:         xmax =(dd->xe-1)/dd->w;

103:         /* put in numbers*/
104:         base = (dd->base+(dd->xe-dd->xs)*(dd->ye-dd->ys)*(k-dd->zs))/dd->w;

106:         /* Identify which processor owns the box */
107:         sprintf(node,"%d",rank);
108:         PetscDrawString(draw,xmin+(dd->M+1)*k+.2,ymin+.3,PETSC_DRAW_RED,node);

110:         for (y=ymin; y<=ymax; y++) {
111:           for (x=xmin+(dd->M+1)*k; x<=xmax+(dd->M+1)*k; x++) {
112:             sprintf(node,"%d",(int)base++);
113:             PetscDrawString(draw,x,y,PETSC_DRAW_BLACK,node);
114:           }
115:         }
116: 
117:       }
118:     }
119:     PetscDrawSynchronizedFlush(draw);
120:     PetscDrawPause(draw);

122:     for (k=0-dd->s; k<dd->P+dd->s; k++) {
123:       /* Go through and draw for each plane */
124:       if ((k >= dd->Zs) && (k < dd->Ze)) {
125: 
126:         /* overlay ghost numbers, useful for error checking */
127:         base = (dd->Xe-dd->Xs)*(dd->Ye-dd->Ys)*(k-dd->Zs); idx = dd->idx;
128:         plane=k;
129:         /* Keep z wrap around points on the dradrawg */
130:         if (k<0)    { plane=dd->P+k; }
131:         if (k>=dd->P) { plane=k-dd->P; }
132:         ymin = dd->Ys; ymax = dd->Ye;
133:         xmin = (dd->M+1)*plane*dd->w;
134:         xmax = (dd->M+1)*plane*dd->w+dd->M*dd->w;
135:         for (y=ymin; y<ymax; y++) {
136:           for (x=xmin+dd->Xs; x<xmin+dd->Xe; x+=dd->w) {
137:             sprintf(node,"%d",(int)(idx[base]/dd->w));
138:             ycoord = y;
139:             /*Keep y wrap around points on drawing */
140:             if (y<0)      { ycoord = dd->N+y; }

142:             if (y>=dd->N) { ycoord = y-dd->N; }
143:             xcoord = x;   /* Keep x wrap points on drawing */

145:             if (x<xmin)  { xcoord = xmax - (xmin-x); }
146:             if (x>=xmax) { xcoord = xmin + (x-xmax); }
147:             PetscDrawString(draw,xcoord/dd->w,ycoord,PETSC_DRAW_BLUE,node);
148:             base+=dd->w;
149:           }
150:         }
151:       }
152:     }
153:     PetscDrawSynchronizedFlush(draw);
154:     PetscDrawPause(draw);
155:   } else if (isbinary){
156:     DMView_DA_Binary(da,viewer);
157: #if defined(PETSC_HAVE_MATLAB_ENGINE)
158:   } else if (ismatlab) {
159:     DMView_DA_Matlab(da,viewer);
160: #endif
161:   } else SETERRQ1(((PetscObject)da)->comm,PETSC_ERR_SUP,"Viewer type %s not supported for DMDA 1d",((PetscObject)viewer)->type_name);
162:   return(0);
163: }

167: PetscErrorCode  DMSetUp_DA_3D(DM da)
168: {
169:   DM_DA                  *dd           = (DM_DA*)da->data;
170:   const PetscInt         M            = dd->M;
171:   const PetscInt         N            = dd->N;
172:   const PetscInt         P            = dd->P;
173:   PetscInt               m            = dd->m;
174:   PetscInt               n            = dd->n;
175:   PetscInt               p            = dd->p;
176:   const PetscInt         dof          = dd->w;
177:   const PetscInt         s            = dd->s;
178:   const DMDABoundaryType bx         = dd->bx;
179:   const DMDABoundaryType by         = dd->by;
180:   const DMDABoundaryType bz         = dd->bz;
181:   const DMDAStencilType  stencil_type = dd->stencil_type;
182:   PetscInt               *lx           = dd->lx;
183:   PetscInt               *ly           = dd->ly;
184:   PetscInt               *lz           = dd->lz;
185:   MPI_Comm               comm;
186:   PetscMPIInt            rank,size;
187:   PetscInt               xs = 0,xe,ys = 0,ye,zs = 0,ze,x = 0,y = 0,z = 0;
188:   PetscInt               Xs,Xe,Ys,Ye,Zs,Ze,IXs,IXe,IYs,IYe,IZs,IZe,start,end,pm;
189:   PetscInt               left,right,up,down,bottom,top,i,j,k,*idx,*idx_cpy,nn;
190:   const PetscInt         *idx_full;
191:   PetscInt               n0,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n14;
192:   PetscInt               n15,n16,n17,n18,n19,n20,n21,n22,n23,n24,n25,n26;
193:   PetscInt               *bases,*ldims,base,x_t,y_t,z_t,s_t,count,s_x,s_y,s_z;
194:   PetscInt               sn0 = 0,sn1 = 0,sn2 = 0,sn3 = 0,sn5 = 0,sn6 = 0,sn7 = 0;
195:   PetscInt               sn8 = 0,sn9 = 0,sn11 = 0,sn15 = 0,sn24 = 0,sn25 = 0,sn26 = 0;
196:   PetscInt               sn17 = 0,sn18 = 0,sn19 = 0,sn20 = 0,sn21 = 0,sn23 = 0;
197:   Vec                    local,global;
198:   VecScatter             ltog,gtol;
199:   IS                     to,from,ltogis;
200:   PetscErrorCode         ierr;

203:   if (dof < 1) SETERRQ1(((PetscObject)da)->comm,PETSC_ERR_ARG_OUTOFRANGE,"Must have 1 or more degrees of freedom per node: %D",dof);
204:   if (s < 0) SETERRQ1(((PetscObject)da)->comm,PETSC_ERR_ARG_OUTOFRANGE,"Stencil width cannot be negative: %D",s);

206:   PetscObjectGetComm((PetscObject) da, &comm);
207:   MPI_Comm_size(comm,&size);
208:   MPI_Comm_rank(comm,&rank);

210:   dd->dim = 3;
211:   PetscMalloc(dof*sizeof(char*),&dd->fieldname);
212:   PetscMemzero(dd->fieldname,dof*sizeof(char*));

214:   if (m != PETSC_DECIDE) {
215:     if (m < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in X direction: %D",m);
216:     else if (m > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in X direction: %D %d",m,size);
217:   }
218:   if (n != PETSC_DECIDE) {
219:     if (n < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Y direction: %D",n);
220:     else if (n > size)  SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Y direction: %D %d",n,size);
221:   }
222:   if (p != PETSC_DECIDE) {
223:     if (p < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Z direction: %D",p);
224:     else if (p > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Z direction: %D %d",p,size);
225:   }
226:   if ((m > 0) && (n > 0) && (p > 0) && (m*n*p != size)) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"m %D * n %D * p %D != size %d",m,n,p,size);

