Actual source code: da3.c

petsc-3.8.0 2017-09-26
Report Typos and Errors

  2: /*
  3:    Code for manipulating distributed regular 3d arrays in parallel.
  4:    File created by Peter Mell  7/14/95
  5:  */

  7:  #include <petsc/private/dmdaimpl.h>

  9:  #include <petscdraw.h>
 10: static PetscErrorCode DMView_DA_3d(DM da,PetscViewer viewer)
 11: {
 13:   PetscMPIInt    rank;
 14:   PetscBool      iascii,isdraw,isbinary;
 15:   DM_DA          *dd = (DM_DA*)da->data;
 16: #if defined(PETSC_HAVE_MATLAB_ENGINE)
 17:   PetscBool ismatlab;
 18: #endif

 21:   MPI_Comm_rank(PetscObjectComm((PetscObject)da),&rank);

 23:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
 24:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
 25:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
 26: #if defined(PETSC_HAVE_MATLAB_ENGINE)
 27:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERMATLAB,&ismatlab);
 28: #endif
 29:   if (iascii) {
 30:     PetscViewerFormat format;

 32:     PetscViewerASCIIPushSynchronized(viewer);
 33:     PetscViewerGetFormat(viewer, &format);
 34:     if (format != PETSC_VIEWER_ASCII_VTK && format != PETSC_VIEWER_ASCII_VTK_CELL && format != PETSC_VIEWER_ASCII_GLVIS) {
 35:       DMDALocalInfo info;
 36:       DMDAGetLocalInfo(da,&info);
 37:       PetscViewerASCIISynchronizedPrintf(viewer,"Processor [%d] M %D N %D P %D m %D n %D p %D w %D s %D\n",rank,dd->M,dd->N,dd->P,dd->m,dd->n,dd->p,dd->w,dd->s);
 38:       PetscViewerASCIISynchronizedPrintf(viewer,"X range of indices: %D %D, Y range of indices: %D %D, Z range of indices: %D %D\n",
 39:                                                 info.xs,info.xs+info.xm,info.ys,info.ys+info.ym,info.zs,info.zs+info.zm);
 40: #if !defined(PETSC_USE_COMPLEX)
 41:       if (da->coordinates) {
 42:         PetscInt        last;
 43:         const PetscReal *coors;
 44:         VecGetArrayRead(da->coordinates,&coors);
 45:         VecGetLocalSize(da->coordinates,&last);
 46:         last = last - 3;
 47:         PetscViewerASCIISynchronizedPrintf(viewer,"Lower left corner %g %g %g : Upper right %g %g %g\n",(double)coors[0],(double)coors[1],(double)coors[2],(double)coors[last],(double)coors[last+1],(double)coors[last+2]);
 48:         VecRestoreArrayRead(da->coordinates,&coors);
 49:       }
 50: #endif
 51:       PetscViewerFlush(viewer);
 52:       PetscViewerASCIIPopSynchronized(viewer);
 53:     } else if (format == PETSC_VIEWER_ASCII_GLVIS) {
 54:       DMView_DA_GLVis(da,viewer);
 55:     } else {
 56:       DMView_DA_VTK(da,viewer);
 57:     }
 58:   } else if (isdraw) {
 59:     PetscDraw      draw;
 60:     PetscReal      ymin = -1.0,ymax = (PetscReal)dd->N;
 61:     PetscReal      xmin = -1.0,xmax = (PetscReal)((dd->M+2)*dd->P),x,y,ycoord,xcoord;
 62:     PetscInt       k,plane,base;
 63:     const PetscInt *idx;
 64:     char           node[10];
 65:     PetscBool      isnull;

 67:     PetscViewerDrawGetDraw(viewer,0,&draw);
 68:     PetscDrawIsNull(draw,&isnull);
 69:     if (isnull) return(0);

 71:     PetscDrawCheckResizedWindow(draw);
 72:     PetscDrawClear(draw);
 73:     PetscDrawSetCoordinates(draw,xmin,ymin,xmax,ymax);

 75:     PetscDrawCollectiveBegin(draw);
 76:     /* first processor draw all node lines */
 77:     if (!rank) {
 78:       for (k=0; k<dd->P; k++) {
 79:         ymin = 0.0; ymax = (PetscReal)(dd->N - 1);
 80:         for (xmin=(PetscReal)(k*(dd->M+1)); xmin<(PetscReal)(dd->M+(k*(dd->M+1))); xmin++) {
 81:           PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_BLACK);
 82:         }
 83:         xmin = (PetscReal)(k*(dd->M+1)); xmax = xmin + (PetscReal)(dd->M - 1);
 84:         for (ymin=0; ymin<(PetscReal)dd->N; ymin++) {
 85:           PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_BLACK);
 86:         }
 87:       }
 88:     }
 89:     PetscDrawCollectiveEnd(draw);
 90:     PetscDrawFlush(draw);
 91:     PetscDrawPause(draw);

 93:     PetscDrawCollectiveBegin(draw);
 94:     /*Go through and draw for each plane*/
 95:     for (k=0; k<dd->P; k++) {
 96:       if ((k >= dd->zs) && (k < dd->ze)) {
 97:         /* draw my box */
 98:         ymin = dd->ys;
 99:         ymax = dd->ye - 1;
100:         xmin = dd->xs/dd->w    + (dd->M+1)*k;
101:         xmax =(dd->xe-1)/dd->w + (dd->M+1)*k;

103:         PetscDrawLine(draw,xmin,ymin,xmax,ymin,PETSC_DRAW_RED);
104:         PetscDrawLine(draw,xmin,ymin,xmin,ymax,PETSC_DRAW_RED);
105:         PetscDrawLine(draw,xmin,ymax,xmax,ymax,PETSC_DRAW_RED);
106:         PetscDrawLine(draw,xmax,ymin,xmax,ymax,PETSC_DRAW_RED);

108:         xmin = dd->xs/dd->w;
109:         xmax =(dd->xe-1)/dd->w;

111:         /* identify which processor owns the box */
112:         PetscSNPrintf(node,sizeof(node),"%d",(int)rank);
113:         PetscDrawString(draw,xmin+(dd->M+1)*k+.2,ymin+.3,PETSC_DRAW_RED,node);
114:         /* put in numbers*/
115:         base = (dd->base+(dd->xe-dd->xs)*(dd->ye-dd->ys)*(k-dd->zs))/dd->w;
116:         for (y=ymin; y<=ymax; y++) {
117:           for (x=xmin+(dd->M+1)*k; x<=xmax+(dd->M+1)*k; x++) {
118:             PetscSNPrintf(node,sizeof(node),"%d",(int)base++);
119:             PetscDrawString(draw,x,y,PETSC_DRAW_BLACK,node);
120:           }
121:         }

123:       }
124:     }
125:     PetscDrawCollectiveEnd(draw);
126:     PetscDrawFlush(draw);
127:     PetscDrawPause(draw);

129:     PetscDrawCollectiveBegin(draw);
130:     for (k=0-dd->s; k<dd->P+dd->s; k++) {
131:       /* Go through and draw for each plane */
132:       if ((k >= dd->Zs) && (k < dd->Ze)) {
133:         /* overlay ghost numbers, useful for error checking */
134:         base = (dd->Xe-dd->Xs)*(dd->Ye-dd->Ys)*(k-dd->Zs)/dd->w;
135:         ISLocalToGlobalMappingGetBlockIndices(da->ltogmap,&idx);
136:         plane=k;
137:         /* Keep z wrap around points on the drawing */
138:         if (k<0) plane=dd->P+k;
139:         if (k>=dd->P) plane=k-dd->P;
140:         ymin = dd->Ys; ymax = dd->Ye;
141:         xmin = (dd->M+1)*plane*dd->w;
142:         xmax = (dd->M+1)*plane*dd->w+dd->M*dd->w;
143:         for (y=ymin; y<ymax; y++) {
144:           for (x=xmin+dd->Xs; x<xmin+dd->Xe; x+=dd->w) {
145:             sprintf(node,"%d",(int)(idx[base]));
146:             ycoord = y;
147:             /*Keep y wrap around points on drawing */
148:             if (y<0) ycoord = dd->N+y;
149:             if (y>=dd->N) ycoord = y-dd->N;
150:             xcoord = x;   /* Keep x wrap points on drawing */
151:             if (x<xmin) xcoord = xmax - (xmin-x);
152:             if (x>=xmax) xcoord = xmin + (x-xmax);
153:             PetscDrawString(draw,xcoord/dd->w,ycoord,PETSC_DRAW_BLUE,node);
154:             base++;
155:           }
156:         }
157:         ISLocalToGlobalMappingRestoreBlockIndices(da->ltogmap,&idx);
158:       }
159:     }
160:     PetscDrawCollectiveEnd(draw);
161:     PetscDrawFlush(draw);
162:     PetscDrawPause(draw);
163:     PetscDrawSave(draw);
164:   } else if (isbinary) {
165:     DMView_DA_Binary(da,viewer);
166: #if defined(PETSC_HAVE_MATLAB_ENGINE)
167:   } else if (ismatlab) {
168:     DMView_DA_Matlab(da,viewer);
169: #endif
170:   }
171:   return(0);
172: }