228:   /* Partition the array among the processors */
229:   if (m == PETSC_DECIDE && n != PETSC_DECIDE && p != PETSC_DECIDE) {
230:     m = size/(n*p);
231:   } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
232:     n = size/(m*p);
233:   } else if (m != PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
234:     p = size/(m*n);
235:   } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
236:     /* try for squarish distribution */
237:     m = (int)(0.5 + sqrt(((double)M)*((double)size)/((double)N*p)));
238:     if (!m) m = 1;
239:     while (m > 0) {
240:       n = size/(m*p);
241:       if (m*n*p == size) break;
242:       m--;
243:     }
244:     if (!m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad p value: p = %D",p);
245:     if (M > N && m < n) {PetscInt _m = m; m = n; n = _m;}
246:   } else if (m == PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
247:     /* try for squarish distribution */
248:     m = (int)(0.5 + sqrt(((double)M)*((double)size)/((double)P*n)));
249:     if (!m) m = 1;
250:     while (m > 0) {
251:       p = size/(m*n);
252:       if (m*n*p == size) break;
253:       m--;
254:     }
255:     if (!m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad n value: n = %D",n);
256:     if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
257:   } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
258:     /* try for squarish distribution */
259:     n = (int)(0.5 + sqrt(((double)N)*((double)size)/((double)P*m)));
260:     if (!n) n = 1;
261:     while (n > 0) {
262:       p = size/(m*n);
263:       if (m*n*p == size) break;
264:       n--;
265:     }
266:     if (!n) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad m value: m = %D",n);
267:     if (N > P && n < p) {PetscInt _n = n; n = p; p = _n;}
268:   } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
269:     /* try for squarish distribution */
270:     n = (PetscInt)(0.5 + pow(((double)N*N)*((double)size)/((double)P*M),(double)(1./3.)));
271:     if (!n) n = 1;
272:     while (n > 0) {
273:       pm = size/n;
274:       if (n*pm == size) break;
275:       n--;
276:     }
277:     if (!n) n = 1;
278:     m = (PetscInt)(0.5 + sqrt(((double)M)*((double)size)/((double)P*n)));
279:     if (!m) m = 1;
280:     while (m > 0) {
281:       p = size/(m*n);
282:       if (m*n*p == size) break;
283:       m--;
284:     }
285:     if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
286:   } else if (m*n*p != size) SETERRQ(((PetscObject)da)->comm,PETSC_ERR_ARG_OUTOFRANGE,"Given Bad partition");

288:   if (m*n*p != size) SETERRQ(((PetscObject)da)->comm,PETSC_ERR_PLIB,"Could not find good partition");
289:   if (M < m) SETERRQ2(((PetscObject)da)->comm,PETSC_ERR_ARG_OUTOFRANGE,"Partition in x direction is too fine! %D %D",M,m);
290:   if (N < n) SETERRQ2(((PetscObject)da)->comm,PETSC_ERR_ARG_OUTOFRANGE,"Partition in y direction is too fine! %D %D",N,n);
291:   if (P < p) SETERRQ2(((PetscObject)da)->comm,PETSC_ERR_ARG_OUTOFRANGE,"Partition in z direction is too fine! %D %D",P,p);

293:   /* 
294:      Determine locally owned region 
295:      [x, y, or z]s is the first local node number, [x, y, z] is the number of local nodes 
296:   */

298:   if (!lx) {
299:     PetscMalloc(m*sizeof(PetscInt), &dd->lx);
300:     lx = dd->lx;
301:     for (i=0; i<m; i++) {
302:       lx[i] = M/m + ((M % m) > (i % m));
303:     }
304:   }
305:   x  = lx[rank % m];
306:   xs = 0;
307:   for (i=0; i<(rank%m); i++) { xs += lx[i];}
308:   if ((x < s) && ((m > 1) || (bx == DMDA_BOUNDARY_PERIODIC))) {
309:     SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local x-width of domain x %D is smaller than stencil width s %D",x,s);
310:   }

312:   if (!ly) {
313:     PetscMalloc(n*sizeof(PetscInt), &dd->ly);
314:     ly = dd->ly;
315:     for (i=0; i<n; i++) {
316:       ly[i] = N/n + ((N % n) > (i % n));
317:     }
318:   }
319:   y  = ly[(rank % (m*n))/m];
320:   if ((y < s) && ((n > 1) || (by == DMDA_BOUNDARY_PERIODIC))) {
321:     SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local y-width of domain y %D is smaller than stencil width s %D",y,s);
322:   }
323:   ys = 0;
324:   for (i=0; i<(rank % (m*n))/m; i++) { ys += ly[i];}

326:   if (!lz) {
327:     PetscMalloc(p*sizeof(PetscInt), &dd->lz);
328:     lz = dd->lz;
329:     for (i=0; i<p; i++) {
330:       lz[i] = P/p + ((P % p) > (i % p));
331:     }
332:   }
333:   z  = lz[rank/(m*n)];

335:   /* note this is different than x- and y-, as we will handle as an important special
336:    case when p=P=1 and DMDA_BOUNDARY_PERIODIC and s > z.  This is to deal with 2D problems
337:    in a 3D code.  Additional code for this case is noted with "2d case" comments */
338:   if ((z < s) && ((p > 1) || ((P > 1) && bz == DMDA_BOUNDARY_PERIODIC))) {
339:     SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local z-width of domain z %D is smaller than stencil width s %D",z,s);
340:   }
341:   zs = 0;
342:   for (i=0; i<(rank/(m*n)); i++) { zs += lz[i];}
343:   ye = ys + y;
344:   xe = xs + x;
345:   ze = zs + z;

347:   /* determine ghost region */
348:   /* Assume No Periodicity */
349:   if (xs-s > 0) { Xs = xs - s; IXs = xs - s; } else { Xs = 0; IXs = 0; }
350:   if (xe+s <= M) { Xe = xe + s; IXe = xe + s; } else { Xe = M; IXe = M; }
351:   if (ys-s > 0) { Ys = ys - s; IYs = ys - s; } else { Ys = 0; IYs = 0; }
352:   if (ye+s <= N) { Ye = ye + s; IYe = ye + s; } else { Ye = N; IYe = N; }
353:   if (zs-s > 0) { Zs = zs - s; IZs = zs - s; } else { Zs = 0; IZs = 0; }
354:   if (ze+s <= P) { Ze = ze + s; IZe = ze + s; } else { Ze = P; IZe = P; }

356:   /* fix for periodicity/ghosted */
357:   if (bx) { Xs = xs - s; Xe = xe + s; }
358:   if (bx == DMDA_BOUNDARY_PERIODIC) { IXs = xs - s; IXe = xe + s; }
359:   if (by) { Ys = ys - s; Ye = ye + s; }
360:   if (by == DMDA_BOUNDARY_PERIODIC) { IYs = ys - s; IYe = ye + s; }
361:   if (bz) { Zs = zs - s; Ze = ze + s; }
362:   if (bz == DMDA_BOUNDARY_PERIODIC) { IZs = zs - s; IZe = ze + s; }

364:   /* Resize all X parameters to reflect w */
365:   s_x = s;
366:   s_y  = s;
367:   s_z  = s;

369:   /* determine starting point of each processor */
370:   nn       = x*y*z;
371:   PetscMalloc2(size+1,PetscInt,&bases,size,PetscInt,&ldims);
372:   MPI_Allgather(&nn,1,MPIU_INT,ldims,1,MPIU_INT,comm);
373:   bases[0] = 0;
374:   for (i=1; i<=size; i++) {
375:     bases[i] = ldims[i-1];
376:   }
377:   for (i=1; i<=size; i++) {
378:     bases[i] += bases[i-1];
379:   }
380:   base = bases[rank]*dof;

382:   /* allocate the base parallel and sequential vectors */
383:   dd->Nlocal = x*y*z*dof;
384:   VecCreateMPIWithArray(comm,dd->Nlocal,PETSC_DECIDE,0,&global);
385:   VecSetBlockSize(global,dof);
386:   dd->nlocal = (Xe-Xs)*(Ye-Ys)*(Ze-Zs)*dof;
387:   VecCreateSeqWithArray(PETSC_COMM_SELF,dd->nlocal,0,&local);
388:   VecSetBlockSize(local,dof);

390:   /* generate appropriate vector scatters */
391:   /* local to global inserts non-ghost point region into global */
392:   VecGetOwnershipRange(global,&start,&end);
393:   ISCreateStride(comm,x*y*z*dof,start,1,&to);

395:   count = x*y*z;
396:   PetscMalloc(x*y*z*sizeof(PetscInt),&idx);
397:   left   = xs - Xs; right = left + x;
398:   bottom = ys - Ys; top = bottom + y;
399:   down   = zs - Zs; up  = down + z;
400:   count  = 0;
401:   for (i=down; i<up; i++) {
402:     for (j=bottom; j<top; j++) {
403:       for (k=left; k<right; k++) {
404:         idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
405:       }
406:     }
407:   }

409:   ISCreateBlock(comm,dof,count,idx,PETSC_OWN_POINTER,&from);
410:   VecScatterCreate(local,from,global,to,&ltog);
411:   PetscLogObjectParent(da,ltog);
412:   ISDestroy(&from);
413:   ISDestroy(&to);

415:   /* global to local must include ghost points within the domain,
416:      but not ghost points outside the domain that aren't periodic */
417:   if (stencil_type == DMDA_STENCIL_BOX) {
418:     count = (IXe-IXs)*(IYe-IYs)*(IZe-IZs);
419:     PetscMalloc(count*sizeof(PetscInt),&idx);

421:     left   = IXs - Xs; right = left + (IXe-IXs);
422:     bottom = IYs - Ys; top = bottom + (IYe-IYs);
423:     down   = IZs - Zs; up  = down + (IZe-IZs);
424:     count = 0;
425:     for (i=down; i<up; i++) {
426:       for (j=bottom; j<top; j++) {
427:         for (k=left; k<right; k++) {
428:           idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
429:         }
430:       }
431:     }
432:     ISCreateBlock(comm,dof,count,idx,PETSC_OWN_POINTER,&to);

434:   } else {
435:     /* This is way ugly! We need to list the funny cross type region */
436:     count = ((ys-IYs) + (IYe-ye))*x*z + ((xs-IXs) + (IXe-xe))*y*z + ((zs-IZs) + (IZe-ze))*x*y + x*y*z;
437:     PetscMalloc(count*sizeof(PetscInt),&idx);

439:     left   = xs - Xs; right = left + x;
440:     bottom = ys - Ys; top = bottom + y;
441:     down   = zs - Zs;   up  = down + z;
442:     count  = 0;
443:     /* the bottom chunck */
444:     for (i=(IZs-Zs); i<down; i++) {
445:       for (j=bottom; j<top; j++) {
446:         for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
447:       }
448:     }
449:     /* the middle piece */
450:     for (i=down; i<up; i++) {
451:       /* front */
452:       for (j=(IYs-Ys); j<bottom; j++) {
453:         for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
454:       }
455:       /* middle */
456:       for (j=bottom; j<top; j++) {
457:         for (k=IXs-Xs; k<IXe-Xs; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
458:       }
459:       /* back */
460:       for (j=top; j<top+IYe-ye; j++) {
461:         for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
462:       }
463:     }
464:     /* the top piece */
465:     for (i=up; i<up+IZe-ze; i++) {
466:       for (j=bottom; j<top; j++) {
467:         for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
468:       }
469:     }
470:     ISCreateBlock(comm,dof,count,idx,PETSC_OWN_POINTER,&to);
471:   }

473:   /* determine who lies on each side of use stored in    n24 n25 n26
474:                                                          n21 n22 n23
475:                                                          n18 n19 n20

477:                                                          n15 n16 n17
478:                                                          n12     n14
479:                                                          n9  n10 n11

481:                                                          n6  n7  n8
482:                                                          n3  n4  n5
483:                                                          n0  n1  n2
484:   */

486:   /* Solve for X,Y, and Z Periodic Case First, Then Modify Solution */
487:   /* Assume Nodes are Internal to the Cube */
488:   n0  = rank - m*n - m - 1;
489:   n1  = rank - m*n - m;
490:   n2  = rank - m*n - m + 1;
491:   n3  = rank - m*n -1;
492:   n4  = rank - m*n;
493:   n5  = rank - m*n + 1;
494:   n6  = rank - m*n + m - 1;
495:   n7  = rank - m*n + m;
496:   n8  = rank - m*n + m + 1;

498:   n9  = rank - m - 1;
499:   n10 = rank - m;
500:   n11 = rank - m + 1;
501:   n12 = rank - 1;
502:   n14 = rank + 1;
503:   n15 = rank + m - 1;
504:   n16 = rank + m;
505:   n17 = rank + m + 1;

507:   n18 = rank + m*n - m - 1;
508:   n19 = rank + m*n - m;
509:   n20 = rank + m*n - m + 1;
510:   n21 = rank + m*n - 1;
511:   n22 = rank + m*n;
512:   n23 = rank + m*n + 1;
513:   n24 = rank + m*n + m - 1;
514:   n25 = rank + m*n + m;
515:   n26 = rank + m*n + m + 1;

517:   /* Assume Pieces are on Faces of Cube */

519:   if (xs == 0) { /* First assume not corner or edge */
520:     n0  = rank       -1 - (m*n);
521:     n3  = rank + m   -1 - (m*n);
522:     n6  = rank + 2*m -1 - (m*n);
523:     n9  = rank       -1;
524:     n12 = rank + m   -1;
525:     n15 = rank + 2*m -1;
526:     n18 = rank       -1 + (m*n);
527:     n21 = rank + m   -1 + (m*n);
528:     n24 = rank + 2*m -1 + (m*n);
529:    }

531:   if (xe == M) { /* First assume not corner or edge */
532:     n2  = rank -2*m +1 - (m*n);
533:     n5  = rank - m  +1 - (m*n);
534:     n8  = rank      +1 - (m*n);
535:     n11 = rank -2*m +1;
536:     n14 = rank - m  +1;
537:     n17 = rank      +1;
538:     n20 = rank -2*m +1 + (m*n);
539:     n23 = rank - m  +1 + (m*n);
540:     n26 = rank      +1 + (m*n);
541:   }

543:   if (ys==0) { /* First assume not corner or edge */
544:     n0  = rank + m * (n-1) -1 - (m*n);
545:     n1  = rank + m * (n-1)    - (m*n);
546:     n2  = rank + m * (n-1) +1 - (m*n);
547:     n9  = rank + m * (n-1) -1;
548:     n10 = rank + m * (n-1);
549:     n11 = rank + m * (n-1) +1;
550:     n18 = rank + m * (n-1) -1 + (m*n);
551:     n19 = rank + m * (n-1)    + (m*n);
552:     n20 = rank + m * (n-1) +1 + (m*n);
553:   }