174: PetscErrorCode  DMSetUp_DA_3D(DM da)
175: {
176:   DM_DA            *dd          = (DM_DA*)da->data;
177:   const PetscInt   M            = dd->M;
178:   const PetscInt   N            = dd->N;
179:   const PetscInt   P            = dd->P;
180:   PetscInt         m            = dd->m;
181:   PetscInt         n            = dd->n;
182:   PetscInt         p            = dd->p;
183:   const PetscInt   dof          = dd->w;
184:   const PetscInt   s            = dd->s;
185:   DMBoundaryType   bx           = dd->bx;
186:   DMBoundaryType   by           = dd->by;
187:   DMBoundaryType   bz           = dd->bz;
188:   DMDAStencilType  stencil_type = dd->stencil_type;
189:   PetscInt         *lx          = dd->lx;
190:   PetscInt         *ly          = dd->ly;
191:   PetscInt         *lz          = dd->lz;
192:   MPI_Comm         comm;
193:   PetscMPIInt      rank,size;
194:   PetscInt         xs = 0,xe,ys = 0,ye,zs = 0,ze,x = 0,y = 0,z = 0;
195:   PetscInt         Xs,Xe,Ys,Ye,Zs,Ze,IXs,IXe,IYs,IYe,IZs,IZe,pm;
196:   PetscInt         left,right,up,down,bottom,top,i,j,k,*idx,nn;
197:   PetscInt         n0,n1,n2,n3,n4,n5,n6,n7,n8,n9,n10,n11,n12,n14;
198:   PetscInt         n15,n16,n17,n18,n19,n20,n21,n22,n23,n24,n25,n26;
199:   PetscInt         *bases,*ldims,base,x_t,y_t,z_t,s_t,count,s_x,s_y,s_z;
200:   PetscInt         sn0  = 0,sn1 = 0,sn2 = 0,sn3 = 0,sn5 = 0,sn6 = 0,sn7 = 0;
201:   PetscInt         sn8  = 0,sn9 = 0,sn11 = 0,sn15 = 0,sn24 = 0,sn25 = 0,sn26 = 0;
202:   PetscInt         sn17 = 0,sn18 = 0,sn19 = 0,sn20 = 0,sn21 = 0,sn23 = 0;
203:   Vec              local,global;
204:   VecScatter       gtol;
205:   IS               to,from;
206:   PetscBool        twod;
207:   PetscErrorCode   ierr;


211:   if (stencil_type == DMDA_STENCIL_BOX && (bx == DM_BOUNDARY_MIRROR || by == DM_BOUNDARY_MIRROR || bz == DM_BOUNDARY_MIRROR)) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_SUP,"Mirror boundary and box stencil");
212:   if ((bx == DM_BOUNDARY_MIRROR) || (by == DM_BOUNDARY_MIRROR) || (bz == DM_BOUNDARY_MIRROR)) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_SUP,"Mirror boundary not supported yet in 3d");
213:   PetscObjectGetComm((PetscObject) da, &comm);
214: #if !defined(PETSC_USE_64BIT_INDICES)
215:   if (((PetscInt64) M)*((PetscInt64) N)*((PetscInt64) P)*((PetscInt64) dof) > (PetscInt64) PETSC_MPI_INT_MAX) SETERRQ3(comm,PETSC_ERR_INT_OVERFLOW,"Mesh of %D by %D by %D (dof) is too large for 32 bit indices",M,N,dof);
216: #endif

218:   MPI_Comm_size(comm,&size);
219:   MPI_Comm_rank(comm,&rank);

221:   if (m != PETSC_DECIDE) {
222:     if (m < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in X direction: %D",m);
223:     else if (m > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in X direction: %D %d",m,size);
224:   }
225:   if (n != PETSC_DECIDE) {
226:     if (n < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Y direction: %D",n);
227:     else if (n > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Y direction: %D %d",n,size);
228:   }
229:   if (p != PETSC_DECIDE) {
230:     if (p < 1) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Non-positive number of processors in Z direction: %D",p);
231:     else if (p > size) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many processors in Z direction: %D %d",p,size);
232:   }
233:   if ((m > 0) && (n > 0) && (p > 0) && (m*n*p != size)) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"m %D * n %D * p %D != size %d",m,n,p,size);

235:   /* Partition the array among the processors */
236:   if (m == PETSC_DECIDE && n != PETSC_DECIDE && p != PETSC_DECIDE) {
237:     m = size/(n*p);
238:   } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
239:     n = size/(m*p);
240:   } else if (m != PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
241:     p = size/(m*n);
242:   } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p != PETSC_DECIDE) {
243:     /* try for squarish distribution */
244:     m = (int)(0.5 + PetscSqrtReal(((PetscReal)M)*((PetscReal)size)/((PetscReal)N*p)));
245:     if (!m) m = 1;
246:     while (m > 0) {
247:       n = size/(m*p);
248:       if (m*n*p == size) break;
249:       m--;
250:     }
251:     if (!m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad p value: p = %D",p);
252:     if (M > N && m < n) {PetscInt _m = m; m = n; n = _m;}
253:   } else if (m == PETSC_DECIDE && n != PETSC_DECIDE && p == PETSC_DECIDE) {
254:     /* try for squarish distribution */
255:     m = (int)(0.5 + PetscSqrtReal(((PetscReal)M)*((PetscReal)size)/((PetscReal)P*n)));
256:     if (!m) m = 1;
257:     while (m > 0) {
258:       p = size/(m*n);
259:       if (m*n*p == size) break;
260:       m--;
261:     }
262:     if (!m) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad n value: n = %D",n);
263:     if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
264:   } else if (m != PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
265:     /* try for squarish distribution */
266:     n = (int)(0.5 + PetscSqrtReal(((PetscReal)N)*((PetscReal)size)/((PetscReal)P*m)));
267:     if (!n) n = 1;
268:     while (n > 0) {
269:       p = size/(m*n);
270:       if (m*n*p == size) break;
271:       n--;
272:     }
273:     if (!n) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"bad m value: m = %D",n);
274:     if (N > P && n < p) {PetscInt _n = n; n = p; p = _n;}
275:   } else if (m == PETSC_DECIDE && n == PETSC_DECIDE && p == PETSC_DECIDE) {
276:     /* try for squarish distribution */
277:     n = (PetscInt)(0.5 + PetscPowReal(((PetscReal)N*N)*((PetscReal)size)/((PetscReal)P*M),(PetscReal)(1./3.)));
278:     if (!n) n = 1;
279:     while (n > 0) {
280:       pm = size/n;
281:       if (n*pm == size) break;
282:       n--;
283:     }
284:     if (!n) n = 1;
285:     m = (PetscInt)(0.5 + PetscSqrtReal(((PetscReal)M)*((PetscReal)size)/((PetscReal)P*n)));
286:     if (!m) m = 1;
287:     while (m > 0) {
288:       p = size/(m*n);
289:       if (m*n*p == size) break;
290:       m--;
291:     }
292:     if (M > P && m < p) {PetscInt _m = m; m = p; p = _m;}
293:   } else if (m*n*p != size) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Given Bad partition");

295:   if (m*n*p != size) SETERRQ(PetscObjectComm((PetscObject)da),PETSC_ERR_PLIB,"Could not find good partition");
296:   if (M < m) SETERRQ2(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Partition in x direction is too fine! %D %D",M,m);
297:   if (N < n) SETERRQ2(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Partition in y direction is too fine! %D %D",N,n);
298:   if (P < p) SETERRQ2(PetscObjectComm((PetscObject)da),PETSC_ERR_ARG_OUTOFRANGE,"Partition in z direction is too fine! %D %D",P,p);