555:   if (ye == N) { /* First assume not corner or edge */
556:     n6  = rank - m * (n-1) -1 - (m*n);
557:     n7  = rank - m * (n-1)    - (m*n);
558:     n8  = rank - m * (n-1) +1 - (m*n);
559:     n15 = rank - m * (n-1) -1;
560:     n16 = rank - m * (n-1);
561:     n17 = rank - m * (n-1) +1;
562:     n24 = rank - m * (n-1) -1 + (m*n);
563:     n25 = rank - m * (n-1)    + (m*n);
564:     n26 = rank - m * (n-1) +1 + (m*n);
565:   }
566: 
567:   if (zs == 0) { /* First assume not corner or edge */
568:     n0 = size - (m*n) + rank - m - 1;
569:     n1 = size - (m*n) + rank - m;
570:     n2 = size - (m*n) + rank - m + 1;
571:     n3 = size - (m*n) + rank - 1;
572:     n4 = size - (m*n) + rank;
573:     n5 = size - (m*n) + rank + 1;
574:     n6 = size - (m*n) + rank + m - 1;
575:     n7 = size - (m*n) + rank + m ;
576:     n8 = size - (m*n) + rank + m + 1;
577:   }

579:   if (ze == P) { /* First assume not corner or edge */
580:     n18 = (m*n) - (size-rank) - m - 1;
581:     n19 = (m*n) - (size-rank) - m;
582:     n20 = (m*n) - (size-rank) - m + 1;
583:     n21 = (m*n) - (size-rank) - 1;
584:     n22 = (m*n) - (size-rank);
585:     n23 = (m*n) - (size-rank) + 1;
586:     n24 = (m*n) - (size-rank) + m - 1;
587:     n25 = (m*n) - (size-rank) + m;
588:     n26 = (m*n) - (size-rank) + m + 1;
589:   }

591:   if ((xs==0) && (zs==0)) { /* Assume an edge, not corner */
592:     n0 = size - m*n + rank + m-1 - m;
593:     n3 = size - m*n + rank + m-1;
594:     n6 = size - m*n + rank + m-1 + m;
595:   }
596: 
597:   if ((xs==0) && (ze==P)) { /* Assume an edge, not corner */
598:     n18 = m*n - (size - rank) + m-1 - m;
599:     n21 = m*n - (size - rank) + m-1;
600:     n24 = m*n - (size - rank) + m-1 + m;
601:   }

603:   if ((xs==0) && (ys==0)) { /* Assume an edge, not corner */
604:     n0  = rank + m*n -1 - m*n;
605:     n9  = rank + m*n -1;
606:     n18 = rank + m*n -1 + m*n;
607:   }

609:   if ((xs==0) && (ye==N)) { /* Assume an edge, not corner */
610:     n6  = rank - m*(n-1) + m-1 - m*n;
611:     n15 = rank - m*(n-1) + m-1;
612:     n24 = rank - m*(n-1) + m-1 + m*n;
613:   }

615:   if ((xe==M) && (zs==0)) { /* Assume an edge, not corner */
616:     n2 = size - (m*n-rank) - (m-1) - m;
617:     n5 = size - (m*n-rank) - (m-1);
618:     n8 = size - (m*n-rank) - (m-1) + m;
619:   }

621:   if ((xe==M) && (ze==P)) { /* Assume an edge, not corner */
622:     n20 = m*n - (size - rank) - (m-1) - m;
623:     n23 = m*n - (size - rank) - (m-1);
624:     n26 = m*n - (size - rank) - (m-1) + m;
625:   }

627:   if ((xe==M) && (ys==0)) { /* Assume an edge, not corner */
628:     n2  = rank + m*(n-1) - (m-1) - m*n;
629:     n11 = rank + m*(n-1) - (m-1);
630:     n20 = rank + m*(n-1) - (m-1) + m*n;
631:   }

633:   if ((xe==M) && (ye==N)) { /* Assume an edge, not corner */
634:     n8  = rank - m*n +1 - m*n;
635:     n17 = rank - m*n +1;
636:     n26 = rank - m*n +1 + m*n;
637:   }

639:   if ((ys==0) && (zs==0)) { /* Assume an edge, not corner */
640:     n0 = size - m + rank -1;
641:     n1 = size - m + rank;
642:     n2 = size - m + rank +1;
643:   }

645:   if ((ys==0) && (ze==P)) { /* Assume an edge, not corner */
646:     n18 = m*n - (size - rank) + m*(n-1) -1;
647:     n19 = m*n - (size - rank) + m*(n-1);
648:     n20 = m*n - (size - rank) + m*(n-1) +1;
649:   }

651:   if ((ye==N) && (zs==0)) { /* Assume an edge, not corner */
652:     n6 = size - (m*n-rank) - m * (n-1) -1;
653:     n7 = size - (m*n-rank) - m * (n-1);
654:     n8 = size - (m*n-rank) - m * (n-1) +1;
655:   }

657:   if ((ye==N) && (ze==P)) { /* Assume an edge, not corner */
658:     n24 = rank - (size-m) -1;
659:     n25 = rank - (size-m);
660:     n26 = rank - (size-m) +1;
661:   }

663:   /* Check for Corners */
664:   if ((xs==0)   && (ys==0) && (zs==0)) { n0  = size -1;}
665:   if ((xs==0)   && (ys==0) && (ze==P)) { n18 = m*n-1;}
666:   if ((xs==0)   && (ye==N) && (zs==0)) { n6  = (size-1)-m*(n-1);}
667:   if ((xs==0)   && (ye==N) && (ze==P)) { n24 = m-1;}
668:   if ((xe==M) && (ys==0) && (zs==0)) { n2  = size-m;}
669:   if ((xe==M) && (ys==0) && (ze==P)) { n20 = m*n-m;}
670:   if ((xe==M) && (ye==N) && (zs==0)) { n8  = size-m*n;}
671:   if ((xe==M) && (ye==N) && (ze==P)) { n26 = 0;}

673:   /* Check for when not X,Y, and Z Periodic */

675:   /* If not X periodic */
676:   if (bx != DMDA_BOUNDARY_PERIODIC) {
677:     if (xs==0)   {n0  = n3  = n6  = n9  = n12 = n15 = n18 = n21 = n24 = -2;}
678:     if (xe==M) {n2  = n5  = n8  = n11 = n14 = n17 = n20 = n23 = n26 = -2;}
679:   }

681:   /* If not Y periodic */
682:   if (by != DMDA_BOUNDARY_PERIODIC) {
683:     if (ys==0)   {n0  = n1  = n2  = n9  = n10 = n11 = n18 = n19 = n20 = -2;}
684:     if (ye==N)   {n6  = n7  = n8  = n15 = n16 = n17 = n24 = n25 = n26 = -2;}
685:   }

687:   /* If not Z periodic */
688:   if (bz != DMDA_BOUNDARY_PERIODIC) {
689:     if (zs==0)   {n0  = n1  = n2  = n3  = n4  = n5  = n6  = n7  = n8  = -2;}
690:     if (ze==P)   {n18 = n19 = n20 = n21 = n22 = n23 = n24 = n25 = n26 = -2;}
691:   }