300:   /*
301:      Determine locally owned region
302:      [x, y, or z]s is the first local node number, [x, y, z] is the number of local nodes
303:   */

305:   if (!lx) {
306:     PetscMalloc1(m, &dd->lx);
307:     lx   = dd->lx;
308:     for (i=0; i<m; i++) lx[i] = M/m + ((M % m) > (i % m));
309:   }
310:   x  = lx[rank % m];
311:   xs = 0;
312:   for (i=0; i<(rank%m); i++) xs += lx[i];
313:   if ((x < s) && ((m > 1) || (bx == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local x-width of domain x %D is smaller than stencil width s %D",x,s);

315:   if (!ly) {
316:     PetscMalloc1(n, &dd->ly);
317:     ly   = dd->ly;
318:     for (i=0; i<n; i++) ly[i] = N/n + ((N % n) > (i % n));
319:   }
320:   y = ly[(rank % (m*n))/m];
321:   if ((y < s) && ((n > 1) || (by == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local y-width of domain y %D is smaller than stencil width s %D",y,s);

323:   ys = 0;
324:   for (i=0; i<(rank % (m*n))/m; i++) ys += ly[i];

326:   if (!lz) {
327:     PetscMalloc1(p, &dd->lz);
328:     lz = dd->lz;
329:     for (i=0; i<p; i++) lz[i] = P/p + ((P % p) > (i % p));
330:   }
331:   z = lz[rank/(m*n)];

333:   /* note this is different than x- and y-, as we will handle as an important special
334:    case when p=P=1 and DM_BOUNDARY_PERIODIC and s > z.  This is to deal with 2D problems
335:    in a 3D code.  Additional code for this case is noted with "2d case" comments */
336:   twod = PETSC_FALSE;
337:   if (P == 1) twod = PETSC_TRUE;
338:   else if ((z < s) && ((p > 1) || (bz == DM_BOUNDARY_PERIODIC))) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local z-width of domain z %D is smaller than stencil width s %D",z,s);
339:   zs = 0;
340:   for (i=0; i<(rank/(m*n)); i++) zs += lz[i];
341:   ye = ys + y;
342:   xe = xs + x;
343:   ze = zs + z;

345:   /* determine ghost region (Xs) and region scattered into (IXs)  */
346:   if (xs-s > 0) {
347:     Xs = xs - s; IXs = xs - s;
348:   } else {
349:     if (bx) Xs = xs - s;
350:     else Xs = 0;
351:     IXs = 0;
352:   }
353:   if (xe+s <= M) {
354:     Xe = xe + s; IXe = xe + s;
355:   } else {
356:     if (bx) {
357:       Xs = xs - s; Xe = xe + s;
358:     } else Xe = M;
359:     IXe = M;
360:   }

362:   if (bx == DM_BOUNDARY_PERIODIC || bx == DM_BOUNDARY_MIRROR) {
363:     IXs = xs - s;
364:     IXe = xe + s;
365:     Xs  = xs - s;
366:     Xe  = xe + s;
367:   }

369:   if (ys-s > 0) {
370:     Ys = ys - s; IYs = ys - s;
371:   } else {
372:     if (by) Ys = ys - s;
373:     else Ys = 0;
374:     IYs = 0;
375:   }
376:   if (ye+s <= N) {
377:     Ye = ye + s; IYe = ye + s;
378:   } else {
379:     if (by) Ye = ye + s;
380:     else Ye = N;
381:     IYe = N;
382:   }

384:   if (by == DM_BOUNDARY_PERIODIC || by == DM_BOUNDARY_MIRROR) {
385:     IYs = ys - s;
386:     IYe = ye + s;
387:     Ys  = ys - s;
388:     Ye  = ye + s;
389:   }

391:   if (zs-s > 0) {
392:     Zs = zs - s; IZs = zs - s;
393:   } else {
394:     if (bz) Zs = zs - s;
395:     else Zs = 0;
396:     IZs = 0;
397:   }
398:   if (ze+s <= P) {
399:     Ze = ze + s; IZe = ze + s;
400:   } else {
401:     if (bz) Ze = ze + s;
402:     else Ze = P;
403:     IZe = P;
404:   }

406:   if (bz == DM_BOUNDARY_PERIODIC || bz == DM_BOUNDARY_MIRROR) {
407:     IZs = zs - s;
408:     IZe = ze + s;
409:     Zs  = zs - s;
410:     Ze  = ze + s;
411:   }

413:   /* Resize all X parameters to reflect w */
414:   s_x = s;
415:   s_y = s;
416:   s_z = s;

418:   /* determine starting point of each processor */
419:   nn       = x*y*z;
420:   PetscMalloc2(size+1,&bases,size,&ldims);
421:   MPI_Allgather(&nn,1,MPIU_INT,ldims,1,MPIU_INT,comm);
422:   bases[0] = 0;
423:   for (i=1; i<=size; i++) bases[i] = ldims[i-1];
424:   for (i=1; i<=size; i++) bases[i] += bases[i-1];
425:   base = bases[rank]*dof;

427:   /* allocate the base parallel and sequential vectors */
428:   dd->Nlocal = x*y*z*dof;
429:   VecCreateMPIWithArray(comm,dof,dd->Nlocal,PETSC_DECIDE,NULL,&global);
430:   dd->nlocal = (Xe-Xs)*(Ye-Ys)*(Ze-Zs)*dof;
431:   VecCreateSeqWithArray(PETSC_COMM_SELF,dof,dd->nlocal,NULL,&local);

433:   /* generate appropriate vector scatters */
434:   /* local to global inserts non-ghost point region into global */
435:   PetscMalloc1((IXe-IXs)*(IYe-IYs)*(IZe-IZs),&idx);
436:   left   = xs - Xs; right = left + x;
437:   bottom = ys - Ys; top = bottom + y;
438:   down   = zs - Zs; up  = down + z;
439:   count  = 0;
440:   for (i=down; i<up; i++) {
441:     for (j=bottom; j<top; j++) {
442:       for (k=left; k<right; k++) {
443:         idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
444:       }
445:     }
446:   }

448:   /* global to local must include ghost points within the domain,
449:      but not ghost points outside the domain that aren't periodic */
450:   if (stencil_type == DMDA_STENCIL_BOX) {
451:     left   = IXs - Xs; right = left + (IXe-IXs);
452:     bottom = IYs - Ys; top = bottom + (IYe-IYs);
453:     down   = IZs - Zs; up  = down + (IZe-IZs);
454:     count  = 0;
455:     for (i=down; i<up; i++) {
456:       for (j=bottom; j<top; j++) {
457:         for (k=left; k<right; k++) {
458:           idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
459:         }
460:       }
461:     }
462:     ISCreateBlock(comm,dof,count,idx,PETSC_OWN_POINTER,&to);
463:   } else {
464:     /* This is way ugly! We need to list the funny cross type region */
465:     left   = xs - Xs; right = left + x;
466:     bottom = ys - Ys; top = bottom + y;
467:     down   = zs - Zs;   up  = down + z;
468:     count  = 0;
469:     /* the bottom chunck */
470:     for (i=(IZs-Zs); i<down; i++) {
471:       for (j=bottom; j<top; j++) {
472:         for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
473:       }
474:     }
475:     /* the middle piece */
476:     for (i=down; i<up; i++) {
477:       /* front */
478:       for (j=(IYs-Ys); j<bottom; j++) {
479:         for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
480:       }
481:       /* middle */
482:       for (j=bottom; j<top; j++) {
483:         for (k=IXs-Xs; k<IXe-Xs; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
484:       }
485:       /* back */
486:       for (j=top; j<top+IYe-ye; j++) {
487:         for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
488:       }
489:     }
490:     /* the top piece */
491:     for (i=up; i<up+IZe-ze; i++) {
492:       for (j=bottom; j<top; j++) {
493:         for (k=left; k<right; k++) idx[count++] = (i*(Ye-Ys) + j)*(Xe-Xs) + k;
494:       }
495:     }
496:     ISCreateBlock(comm,dof,count,idx,PETSC_OWN_POINTER,&to);
497:   }

499:   /* determine who lies on each side of use stored in    n24 n25 n26
500:                                                          n21 n22 n23
501:                                                          n18 n19 n20

503:                                                          n15 n16 n17
504:                                                          n12     n14
505:                                                          n9  n10 n11