693:   PetscMalloc(27*sizeof(PetscInt),&dd->neighbors);
694:   dd->neighbors[0] = n0;
695:   dd->neighbors[1] = n1;
696:   dd->neighbors[2] = n2;
697:   dd->neighbors[3] = n3;
698:   dd->neighbors[4] = n4;
699:   dd->neighbors[5] = n5;
700:   dd->neighbors[6] = n6;
701:   dd->neighbors[7] = n7;
702:   dd->neighbors[8] = n8;
703:   dd->neighbors[9] = n9;
704:   dd->neighbors[10] = n10;
705:   dd->neighbors[11] = n11;
706:   dd->neighbors[12] = n12;
707:   dd->neighbors[13] = rank;
708:   dd->neighbors[14] = n14;
709:   dd->neighbors[15] = n15;
710:   dd->neighbors[16] = n16;
711:   dd->neighbors[17] = n17;
712:   dd->neighbors[18] = n18;
713:   dd->neighbors[19] = n19;
714:   dd->neighbors[20] = n20;
715:   dd->neighbors[21] = n21;
716:   dd->neighbors[22] = n22;
717:   dd->neighbors[23] = n23;
718:   dd->neighbors[24] = n24;
719:   dd->neighbors[25] = n25;
720:   dd->neighbors[26] = n26;

722:   /* If star stencil then delete the corner neighbors */
723:   if (stencil_type == DMDA_STENCIL_STAR) {
724:      /* save information about corner neighbors */
725:      sn0 = n0; sn1 = n1; sn2 = n2; sn3 = n3; sn5 = n5; sn6 = n6; sn7 = n7;
726:      sn8 = n8; sn9 = n9; sn11 = n11; sn15 = n15; sn17 = n17; sn18 = n18;
727:      sn19 = n19; sn20 = n20; sn21 = n21; sn23 = n23; sn24 = n24; sn25 = n25;
728:      sn26 = n26;
729:      n0  = n1  = n2  = n3  = n5  = n6  = n7  = n8  = n9  = n11 =
730:      n15 = n17 = n18 = n19 = n20 = n21 = n23 = n24 = n25 = n26 = -1;
731:   }


734:   PetscMalloc((Xe-Xs)*(Ye-Ys)*(Ze-Zs)*sizeof(PetscInt),&idx);
735:   PetscLogObjectMemory(da,(Xe-Xs)*(Ye-Ys)*(Ze-Zs)*sizeof(PetscInt));

737:   nn = 0;
738:   /* Bottom Level */
739:   for (k=0; k<s_z; k++) {
740:     for (i=1; i<=s_y; i++) {
741:       if (n0 >= 0) { /* left below */
742:         x_t = lx[n0 % m];
743:         y_t = ly[(n0 % (m*n))/m];
744:         z_t = lz[n0 / (m*n)];
745:         s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
746:         if (s_t < 0) {s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x;} /* 2D case */
747:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
748:       }
749:       if (n1 >= 0) { /* directly below */
750:         x_t = x;
751:         y_t = ly[(n1 % (m*n))/m];
752:         z_t = lz[n1 / (m*n)];
753:         s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
754:         if (s_t < 0) {s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t;} /* 2D case */
755:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
756:       }
757:       if (n2 >= 0) { /* right below */
758:         x_t = lx[n2 % m];
759:         y_t = ly[(n2 % (m*n))/m];
760:         z_t = lz[n2 / (m*n)];
761:         s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
762:         if (s_t < 0) {s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t;} /* 2D case */
763:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
764:       }
765:     }

767:     for (i=0; i<y; i++) {
768:       if (n3 >= 0) { /* directly left */
769:         x_t = lx[n3 % m];
770:         y_t = y;
771:         z_t = lz[n3 / (m*n)];
772:         s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
773:         if (s_t < 0) {s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - x_t*y_t;} /* 2D case */
774:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
775:       }

777:       if (n4 >= 0) { /* middle */
778:         x_t = x;
779:         y_t = y;
780:         z_t = lz[n4 / (m*n)];
781:         s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
782:         if (s_t < 0) {s_t = bases[n4] + i*x_t + x_t*y_t*z_t - x_t*y_t;} /* 2D case */
783:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
784:       }

786:       if (n5 >= 0) { /* directly right */
787:         x_t = lx[n5 % m];
788:         y_t = y;
789:         z_t = lz[n5 / (m*n)];
790:         s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
791:         if (s_t < 0) {s_t = bases[n5] + i*x_t + x_t*y_t*z_t - x_t*y_t;} /* 2D case */
792:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
793:       }
794:     }

796:     for (i=1; i<=s_y; i++) {
797:       if (n6 >= 0) { /* left above */
798:         x_t = lx[n6 % m];
799:         y_t = ly[(n6 % (m*n))/m];
800:         z_t = lz[n6 / (m*n)];
801:         s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
802:         if (s_t < 0) {s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - x_t*y_t;} /* 2D case */
803:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
804:       }
805:       if (n7 >= 0) { /* directly above */
806:         x_t = x;
807:         y_t = ly[(n7 % (m*n))/m];
808:         z_t = lz[n7 / (m*n)];
809:         s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
810:         if (s_t < 0) {s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - x_t*y_t;} /* 2D case */
811:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
812:       }
813:       if (n8 >= 0) { /* right above */
814:         x_t = lx[n8 % m];
815:         y_t = ly[(n8 % (m*n))/m];
816:         z_t = lz[n8 / (m*n)];
817:         s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
818:         if (s_t < 0) {s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - x_t*y_t;} /* 2D case */
819:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
820:       }
821:     }
822:   }

824:   /* Middle Level */
825:   for (k=0; k<z; k++) {
826:     for (i=1; i<=s_y; i++) {
827:       if (n9 >= 0) { /* left below */
828:         x_t = lx[n9 % m];
829:         y_t = ly[(n9 % (m*n))/m];
830:         /* z_t = z; */
831:         s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
832:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
833:       }
834:       if (n10 >= 0) { /* directly below */
835:         x_t = x;
836:         y_t = ly[(n10 % (m*n))/m];
837:         /* z_t = z; */
838:         s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
839:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
840:       }
841:       if (n11 >= 0) { /* right below */
842:         x_t = lx[n11 % m];
843:         y_t = ly[(n11 % (m*n))/m];
844:         /* z_t = z; */
845:         s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
846:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
847:       }
848:     }

850:     for (i=0; i<y; i++) {
851:       if (n12 >= 0) { /* directly left */
852:         x_t = lx[n12 % m];
853:         y_t = y;
854:         /* z_t = z; */
855:         s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
856:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
857:       }

859:       /* Interior */
860:       s_t = bases[rank] + i*x + k*x*y;
861:       for (j=0; j<x; j++) { idx[nn++] = s_t++;}

863:       if (n14 >= 0) { /* directly right */
864:         x_t = lx[n14 % m];
865:         y_t = y;
866:         /* z_t = z; */
867:         s_t = bases[n14] + i*x_t + k*x_t*y_t;
868:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
869:       }
870:     }