507:                                                          n6  n7  n8
508:                                                          n3  n4  n5
509:                                                          n0  n1  n2
510:   */

512:   /* Solve for X,Y, and Z Periodic Case First, Then Modify Solution */
513:   /* Assume Nodes are Internal to the Cube */
514:   n0 = rank - m*n - m - 1;
515:   n1 = rank - m*n - m;
516:   n2 = rank - m*n - m + 1;
517:   n3 = rank - m*n -1;
518:   n4 = rank - m*n;
519:   n5 = rank - m*n + 1;
520:   n6 = rank - m*n + m - 1;
521:   n7 = rank - m*n + m;
522:   n8 = rank - m*n + m + 1;

524:   n9  = rank - m - 1;
525:   n10 = rank - m;
526:   n11 = rank - m + 1;
527:   n12 = rank - 1;
528:   n14 = rank + 1;
529:   n15 = rank + m - 1;
530:   n16 = rank + m;
531:   n17 = rank + m + 1;

533:   n18 = rank + m*n - m - 1;
534:   n19 = rank + m*n - m;
535:   n20 = rank + m*n - m + 1;
536:   n21 = rank + m*n - 1;
537:   n22 = rank + m*n;
538:   n23 = rank + m*n + 1;
539:   n24 = rank + m*n + m - 1;
540:   n25 = rank + m*n + m;
541:   n26 = rank + m*n + m + 1;

543:   /* Assume Pieces are on Faces of Cube */

545:   if (xs == 0) { /* First assume not corner or edge */
546:     n0  = rank       -1 - (m*n);
547:     n3  = rank + m   -1 - (m*n);
548:     n6  = rank + 2*m -1 - (m*n);
549:     n9  = rank       -1;
550:     n12 = rank + m   -1;
551:     n15 = rank + 2*m -1;
552:     n18 = rank       -1 + (m*n);
553:     n21 = rank + m   -1 + (m*n);
554:     n24 = rank + 2*m -1 + (m*n);
555:   }

557:   if (xe == M) { /* First assume not corner or edge */
558:     n2  = rank -2*m +1 - (m*n);
559:     n5  = rank - m  +1 - (m*n);
560:     n8  = rank      +1 - (m*n);
561:     n11 = rank -2*m +1;
562:     n14 = rank - m  +1;
563:     n17 = rank      +1;
564:     n20 = rank -2*m +1 + (m*n);
565:     n23 = rank - m  +1 + (m*n);
566:     n26 = rank      +1 + (m*n);
567:   }

569:   if (ys==0) { /* First assume not corner or edge */
570:     n0  = rank + m * (n-1) -1 - (m*n);
571:     n1  = rank + m * (n-1)    - (m*n);
572:     n2  = rank + m * (n-1) +1 - (m*n);
573:     n9  = rank + m * (n-1) -1;
574:     n10 = rank + m * (n-1);
575:     n11 = rank + m * (n-1) +1;
576:     n18 = rank + m * (n-1) -1 + (m*n);
577:     n19 = rank + m * (n-1)    + (m*n);
578:     n20 = rank + m * (n-1) +1 + (m*n);
579:   }

581:   if (ye == N) { /* First assume not corner or edge */
582:     n6  = rank - m * (n-1) -1 - (m*n);
583:     n7  = rank - m * (n-1)    - (m*n);
584:     n8  = rank - m * (n-1) +1 - (m*n);
585:     n15 = rank - m * (n-1) -1;
586:     n16 = rank - m * (n-1);
587:     n17 = rank - m * (n-1) +1;
588:     n24 = rank - m * (n-1) -1 + (m*n);
589:     n25 = rank - m * (n-1)    + (m*n);
590:     n26 = rank - m * (n-1) +1 + (m*n);
591:   }

593:   if (zs == 0) { /* First assume not corner or edge */
594:     n0 = size - (m*n) + rank - m - 1;
595:     n1 = size - (m*n) + rank - m;
596:     n2 = size - (m*n) + rank - m + 1;
597:     n3 = size - (m*n) + rank - 1;
598:     n4 = size - (m*n) + rank;
599:     n5 = size - (m*n) + rank + 1;
600:     n6 = size - (m*n) + rank + m - 1;
601:     n7 = size - (m*n) + rank + m;
602:     n8 = size - (m*n) + rank + m + 1;
603:   }

605:   if (ze == P) { /* First assume not corner or edge */
606:     n18 = (m*n) - (size-rank) - m - 1;
607:     n19 = (m*n) - (size-rank) - m;
608:     n20 = (m*n) - (size-rank) - m + 1;
609:     n21 = (m*n) - (size-rank) - 1;
610:     n22 = (m*n) - (size-rank);
611:     n23 = (m*n) - (size-rank) + 1;
612:     n24 = (m*n) - (size-rank) + m - 1;
613:     n25 = (m*n) - (size-rank) + m;
614:     n26 = (m*n) - (size-rank) + m + 1;
615:   }

617:   if ((xs==0) && (zs==0)) { /* Assume an edge, not corner */
618:     n0 = size - m*n + rank + m-1 - m;
619:     n3 = size - m*n + rank + m-1;
620:     n6 = size - m*n + rank + m-1 + m;
621:   }

623:   if ((xs==0) && (ze==P)) { /* Assume an edge, not corner */
624:     n18 = m*n - (size - rank) + m-1 - m;
625:     n21 = m*n - (size - rank) + m-1;
626:     n24 = m*n - (size - rank) + m-1 + m;
627:   }

629:   if ((xs==0) && (ys==0)) { /* Assume an edge, not corner */
630:     n0  = rank + m*n -1 - m*n;
631:     n9  = rank + m*n -1;
632:     n18 = rank + m*n -1 + m*n;
633:   }

635:   if ((xs==0) && (ye==N)) { /* Assume an edge, not corner */
636:     n6  = rank - m*(n-1) + m-1 - m*n;
637:     n15 = rank - m*(n-1) + m-1;
638:     n24 = rank - m*(n-1) + m-1 + m*n;
639:   }

641:   if ((xe==M) && (zs==0)) { /* Assume an edge, not corner */
642:     n2 = size - (m*n-rank) - (m-1) - m;
643:     n5 = size - (m*n-rank) - (m-1);
644:     n8 = size - (m*n-rank) - (m-1) + m;
645:   }

647:   if ((xe==M) && (ze==P)) { /* Assume an edge, not corner */
648:     n20 = m*n - (size - rank) - (m-1) - m;
649:     n23 = m*n - (size - rank) - (m-1);
650:     n26 = m*n - (size - rank) - (m-1) + m;
651:   }

653:   if ((xe==M) && (ys==0)) { /* Assume an edge, not corner */
654:     n2  = rank + m*(n-1) - (m-1) - m*n;
655:     n11 = rank + m*(n-1) - (m-1);
656:     n20 = rank + m*(n-1) - (m-1) + m*n;
657:   }

659:   if ((xe==M) && (ye==N)) { /* Assume an edge, not corner */
660:     n8  = rank - m*n +1 - m*n;
661:     n17 = rank - m*n +1;
662:     n26 = rank - m*n +1 + m*n;
663:   }

665:   if ((ys==0) && (zs==0)) { /* Assume an edge, not corner */
666:     n0 = size - m + rank -1;
667:     n1 = size - m + rank;
668:     n2 = size - m + rank +1;
669:   }

671:   if ((ys==0) && (ze==P)) { /* Assume an edge, not corner */
672:     n18 = m*n - (size - rank) + m*(n-1) -1;
673:     n19 = m*n - (size - rank) + m*(n-1);
674:     n20 = m*n - (size - rank) + m*(n-1) +1;
675:   }

677:   if ((ye==N) && (zs==0)) { /* Assume an edge, not corner */
678:     n6 = size - (m*n-rank) - m * (n-1) -1;
679:     n7 = size - (m*n-rank) - m * (n-1);
680:     n8 = size - (m*n-rank) - m * (n-1) +1;
681:   }

683:   if ((ye==N) && (ze==P)) { /* Assume an edge, not corner */
684:     n24 = rank - (size-m) -1;
685:     n25 = rank - (size-m);
686:     n26 = rank - (size-m) +1;
687:   }

689:   /* Check for Corners */
690:   if ((xs==0) && (ys==0) && (zs==0)) n0  = size -1;
691:   if ((xs==0) && (ys==0) && (ze==P)) n18 = m*n-1;
692:   if ((xs==0) && (ye==N) && (zs==0)) n6  = (size-1)-m*(n-1);
693:   if ((xs==0) && (ye==N) && (ze==P)) n24 = m-1;
694:   if ((xe==M) && (ys==0) && (zs==0)) n2  = size-m;
695:   if ((xe==M) && (ys==0) && (ze==P)) n20 = m*n-m;
696:   if ((xe==M) && (ye==N) && (zs==0)) n8  = size-m*n;
697:   if ((xe==M) && (ye==N) && (ze==P)) n26 = 0;

699:   /* Check for when not X,Y, and Z Periodic */

701:   /* If not X periodic */
702:   if (bx != DM_BOUNDARY_PERIODIC) {
703:     if (xs==0) n0 = n3 = n6 = n9  = n12 = n15 = n18 = n21 = n24 = -2;
704:     if (xe==M) n2 = n5 = n8 = n11 = n14 = n17 = n20 = n23 = n26 = -2;
705:   }

707:   /* If not Y periodic */
708:   if (by != DM_BOUNDARY_PERIODIC) {
709:     if (ys==0) n0 = n1 = n2 = n9  = n10 = n11 = n18 = n19 = n20 = -2;
710:     if (ye==N) n6 = n7 = n8 = n15 = n16 = n17 = n24 = n25 = n26 = -2;
711:   }

713:   /* If not Z periodic */
714:   if (bz != DM_BOUNDARY_PERIODIC) {
715:     if (zs==0) n0  = n1  = n2  = n3  = n4  = n5  = n6  = n7  = n8  = -2;
716:     if (ze==P) n18 = n19 = n20 = n21 = n22 = n23 = n24 = n25 = n26 = -2;
717:   }

719:   PetscMalloc1(27,&dd->neighbors);

721:   dd->neighbors[0]  = n0;
722:   dd->neighbors[1]  = n1;
723:   dd->neighbors[2]  = n2;
724:   dd->neighbors[3]  = n3;
725:   dd->neighbors[4]  = n4;
726:   dd->neighbors[5]  = n5;
727:   dd->neighbors[6]  = n6;
728:   dd->neighbors[7]  = n7;
729:   dd->neighbors[8]  = n8;
730:   dd->neighbors[9]  = n9;
731:   dd->neighbors[10] = n10;
732:   dd->neighbors[11] = n11;
733:   dd->neighbors[12] = n12;
734:   dd->neighbors[13] = rank;
735:   dd->neighbors[14] = n14;
736:   dd->neighbors[15] = n15;
737:   dd->neighbors[16] = n16;
738:   dd->neighbors[17] = n17;
739:   dd->neighbors[18] = n18;
740:   dd->neighbors[19] = n19;
741:   dd->neighbors[20] = n20;
742:   dd->neighbors[21] = n21;
743:   dd->neighbors[22] = n22;
744:   dd->neighbors[23] = n23;
745:   dd->neighbors[24] = n24;
746:   dd->neighbors[25] = n25;
747:   dd->neighbors[26] = n26;

749:   /* If star stencil then delete the corner neighbors */
750:   if (stencil_type == DMDA_STENCIL_STAR) {
751:     /* save information about corner neighbors */
752:     sn0 = n0; sn1 = n1; sn2 = n2; sn3 = n3; sn5 = n5; sn6 = n6; sn7 = n7;
753:     sn8 = n8; sn9 = n9; sn11 = n11; sn15 = n15; sn17 = n17; sn18 = n18;
754:     sn19 = n19; sn20 = n20; sn21 = n21; sn23 = n23; sn24 = n24; sn25 = n25;
755:     sn26 = n26;
756:     n0 = n1 = n2 = n3 = n5 = n6 = n7 = n8 = n9 = n11 = n15 = n17 = n18 = n19 = n20 = n21 = n23 = n24 = n25 = n26 = -1;
757:   }

759:   PetscMalloc1((Xe-Xs)*(Ye-Ys)*(Ze-Zs),&idx);

761:   nn = 0;
762:   /* Bottom Level */
763:   for (k=0; k<s_z; k++) {
764:     for (i=1; i<=s_y; i++) {
765:       if (n0 >= 0) { /* left below */
766:         x_t = lx[n0 % m];
767:         y_t = ly[(n0 % (m*n))/m];
768:         z_t = lz[n0 / (m*n)];
769:         s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
770:         if (twod && (s_t < 0)) s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x; /* 2D case */
771:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
772:       }
773:       if (n1 >= 0) { /* directly below */
774:         x_t = x;
775:         y_t = ly[(n1 % (m*n))/m];
776:         z_t = lz[n1 / (m*n)];
777:         s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
778:         if (twod && (s_t < 0)) s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t; /* 2D case */
779:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
780:       }
781:       if (n2 >= 0) { /* right below */
782:         x_t = lx[n2 % m];
783:         y_t = ly[(n2 % (m*n))/m];
784:         z_t = lz[n2 / (m*n)];
785:         s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
786:         if (twod && (s_t < 0)) s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t; /* 2D case */
787:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
788:       }
789:     }

791:     for (i=0; i<y; i++) {
792:       if (n3 >= 0) { /* directly left */
793:         x_t = lx[n3 % m];
794:         y_t = y;
795:         z_t = lz[n3 / (m*n)];
796:         s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
797:         if (twod && (s_t < 0)) s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - x_t*y_t; /* 2D case */
798:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
799:       }

801:       if (n4 >= 0) { /* middle */
802:         x_t = x;
803:         y_t = y;
804:         z_t = lz[n4 / (m*n)];
805:         s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
806:         if (twod && (s_t < 0)) s_t = bases[n4] + i*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
807:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
808:       } else if (bz == DM_BOUNDARY_MIRROR) {
809:         for (j=0; j<x; j++) idx[nn++] = 0;
810:       }

812:       if (n5 >= 0) { /* directly right */
813:         x_t = lx[n5 % m];
814:         y_t = y;
815:         z_t = lz[n5 / (m*n)];
816:         s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
817:         if (twod && (s_t < 0)) s_t = bases[n5] + i*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
818:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
819:       }
820:     }

822:     for (i=1; i<=s_y; i++) {
823:       if (n6 >= 0) { /* left above */
824:         x_t = lx[n6 % m];
825:         y_t = ly[(n6 % (m*n))/m];
826:         z_t = lz[n6 / (m*n)];
827:         s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
828:         if (twod && (s_t < 0)) s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - x_t*y_t; /* 2D case */
829:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
830:       }
831:       if (n7 >= 0) { /* directly above */
832:         x_t = x;
833:         y_t = ly[(n7 % (m*n))/m];
834:         z_t = lz[n7 / (m*n)];
835:         s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
836:         if (twod && (s_t < 0)) s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
837:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
838:       }
839:       if (n8 >= 0) { /* right above */
840:         x_t = lx[n8 % m];
841:         y_t = ly[(n8 % (m*n))/m];
842:         z_t = lz[n8 / (m*n)];
843:         s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
844:         if (twod && (s_t < 0)) s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - x_t*y_t; /* 2D case */
845:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
846:       }
847:     }
848:   }

850:   /* Middle Level */
851:   for (k=0; k<z; k++) {
852:     for (i=1; i<=s_y; i++) {
853:       if (n9 >= 0) { /* left below */
854:         x_t = lx[n9 % m];
855:         y_t = ly[(n9 % (m*n))/m];
856:         /* z_t = z; */
857:         s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
858:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
859:       }
860:       if (n10 >= 0) { /* directly below */
861:         x_t = x;
862:         y_t = ly[(n10 % (m*n))/m];
863:         /* z_t = z; */
864:         s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
865:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
866:       }  else if (by == DM_BOUNDARY_MIRROR) {
867:         for (j=0; j<x; j++) idx[nn++] = 0;
868:       }
869:       if (n11 >= 0) { /* right below */
870:         x_t = lx[n11 % m];
871:         y_t = ly[(n11 % (m*n))/m];
872:         /* z_t = z; */
873:         s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
874:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
875:       }
876:     }

878:     for (i=0; i<y; i++) {
879:       if (n12 >= 0) { /* directly left */
880:         x_t = lx[n12 % m];
881:         y_t = y;
882:         /* z_t = z; */
883:         s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
884:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
885:       }  else if (bx == DM_BOUNDARY_MIRROR) {
886:         for (j=0; j<s_x; j++) idx[nn++] = 0;
887:       }