872:     for (i=1; i<=s_y; i++) {
873:       if (n15 >= 0) { /* left above */
874:         x_t = lx[n15 % m];
875:         y_t = ly[(n15 % (m*n))/m];
876:         /* z_t = z; */
877:         s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
878:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
879:       }
880:       if (n16 >= 0) { /* directly above */
881:         x_t = x;
882:         y_t = ly[(n16 % (m*n))/m];
883:         /* z_t = z; */
884:         s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
885:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
886:       }
887:       if (n17 >= 0) { /* right above */
888:         x_t = lx[n17 % m];
889:         y_t = ly[(n17 % (m*n))/m];
890:         /* z_t = z; */
891:         s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
892:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
893:       }
894:     }
895:   }
896: 
897:   /* Upper Level */
898:   for (k=0; k<s_z; k++) {
899:     for (i=1; i<=s_y; i++) {
900:       if (n18 >= 0) { /* left below */
901:         x_t = lx[n18 % m];
902:         y_t = ly[(n18 % (m*n))/m];
903:         /* z_t = lz[n18 / (m*n)]; */
904:         s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
905:         if (s_t >= x*y*z) {s_t = bases[n18] - (s_y-i)*x_t -s_x + x_t*y_t;} /* 2d case */
906:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
907:       }
908:       if (n19 >= 0) { /* directly below */
909:         x_t = x;
910:         y_t = ly[(n19 % (m*n))/m];
911:         /* z_t = lz[n19 / (m*n)]; */
912:         s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
913:         if (s_t >= x*y*z) {s_t = bases[n19] - (s_y+1-i)*x_t + x_t*y_t;} /* 2d case */
914:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
915:       }
916:       if (n20 >= 0) { /* right below */
917:         x_t = lx[n20 % m];
918:         y_t = ly[(n20 % (m*n))/m];
919:         /* z_t = lz[n20 / (m*n)]; */
920:         s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
921:         if (s_t >= x*y*z) {s_t = bases[n20] - (s_y+1-i)*x_t + x_t*y_t;} /* 2d case */
922:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
923:       }
924:     }

926:     for (i=0; i<y; i++) {
927:       if (n21 >= 0) { /* directly left */
928:         x_t = lx[n21 % m];
929:         y_t = y;
930:         /* z_t = lz[n21 / (m*n)]; */
931:         s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
932:         if (s_t >= x*y*z) {s_t = bases[n21] + (i+1)*x_t - s_x;}  /* 2d case */
933:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
934:       }

936:       if (n22 >= 0) { /* middle */
937:         x_t = x;
938:         y_t = y;
939:         /* z_t = lz[n22 / (m*n)]; */
940:         s_t = bases[n22] + i*x_t + k*x_t*y_t;
941:         if (s_t >= x*y*z) {s_t = bases[n22] + i*x_t;} /* 2d case */
942:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
943:       }

945:       if (n23 >= 0) { /* directly right */
946:         x_t = lx[n23 % m];
947:         y_t = y;
948:         /* z_t = lz[n23 / (m*n)]; */
949:         s_t = bases[n23] + i*x_t + k*x_t*y_t;
950:         if (s_t >= x*y*z) {s_t = bases[n23] + i*x_t;} /* 2d case */
951:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
952:       }
953:     }

955:     for (i=1; i<=s_y; i++) {
956:       if (n24 >= 0) { /* left above */
957:         x_t = lx[n24 % m];
958:         y_t = ly[(n24 % (m*n))/m];
959:         /* z_t = lz[n24 / (m*n)]; */
960:         s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
961:         if (s_t >= x*y*z) {s_t = bases[n24] + i*x_t - s_x;} /* 2d case */
962:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
963:       }
964:       if (n25 >= 0) { /* directly above */
965:         x_t = x;
966:         y_t = ly[(n25 % (m*n))/m];
967:         /* z_t = lz[n25 / (m*n)]; */
968:         s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
969:         if (s_t >= x*y*z) {s_t = bases[n25] + (i-1)*x_t;} /* 2d case */
970:         for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
971:       }
972:       if (n26 >= 0) { /* right above */
973:         x_t = lx[n26 % m];
974:         y_t = ly[(n26 % (m*n))/m];
975:         /* z_t = lz[n26 / (m*n)]; */
976:         s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
977:         if (s_t >= x*y*z) {s_t = bases[n26] + (i-1)*x_t;} /* 2d case */
978:         for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
979:       }
980:     }
981:   }

983:   ISCreateBlock(comm,dof,nn,idx,PETSC_COPY_VALUES,&from);
984:   VecScatterCreate(global,from,local,to,&gtol);
985:   PetscLogObjectParent(da,gtol);
986:   ISDestroy(&to);
987:   ISDestroy(&from);

989:   if (stencil_type == DMDA_STENCIL_STAR) {
990:     n0  = sn0;  n1  = sn1;  n2  = sn2;  n3  = sn3;  n5  = sn5;  n6  = sn6; n7 = sn7;
991:     n8  = sn8;  n9  = sn9;  n11 = sn11; n15 = sn15; n17 = sn17; n18 = sn18;
992:     n19 = sn19; n20 = sn20; n21 = sn21; n23 = sn23; n24 = sn24; n25 = sn25;
993:     n26 = sn26;
994:   }

996:   if ((stencil_type == DMDA_STENCIL_STAR) ||
997:       (bx != DMDA_BOUNDARY_PERIODIC && bx) ||
998:       (by != DMDA_BOUNDARY_PERIODIC && by) ||
999:       (bz != DMDA_BOUNDARY_PERIODIC && bz)) {
1000:     /*
1001:         Recompute the local to global mappings, this time keeping the 
1002:       information about the cross corner processor numbers.
1003:     */
1004:     nn = 0;
1005:     /* Bottom Level */
1006:     for (k=0; k<s_z; k++) {
1007:       for (i=1; i<=s_y; i++) {
1008:         if (n0 >= 0) { /* left below */
1009:           x_t = lx[n0 % m];
1010:           y_t = ly[(n0 % (m*n))/m];
1011:           z_t = lz[n0 / (m*n)];
1012:           s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
1013:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1014:         } else if (Xs-xs < 0 && Ys-ys < 0 && Zs-zs < 0) {
1015:           for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1016:         }
1017:         if (n1 >= 0) { /* directly below */
1018:           x_t = x;
1019:           y_t = ly[(n1 % (m*n))/m];
1020:           z_t = lz[n1 / (m*n)];
1021:           s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1022:           for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1023:         } else if (Ys-ys < 0 && Zs-zs < 0) {
1024:           for (j=0; j<x; j++) { idx[nn++] = -1;}
1025:         }
1026:         if (n2 >= 0) { /* right below */
1027:           x_t = lx[n2 % m];
1028:           y_t = ly[(n2 % (m*n))/m];
1029:           z_t = lz[n2 / (m*n)];
1030:           s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1031:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1032:         } else if (xe-Xe < 0 && Ys-ys < 0 && Zs-zs < 0) {
1033:           for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1034:         }
1035:       }

1037:       for (i=0; i<y; i++) {
1038:         if (n3 >= 0) { /* directly left */
1039:           x_t = lx[n3 % m];
1040:           y_t = y;
1041:           z_t = lz[n3 / (m*n)];
1042:           s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1043:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1044:         } else if (Xs-xs < 0 && Zs-zs < 0) {
1045:           for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1046:         }

1048:         if (n4 >= 0) { /* middle */
1049:           x_t = x;
1050:           y_t = y;
1051:           z_t = lz[n4 / (m*n)];
1052:           s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1053:           for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1054:         } else if (Zs-zs < 0) {
1055:           for (j=0; j<x; j++) { idx[nn++] = -1;}
1056:         }

1058:         if (n5 >= 0) { /* directly right */
1059:           x_t = lx[n5 % m];
1060:           y_t = y;
1061:           z_t = lz[n5 / (m*n)];
1062:           s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1063:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1064:         } else if (xe-Xe < 0 && Zs-zs < 0) {
1065:           for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1066:         }
1067:       }