889:       /* Interior */
890:       s_t = bases[rank] + i*x + k*x*y;
891:       for (j=0; j<x; j++) idx[nn++] = s_t++;

893:       if (n14 >= 0) { /* directly right */
894:         x_t = lx[n14 % m];
895:         y_t = y;
896:         /* z_t = z; */
897:         s_t = bases[n14] + i*x_t + k*x_t*y_t;
898:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
899:       } else if (bx == DM_BOUNDARY_MIRROR) {
900:         for (j=0; j<s_x; j++) idx[nn++] = 0;
901:       }
902:     }

904:     for (i=1; i<=s_y; i++) {
905:       if (n15 >= 0) { /* left above */
906:         x_t = lx[n15 % m];
907:         y_t = ly[(n15 % (m*n))/m];
908:         /* z_t = z; */
909:         s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
910:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
911:       }
912:       if (n16 >= 0) { /* directly above */
913:         x_t = x;
914:         y_t = ly[(n16 % (m*n))/m];
915:         /* z_t = z; */
916:         s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
917:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
918:       } else if (by == DM_BOUNDARY_MIRROR) {
919:         for (j=0; j<x; j++) idx[nn++] = 0;
920:       }
921:       if (n17 >= 0) { /* right above */
922:         x_t = lx[n17 % m];
923:         y_t = ly[(n17 % (m*n))/m];
924:         /* z_t = z; */
925:         s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
926:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
927:       }
928:     }
929:   }

931:   /* Upper Level */
932:   for (k=0; k<s_z; k++) {
933:     for (i=1; i<=s_y; i++) {
934:       if (n18 >= 0) { /* left below */
935:         x_t = lx[n18 % m];
936:         y_t = ly[(n18 % (m*n))/m];
937:         /* z_t = lz[n18 / (m*n)]; */
938:         s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
939:         if (twod && (s_t >= M*N*P)) s_t = bases[n18] - (s_y-i)*x_t -s_x + x_t*y_t; /* 2d case */
940:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
941:       }
942:       if (n19 >= 0) { /* directly below */
943:         x_t = x;
944:         y_t = ly[(n19 % (m*n))/m];
945:         /* z_t = lz[n19 / (m*n)]; */
946:         s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
947:         if (twod && (s_t >= M*N*P)) s_t = bases[n19] - (s_y+1-i)*x_t + x_t*y_t; /* 2d case */
948:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
949:       }
950:       if (n20 >= 0) { /* right below */
951:         x_t = lx[n20 % m];
952:         y_t = ly[(n20 % (m*n))/m];
953:         /* z_t = lz[n20 / (m*n)]; */
954:         s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
955:         if (twod && (s_t >= M*N*P)) s_t = bases[n20] - (s_y+1-i)*x_t + x_t*y_t; /* 2d case */
956:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
957:       }
958:     }

960:     for (i=0; i<y; i++) {
961:       if (n21 >= 0) { /* directly left */
962:         x_t = lx[n21 % m];
963:         y_t = y;
964:         /* z_t = lz[n21 / (m*n)]; */
965:         s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
966:         if (twod && (s_t >= M*N*P)) s_t = bases[n21] + (i+1)*x_t - s_x;  /* 2d case */
967:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
968:       }

970:       if (n22 >= 0) { /* middle */
971:         x_t = x;
972:         y_t = y;
973:         /* z_t = lz[n22 / (m*n)]; */
974:         s_t = bases[n22] + i*x_t + k*x_t*y_t;
975:         if (twod && (s_t >= M*N*P)) s_t = bases[n22] + i*x_t; /* 2d case */
976:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
977:       } else if (bz == DM_BOUNDARY_MIRROR) {
978:         for (j=0; j<x; j++) idx[nn++] = 0;
979:       }

981:       if (n23 >= 0) { /* directly right */
982:         x_t = lx[n23 % m];
983:         y_t = y;
984:         /* z_t = lz[n23 / (m*n)]; */
985:         s_t = bases[n23] + i*x_t + k*x_t*y_t;
986:         if (twod && (s_t >= M*N*P)) s_t = bases[n23] + i*x_t; /* 2d case */
987:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
988:       }
989:     }

991:     for (i=1; i<=s_y; i++) {
992:       if (n24 >= 0) { /* left above */
993:         x_t = lx[n24 % m];
994:         y_t = ly[(n24 % (m*n))/m];
995:         /* z_t = lz[n24 / (m*n)]; */
996:         s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
997:         if (twod && (s_t >= M*N*P)) s_t = bases[n24] + i*x_t - s_x; /* 2d case */
998:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
999:       }
1000:       if (n25 >= 0) { /* directly above */
1001:         x_t = x;
1002:         y_t = ly[(n25 % (m*n))/m];
1003:         /* z_t = lz[n25 / (m*n)]; */
1004:         s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1005:         if (twod && (s_t >= M*N*P)) s_t = bases[n25] + (i-1)*x_t; /* 2d case */
1006:         for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1007:       }
1008:       if (n26 >= 0) { /* right above */
1009:         x_t = lx[n26 % m];
1010:         y_t = ly[(n26 % (m*n))/m];
1011:         /* z_t = lz[n26 / (m*n)]; */
1012:         s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1013:         if (twod && (s_t >= M*N*P)) s_t = bases[n26] + (i-1)*x_t; /* 2d case */
1014:         for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1015:       }
1016:     }
1017:   }

1019:   ISCreateBlock(comm,dof,nn,idx,PETSC_USE_POINTER,&from);
1020:   VecScatterCreate(global,from,local,to,&gtol);
1021:   PetscLogObjectParent((PetscObject)da,(PetscObject)gtol);
1022:   ISDestroy(&to);
1023:   ISDestroy(&from);

1025:   if (stencil_type == DMDA_STENCIL_STAR) {
1026:     n0  = sn0;  n1  = sn1;  n2  = sn2;  n3  = sn3;  n5  = sn5;  n6  = sn6; n7 = sn7;
1027:     n8  = sn8;  n9  = sn9;  n11 = sn11; n15 = sn15; n17 = sn17; n18 = sn18;
1028:     n19 = sn19; n20 = sn20; n21 = sn21; n23 = sn23; n24 = sn24; n25 = sn25;
1029:     n26 = sn26;
1030:   }

1032:   if (((stencil_type == DMDA_STENCIL_STAR) || (bx != DM_BOUNDARY_PERIODIC && bx) || (by != DM_BOUNDARY_PERIODIC && by) || (bz != DM_BOUNDARY_PERIODIC && bz))) {
1033:     /*
1034:         Recompute the local to global mappings, this time keeping the
1035:       information about the cross corner processor numbers.
1036:     */
1037:     nn = 0;
1038:     /* Bottom Level */
1039:     for (k=0; k<s_z; k++) {
1040:       for (i=1; i<=s_y; i++) {
1041:         if (n0 >= 0) { /* left below */
1042:           x_t = lx[n0 % m];
1043:           y_t = ly[(n0 % (m*n))/m];
1044:           z_t = lz[n0 / (m*n)];
1045:           s_t = bases[n0] + x_t*y_t*z_t - (s_y-i)*x_t - s_x - (s_z-k-1)*x_t*y_t;
1046:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1047:         } else if (Xs-xs < 0 && Ys-ys < 0 && Zs-zs < 0) {
1048:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1049:         }
1050:         if (n1 >= 0) { /* directly below */
1051:           x_t = x;
1052:           y_t = ly[(n1 % (m*n))/m];
1053:           z_t = lz[n1 / (m*n)];
1054:           s_t = bases[n1] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1055:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1056:         } else if (Ys-ys < 0 && Zs-zs < 0) {
1057:           for (j=0; j<x; j++) idx[nn++] = -1;
1058:         }
1059:         if (n2 >= 0) { /* right below */
1060:           x_t = lx[n2 % m];
1061:           y_t = ly[(n2 % (m*n))/m];
1062:           z_t = lz[n2 / (m*n)];
1063:           s_t = bases[n2] + x_t*y_t*z_t - (s_y+1-i)*x_t - (s_z-k-1)*x_t*y_t;
1064:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1065:         } else if (xe-Xe < 0 && Ys-ys < 0 && Zs-zs < 0) {
1066:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1067:         }
1068:       }

1070:       for (i=0; i<y; i++) {
1071:         if (n3 >= 0) { /* directly left */
1072:           x_t = lx[n3 % m];
1073:           y_t = y;
1074:           z_t = lz[n3 / (m*n)];
1075:           s_t = bases[n3] + (i+1)*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1076:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1077:         } else if (Xs-xs < 0 && Zs-zs < 0) {
1078:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1079:         }

1081:         if (n4 >= 0) { /* middle */
1082:           x_t = x;
1083:           y_t = y;
1084:           z_t = lz[n4 / (m*n)];
1085:           s_t = bases[n4] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1086:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1087:         } else if (Zs-zs < 0) {
1088:           if (bz == DM_BOUNDARY_MIRROR) {
1089:             for (j=0; j<x; j++) idx[nn++] = 0;
1090:           } else {
1091:             for (j=0; j<x; j++) idx[nn++] = -1;
1092:           }
1093:         }

1095:         if (n5 >= 0) { /* directly right */
1096:           x_t = lx[n5 % m];
1097:           y_t = y;
1098:           z_t = lz[n5 / (m*n)];
1099:           s_t = bases[n5] + i*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1100:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1101:         } else if (xe-Xe < 0 && Zs-zs < 0) {
1102:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1103:         }
1104:       }

1106:       for (i=1; i<=s_y; i++) {
1107:         if (n6 >= 0) { /* left above */
1108:           x_t = lx[n6 % m];
1109:           y_t = ly[(n6 % (m*n))/m];
1110:           z_t = lz[n6 / (m*n)];
1111:           s_t = bases[n6] + i*x_t - s_x + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1112:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1113:         } else if (Xs-xs < 0 && ye-Ye < 0 && Zs-zs < 0) {
1114:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1115:         }
1116:         if (n7 >= 0) { /* directly above */
1117:           x_t = x;
1118:           y_t = ly[(n7 % (m*n))/m];
1119:           z_t = lz[n7 / (m*n)];
1120:           s_t = bases[n7] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1121:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1122:         } else if (ye-Ye < 0 && Zs-zs < 0) {
1123:           for (j=0; j<x; j++) idx[nn++] = -1;
1124:         }
1125:         if (n8 >= 0) { /* right above */
1126:           x_t = lx[n8 % m];
1127:           y_t = ly[(n8 % (m*n))/m];
1128:           z_t = lz[n8 / (m*n)];
1129:           s_t = bases[n8] + (i-1)*x_t + x_t*y_t*z_t - (s_z-k)*x_t*y_t;
1130:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1131:         } else if (xe-Xe < 0 && ye-Ye < 0 && Zs-zs < 0) {
1132:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1133:         }
1134:       }
1135:     }

1137:     /* Middle Level */
1138:     for (k=0; k<z; k++) {
1139:       for (i=1; i<=s_y; i++) {
1140:         if (n9 >= 0) { /* left below */
1141:           x_t = lx[n9 % m];
1142:           y_t = ly[(n9 % (m*n))/m];
1143:           /* z_t = z; */
1144:           s_t = bases[n9] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1145:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1146:         } else if (Xs-xs < 0 && Ys-ys < 0) {
1147:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1148:         }
1149:         if (n10 >= 0) { /* directly below */
1150:           x_t = x;
1151:           y_t = ly[(n10 % (m*n))/m];
1152:           /* z_t = z; */
1153:           s_t = bases[n10] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1154:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1155:         } else if (Ys-ys < 0) {
1156:           if (by == DM_BOUNDARY_MIRROR) {
1157:             for (j=0; j<x; j++) idx[nn++] = -1;
1158:           } else {
1159:             for (j=0; j<x; j++) idx[nn++] = -1;
1160:           }
1161:         }
1162:         if (n11 >= 0) { /* right below */
1163:           x_t = lx[n11 % m];
1164:           y_t = ly[(n11 % (m*n))/m];
1165:           /* z_t = z; */
1166:           s_t = bases[n11] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1167:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1168:         } else if (xe-Xe < 0 && Ys-ys < 0) {
1169:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1170:         }
1171:       }

1173:       for (i=0; i<y; i++) {
1174:         if (n12 >= 0) { /* directly left */
1175:           x_t = lx[n12 % m];
1176:           y_t = y;
1177:           /* z_t = z; */
1178:           s_t = bases[n12] + (i+1)*x_t - s_x + k*x_t*y_t;
1179:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1180:         } else if (Xs-xs < 0) {
1181:           if (bx == DM_BOUNDARY_MIRROR) {
1182:             for (j=0; j<s_x; j++) idx[nn++] = 0;
1183:           } else {
1184:             for (j=0; j<s_x; j++) idx[nn++] = -1;
1185:           }
1186:         }

1188:         /* Interior */
1189:         s_t = bases[rank] + i*x + k*x*y;
1190:         for (j=0; j<x; j++) idx[nn++] = s_t++;

1192:         if (n14 >= 0) { /* directly right */
1193:           x_t = lx[n14 % m];
1194:           y_t = y;
1195:           /* z_t = z; */
1196:           s_t = bases[n14] + i*x_t + k*x_t*y_t;
1197:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1198:         } else if (xe-Xe < 0) {
1199:           if (bx == DM_BOUNDARY_MIRROR) {
1200:             for (j=0; j<s_x; j++) idx[nn++] = 0;
1201:           } else {
1202:             for (j=0; j<s_x; j++) idx[nn++] = -1;
1203:           }
1204:         }
1205:       }

1207:       for (i=1; i<=s_y; i++) {
1208:         if (n15 >= 0) { /* left above */
1209:           x_t = lx[n15 % m];
1210:           y_t = ly[(n15 % (m*n))/m];
1211:           /* z_t = z; */
1212:           s_t = bases[n15] + i*x_t - s_x + k*x_t*y_t;
1213:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1214:         } else if (Xs-xs < 0 && ye-Ye < 0) {
1215:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1216:         }
1217:         if (n16 >= 0) { /* directly above */
1218:           x_t = x;
1219:           y_t = ly[(n16 % (m*n))/m];
1220:           /* z_t = z; */
1221:           s_t = bases[n16] + (i-1)*x_t + k*x_t*y_t;
1222:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1223:         } else if (ye-Ye < 0) {
1224:           if (by == DM_BOUNDARY_MIRROR) {
1225:             for (j=0; j<x; j++) idx[nn++] = 0;
1226:           } else {
1227:             for (j=0; j<x; j++) idx[nn++] = -1;
1228:           }
1229:         }
1230:         if (n17 >= 0) { /* right above */
1231:           x_t = lx[n17 % m];
1232:           y_t = ly[(n17 % (m*n))/m];
1233:           /* z_t = z; */
1234:           s_t = bases[n17] + (i-1)*x_t + k*x_t*y_t;
1235:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1236:         } else if (xe-Xe < 0 && ye-Ye < 0) {
1237:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1238:         }
1239:       }
1240:     }

1242:     /* Upper Level */
1243:     for (k=0; k<s_z; k++) {
1244:       for (i=1; i<=s_y; i++) {
1245:         if (n18 >= 0) { /* left below */
1246:           x_t = lx[n18 % m];
1247:           y_t = ly[(n18 % (m*n))/m];
1248:           /* z_t = lz[n18 / (m*n)]; */
1249:           s_t = bases[n18] - (s_y-i)*x_t -s_x + (k+1)*x_t*y_t;
1250:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1251:         } else if (Xs-xs < 0 && Ys-ys < 0 && ze-Ze < 0) {
1252:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1253:         }
1254:         if (n19 >= 0) { /* directly below */
1255:           x_t = x;
1256:           y_t = ly[(n19 % (m*n))/m];
1257:           /* z_t = lz[n19 / (m*n)]; */
1258:           s_t = bases[n19] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1259:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1260:         } else if (Ys-ys < 0 && ze-Ze < 0) {
1261:           for (j=0; j<x; j++) idx[nn++] = -1;
1262:         }
1263:         if (n20 >= 0) { /* right below */
1264:           x_t = lx[n20 % m];
1265:           y_t = ly[(n20 % (m*n))/m];
1266:           /* z_t = lz[n20 / (m*n)]; */
1267:           s_t = bases[n20] - (s_y+1-i)*x_t + (k+1)*x_t*y_t;
1268:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1269:         } else if (xe-Xe < 0 && Ys-ys < 0 && ze-Ze < 0) {
1270:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1271:         }
1272:       }