1069:       for (i=1; i<=s_y; i++) {
1070:         if (n6 >= 0) { /* left above */
1071:           x_t = lx[n6 % m];
1072:           y_t = ly[(n6 % (m*n))/m];
1073:           z_t = lz[n6 / (m*n)];
1074:           s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1075:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1076:         } else if (Xs-xs < 0 && ye-Ye < 0 && Zs-zs < 0) {
1077:           for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1078:         }
1079:         if (n7 >= 0) { /* directly above */
1080:           x_t = x;
1081:           y_t = ly[(n7 % (m*n))/m];
1082:           z_t = lz[n7 / (m*n)];
1083:           s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1084:           for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1085:         } else if (ye-Ye < 0 && Zs-zs < 0) {
1086:           for (j=0; j<x; j++) { idx[nn++] = -1;}
1087:         }
1088:         if (n8 >= 0) { /* right above */
1089:           x_t = lx[n8 % m];
1090:           y_t = ly[(n8 % (m*n))/m];
1091:           z_t = lz[n8 / (m*n)];
1092:           s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1093:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1094:         } else if (xe-Xe < 0 && ye-Ye < 0 && Zs-zs < 0) {
1095:           for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1096:         }
1097:       }
1098:     }

1100:     /* Middle Level */
1101:     for (k=0; k<z; k++) {
1102:       for (i=1; i<=s_y; i++) {
1103:         if (n9 >= 0) { /* left below */
1104:           x_t = lx[n9 % m];
1105:           y_t = ly[(n9 % (m*n))/m];
1106:           /* z_t = z; */
1107:           s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1108:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1109:         } else if (Xs-xs < 0 && Ys-ys < 0) {
1110:           for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1111:         }
1112:         if (n10 >= 0) { /* directly below */
1113:           x_t = x;
1114:           y_t = ly[(n10 % (m*n))/m];
1115:           /* z_t = z; */
1116:           s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1117:           for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1118:         } else if (Ys-ys < 0) {
1119:           for (j=0; j<x; j++) { idx[nn++] = -1;}
1120:         }
1121:         if (n11 >= 0) { /* right below */
1122:           x_t = lx[n11 % m];
1123:           y_t = ly[(n11 % (m*n))/m];
1124:           /* z_t = z; */
1125:           s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1126:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1127:         } else if (xe-Xe < 0 && Ys-ys < 0) {
1128:           for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1129:         }
1130:       }

1132:       for (i=0; i<y; i++) {
1133:         if (n12 >= 0) { /* directly left */
1134:           x_t = lx[n12 % m];
1135:           y_t = y;
1136:           /* z_t = z; */
1137:           s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
1138:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1139:         } else if (Xs-xs < 0) {
1140:           for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1141:         }

1143:         /* Interior */
1144:         s_t = bases[rank] + i*x + k*x*y;
1145:         for (j=0; j<x; j++) { idx[nn++] = s_t++;}

1147:         if (n14 >= 0) { /* directly right */
1148:           x_t = lx[n14 % m];
1149:           y_t = y;
1150:           /* z_t = z; */
1151:           s_t = bases[n14] + i*x_t + k*x_t*y_t;
1152:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1153:         } else if (xe-Xe < 0) {
1154:           for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1155:         }
1156:       }

1158:       for (i=1; i<=s_y; i++) {
1159:         if (n15 >= 0) { /* left above */
1160:           x_t = lx[n15 % m];
1161:           y_t = ly[(n15 % (m*n))/m];
1162:           /* z_t = z; */
1163:           s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
1164:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1165:         } else if (Xs-xs < 0 && ye-Ye < 0) {
1166:           for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1167:         }
1168:         if (n16 >= 0) { /* directly above */
1169:           x_t = x;
1170:           y_t = ly[(n16 % (m*n))/m];
1171:           /* z_t = z; */
1172:           s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
1173:           for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1174:         } else if (ye-Ye < 0) {
1175:           for (j=0; j<x; j++) { idx[nn++] = -1;}
1176:         }
1177:         if (n17 >= 0) { /* right above */
1178:           x_t = lx[n17 % m];
1179:           y_t = ly[(n17 % (m*n))/m];
1180:           /* z_t = z; */
1181:           s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
1182:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1183:         } else if (xe-Xe < 0 && ye-Ye < 0) {
1184:           for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1185:         }
1186:       }
1187:     }
1188: 
1189:     /* Upper Level */
1190:     for (k=0; k<s_z; k++) {
1191:       for (i=1; i<=s_y; i++) {
1192:         if (n18 >= 0) { /* left below */
1193:           x_t = lx[n18 % m];
1194:           y_t = ly[(n18 % (m*n))/m];
1195:           /* z_t = lz[n18 / (m*n)]; */
1196:           s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1197:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1198:         } else if (Xs-xs < 0 && Ys-ys < 0 && ze-Ze < 0) {
1199:           for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1200:         }
1201:         if (n19 >= 0) { /* directly below */
1202:           x_t = x;
1203:           y_t = ly[(n19 % (m*n))/m];
1204:           /* z_t = lz[n19 / (m*n)]; */
1205:           s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1206:           for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1207:         } else if (Ys-ys < 0 && ze-Ze < 0) {
1208:           for (j=0; j<x; j++) { idx[nn++] = -1;}
1209:         }
1210:         if (n20 >= 0) { /* right below */
1211:           x_t = lx[n20 % m];
1212:           y_t = ly[(n20 % (m*n))/m];
1213:           /* z_t = lz[n20 / (m*n)]; */
1214:           s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1215:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1216:         } else if (xe-Xe < 0 && Ys-ys < 0 && ze-Ze < 0) {
1217:           for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1218:         }
1219:       }

1221:       for (i=0; i<y; i++) {
1222:         if (n21 >= 0) { /* directly left */
1223:           x_t = lx[n21 % m];
1224:           y_t = y;
1225:           /* z_t = lz[n21 / (m*n)]; */
1226:           s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
1227:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1228:         } else if (Xs-xs < 0 && ze-Ze < 0) {
1229:           for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1230:         }

1232:         if (n22 >= 0) { /* middle */
1233:           x_t = x;
1234:           y_t = y;
1235:           /* z_t = lz[n22 / (m*n)]; */
1236:           s_t = bases[n22] + i*x_t + k*x_t*y_t;
1237:           for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1238:         } else if (ze-Ze < 0) {
1239:           for (j=0; j<x; j++) { idx[nn++] = -1;}
1240:         }

1242:         if (n23 >= 0) { /* directly right */
1243:           x_t = lx[n23 % m];
1244:           y_t = y;
1245:           /* z_t = lz[n23 / (m*n)]; */
1246:           s_t = bases[n23] + i*x_t + k*x_t*y_t;
1247:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1248:         } else if (xe-Xe < 0 && ze-Ze < 0) {
1249:           for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1250:         }
1251:       }

1253:       for (i=1; i<=s_y; i++) {
1254:         if (n24 >= 0) { /* left above */
1255:           x_t = lx[n24 % m];
1256:           y_t = ly[(n24 % (m*n))/m];
1257:           /* z_t = lz[n24 / (m*n)]; */
1258:           s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
1259:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1260:         } else if (Xs-xs < 0 && ye-Ye < 0 && ze-Ze < 0) {
1261:           for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1262:         }
1263:         if (n25 >= 0) { /* directly above */
1264:           x_t = x;
1265:           y_t = ly[(n25 % (m*n))/m];
1266:           /* z_t = lz[n25 / (m*n)]; */
1267:           s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1268:           for (j=0; j<x_t; j++) { idx[nn++] = s_t++;}
1269:         } else if (ye-Ye < 0 && ze-Ze < 0) {
1270:           for (j=0; j<x; j++) { idx[nn++] = -1;}
1271:         }
1272:         if (n26 >= 0) { /* right above */
1273:           x_t = lx[n26 % m];
1274:           y_t = ly[(n26 % (m*n))/m];
1275:           /* z_t = lz[n26 / (m*n)]; */
1276:           s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1277:           for (j=0; j<s_x; j++) { idx[nn++] = s_t++;}
1278:         } else if (xe-Xe < 0 && ye-Ye < 0 && ze-Ze < 0) {
1279:           for (j=0; j<s_x; j++) { idx[nn++] = -1;}
1280:         }
1281:       }
1282:     }
1283:   }
1284:   /*
1285:      Set the local to global ordering in the global vector, this allows use
1286:      of VecSetValuesLocal().
1287:   */
1288:   ISCreateBlock(comm,dof,nn,idx,PETSC_OWN_POINTER,&ltogis);
1289:   PetscMalloc(nn*dof*sizeof(PetscInt),&idx_cpy);
1290:   PetscLogObjectMemory(da,nn*dof*sizeof(PetscInt));
1291:   ISGetIndices(ltogis, &idx_full);
1292:   PetscMemcpy(idx_cpy,idx_full,nn*dof*sizeof(PetscInt));
1293:   ISRestoreIndices(ltogis, &idx_full);
1294:   ISLocalToGlobalMappingCreateIS(ltogis,&da->ltogmap);
1295:   PetscLogObjectParent(da,da->ltogmap);
1296:   ISDestroy(&ltogis);
1297:   ISLocalToGlobalMappingBlock(da->ltogmap,dd->w,&da->ltogmapb);
1298:   PetscLogObjectParent(da,da->ltogmap);

1300:   PetscFree2(bases,ldims);
1301:   dd->m  = m;  dd->n  = n;  dd->p  = p;
1302:   /* note petsc expects xs/xe/Xs/Xe to be multiplied by #dofs in many places */
1303:   dd->xs = xs*dof; dd->xe = xe*dof; dd->ys = ys; dd->ye = ye; dd->zs = zs; dd->ze = ze;
1304:   dd->Xs = Xs*dof; dd->Xe = Xe*dof; dd->Ys = Ys; dd->Ye = Ye; dd->Zs = Zs; dd->Ze = Ze;

1306:   VecDestroy(&local);
1307:   VecDestroy(&global);

1309:   dd->gtol      = gtol;
1310:   dd->ltog      = ltog;
1311:   dd->idx       = idx_cpy;
1312:   dd->Nl        = nn*dof;
1313:   dd->base      = base;
1314:   da->ops->view = DMView_DA_3d;
1315:   dd->ltol = PETSC_NULL;
1316:   dd->ao   = PETSC_NULL;

1318:   return(0);
1319: }


1324: /*@C
1325:    DMDACreate3d - Creates an object that will manage the communication of three-dimensional 
1326:    regular array data that is distributed across some processors.

1328:    Collective on MPI_Comm

1330:    Input Parameters:
1331: +  comm - MPI communicator
1332: .  bx,by,bz - type of ghost nodes the array have. 
1333:          Use one of DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_GHOSTED, DMDA_BOUNDARY_PERIODIC.
1334: .  stencil_type - Type of stencil (DMDA_STENCIL_STAR or DMDA_STENCIL_BOX)
1335: .  M,N,P - global dimension in each direction of the array (use -M, -N, and or -P to indicate that it may be set to a different value 
1336:             from the command line with -da_grid_x <M> -da_grid_y <N> -da_grid_z <P>)
1337: .  m,n,p - corresponding number of processors in each dimension 
1338:            (or PETSC_DECIDE to have calculated)
1339: .  dof - number of degrees of freedom per node
1340: .  lx, ly, lz - arrays containing the number of nodes in each cell along
1341:           the x, y, and z coordinates, or PETSC_NULL. If non-null, these
1342:           must be of length as m,n,p and the corresponding
1343:           m,n, or p cannot be PETSC_DECIDE. Sum of the lx[] entries must be M, sum of
1344:           the ly[] must N, sum of the lz[] must be P
1345: -  s - stencil width

1347:    Output Parameter:
1348: .  da - the resulting distributed array object

1350:    Options Database Key:
1351: +  -da_view - Calls DMView() at the conclusion of DMDACreate3d()
1352: .  -da_grid_x <nx> - number of grid points in x direction, if M < 0
1353: .  -da_grid_y <ny> - number of grid points in y direction, if N < 0
1354: .  -da_grid_z <nz> - number of grid points in z direction, if P < 0
1355: .  -da_processors_x <MX> - number of processors in x direction
1356: .  -da_processors_y <MY> - number of processors in y direction
1357: .  -da_processors_z <MZ> - number of processors in z direction
1358: .  -da_refine_x <rx> - refinement ratio in x direction
1359: .  -da_refine_y <ry> - refinement ratio in y direction
1360: .  -da_refine_z <rz>- refinement ratio in z directio
1361: -  -da_refine <n> - refine the DMDA n times before creating it, , if M, N, or P < 0

1363:    Level: beginner

1365:    Notes:
1366:    The stencil type DMDA_STENCIL_STAR with width 1 corresponds to the 
1367:    standard 7-pt stencil, while DMDA_STENCIL_BOX with width 1 denotes
1368:    the standard 27-pt stencil.

1370:    The array data itself is NOT stored in the DMDA, it is stored in Vec objects;
1371:    The appropriate vector objects can be obtained with calls to DMCreateGlobalVector()
1372:    and DMCreateLocalVector() and calls to VecDuplicate() if more are needed.

1374: .keywords: distributed array, create, three-dimensional

1376: .seealso: DMDestroy(), DMView(), DMDACreate1d(), DMDACreate2d(), DMGlobalToLocalBegin(), DMDAGetRefinementFactor(),
1377:           DMGlobalToLocalEnd(), DMLocalToGlobalBegin(), DMDALocalToLocalBegin(), DMDALocalToLocalEnd(), DMDASetRefinementFactor(),
1378:           DMDAGetInfo(), DMCreateGlobalVector(), DMCreateLocalVector(), DMDACreateNaturalVector(), DMLoad(), DMDAGetOwnershipRanges()

1380: @*/
1381: PetscErrorCode  DMDACreate3d(MPI_Comm comm,DMDABoundaryType bx,DMDABoundaryType by,DMDABoundaryType bz,DMDAStencilType stencil_type,PetscInt M,
1382:                PetscInt N,PetscInt P,PetscInt m,PetscInt n,PetscInt p,PetscInt dof,PetscInt s,const PetscInt lx[],const PetscInt ly[],const PetscInt lz[],DM *da)
1383: {

1387:   DMDACreate(comm, da);
1388:   DMDASetDim(*da, 3);
1389:   DMDASetSizes(*da, M, N, P);
1390:   DMDASetNumProcs(*da, m, n, p);
1391:   DMDASetBoundaryType(*da, bx, by, bz);
1392:   DMDASetDof(*da, dof);
1393:   DMDASetStencilType(*da, stencil_type);
1394:   DMDASetStencilWidth(*da, s);
1395:   DMDASetOwnershipRanges(*da, lx, ly, lz);
1396:   /* This violates the behavior for other classes, but right now users expect negative dimensions to be handled this way */
1397:   DMSetFromOptions(*da);
1398:   DMSetUp(*da);
1399:   DMView_DA_Private(*da);
1400:   return(0);
1401: }