1274:       for (i=0; i<y; i++) {
1275:         if (n21 >= 0) { /* directly left */
1276:           x_t = lx[n21 % m];
1277:           y_t = y;
1278:           /* z_t = lz[n21 / (m*n)]; */
1279:           s_t = bases[n21] + (i+1)*x_t - s_x + k*x_t*y_t;
1280:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1281:         } else if (Xs-xs < 0 && ze-Ze < 0) {
1282:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1283:         }

1285:         if (n22 >= 0) { /* middle */
1286:           x_t = x;
1287:           y_t = y;
1288:           /* z_t = lz[n22 / (m*n)]; */
1289:           s_t = bases[n22] + i*x_t + k*x_t*y_t;
1290:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1291:         } else if (ze-Ze < 0) {
1292:           if (bz == DM_BOUNDARY_MIRROR) {
1293:             for (j=0; j<x; j++) idx[nn++] = 0;
1294:           } else {
1295:             for (j=0; j<x; j++) idx[nn++] = -1;
1296:           }
1297:         }

1299:         if (n23 >= 0) { /* directly right */
1300:           x_t = lx[n23 % m];
1301:           y_t = y;
1302:           /* z_t = lz[n23 / (m*n)]; */
1303:           s_t = bases[n23] + i*x_t + k*x_t*y_t;
1304:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1305:         } else if (xe-Xe < 0 && ze-Ze < 0) {
1306:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1307:         }
1308:       }

1310:       for (i=1; i<=s_y; i++) {
1311:         if (n24 >= 0) { /* left above */
1312:           x_t = lx[n24 % m];
1313:           y_t = ly[(n24 % (m*n))/m];
1314:           /* z_t = lz[n24 / (m*n)]; */
1315:           s_t = bases[n24] + i*x_t - s_x + k*x_t*y_t;
1316:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1317:         } else if (Xs-xs < 0 && ye-Ye < 0 && ze-Ze < 0) {
1318:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1319:         }
1320:         if (n25 >= 0) { /* directly above */
1321:           x_t = x;
1322:           y_t = ly[(n25 % (m*n))/m];
1323:           /* z_t = lz[n25 / (m*n)]; */
1324:           s_t = bases[n25] + (i-1)*x_t + k*x_t*y_t;
1325:           for (j=0; j<x_t; j++) idx[nn++] = s_t++;
1326:         } else if (ye-Ye < 0 && ze-Ze < 0) {
1327:           for (j=0; j<x; j++) idx[nn++] = -1;
1328:         }
1329:         if (n26 >= 0) { /* right above */
1330:           x_t = lx[n26 % m];
1331:           y_t = ly[(n26 % (m*n))/m];
1332:           /* z_t = lz[n26 / (m*n)]; */
1333:           s_t = bases[n26] + (i-1)*x_t + k*x_t*y_t;
1334:           for (j=0; j<s_x; j++) idx[nn++] = s_t++;
1335:         } else if (xe-Xe < 0 && ye-Ye < 0 && ze-Ze < 0) {
1336:           for (j=0; j<s_x; j++) idx[nn++] = -1;
1337:         }
1338:       }
1339:     }
1340:   }
1341:   /*
1342:      Set the local to global ordering in the global vector, this allows use
1343:      of VecSetValuesLocal().
1344:   */
1345:   ISLocalToGlobalMappingCreate(comm,dof,nn,idx,PETSC_OWN_POINTER,&da->ltogmap);
1346:   PetscLogObjectParent((PetscObject)da,(PetscObject)da->ltogmap);

1348:   PetscFree2(bases,ldims);
1349:   dd->m = m;  dd->n  = n;  dd->p  = p;
1350:   /* note petsc expects xs/xe/Xs/Xe to be multiplied by #dofs in many places */
1351:   dd->xs = xs*dof; dd->xe = xe*dof; dd->ys = ys; dd->ye = ye; dd->zs = zs; dd->ze = ze;
1352:   dd->Xs = Xs*dof; dd->Xe = Xe*dof; dd->Ys = Ys; dd->Ye = Ye; dd->Zs = Zs; dd->Ze = Ze;

1354:   VecDestroy(&local);
1355:   VecDestroy(&global);

1357:   dd->gtol      = gtol;
1358:   dd->base      = base;
1359:   da->ops->view = DMView_DA_3d;
1360:   dd->ltol      = NULL;
1361:   dd->ao        = NULL;
1362:   return(0);
1363: }


1366: /*@C
1367:    DMDACreate3d - Creates an object that will manage the communication of three-dimensional
1368:    regular array data that is distributed across some processors.

1370:    Collective on MPI_Comm

1372:    Input Parameters:
1373: +  comm - MPI communicator
1374: .  bx,by,bz - type of ghost nodes the array have.
1375:          Use one of DM_BOUNDARY_NONE, DM_BOUNDARY_GHOSTED, DM_BOUNDARY_PERIODIC.
1376: .  stencil_type - Type of stencil (DMDA_STENCIL_STAR or DMDA_STENCIL_BOX)
1377: .  M,N,P - global dimension in each direction of the array 
1378: .  m,n,p - corresponding number of processors in each dimension
1379:            (or PETSC_DECIDE to have calculated)
1380: .  dof - number of degrees of freedom per node
1381: .  s - stencil width
1382: -  lx, ly, lz - arrays containing the number of nodes in each cell along
1383:           the x, y, and z coordinates, or NULL. If non-null, these
1384:           must be of length as m,n,p and the corresponding
1385:           m,n, or p cannot be PETSC_DECIDE. Sum of the lx[] entries must be M, sum of
1386:           the ly[] must N, sum of the lz[] must be P

1388:    Output Parameter:
1389: .  da - the resulting distributed array object

1391:    Options Database Key:
1392: +  -dm_view - Calls DMView() at the conclusion of DMDACreate3d()
1393: .  -da_grid_x <nx> - number of grid points in x direction, if M < 0
1394: .  -da_grid_y <ny> - number of grid points in y direction, if N < 0
1395: .  -da_grid_z <nz> - number of grid points in z direction, if P < 0
1396: .  -da_processors_x <MX> - number of processors in x direction
1397: .  -da_processors_y <MY> - number of processors in y direction
1398: .  -da_processors_z <MZ> - number of processors in z direction
1399: .  -da_refine_x <rx> - refinement ratio in x direction
1400: .  -da_refine_y <ry> - refinement ratio in y direction
1401: .  -da_refine_z <rz>- refinement ratio in z directio
1402: -  -da_refine <n> - refine the DMDA n times before creating it, , if M, N, or P < 0

1404:    Level: beginner

1406:    Notes:
1407:    The stencil type DMDA_STENCIL_STAR with width 1 corresponds to the
1408:    standard 7-pt stencil, while DMDA_STENCIL_BOX with width 1 denotes
1409:    the standard 27-pt stencil.

1411:    The array data itself is NOT stored in the DMDA, it is stored in Vec objects;
1412:    The appropriate vector objects can be obtained with calls to DMCreateGlobalVector()
1413:    and DMCreateLocalVector() and calls to VecDuplicate() if more are needed.

1415:    You must call DMSetUp() after this call before using this DM.

1417:    If you wish to use the options database to change values in the DMDA call DMSetFromOptions() after this call
1418:    but before DMSetUp().

1420: .keywords: distributed array, create, three-dimensional

1422: .seealso: DMDestroy(), DMView(), DMDACreate1d(), DMDACreate2d(), DMGlobalToLocalBegin(), DMDAGetRefinementFactor(),
1423:           DMGlobalToLocalEnd(), DMLocalToGlobalBegin(), DMLocalToLocalBegin(), DMLocalToLocalEnd(), DMDASetRefinementFactor(),
1424:           DMDAGetInfo(), DMCreateGlobalVector(), DMCreateLocalVector(), DMDACreateNaturalVector(), DMLoad(), DMDAGetOwnershipRanges()

1426: @*/
1427: PetscErrorCode  DMDACreate3d(MPI_Comm comm,DMBoundaryType bx,DMBoundaryType by,DMBoundaryType bz,DMDAStencilType stencil_type,PetscInt M,
1428:                PetscInt N,PetscInt P,PetscInt m,PetscInt n,PetscInt p,PetscInt dof,PetscInt s,const PetscInt lx[],const PetscInt ly[],const PetscInt lz[],DM *da)
1429: {

1433:   DMDACreate(comm, da);
1434:   DMSetDimension(*da, 3);
1435:   DMDASetSizes(*da, M, N, P);
1436:   DMDASetNumProcs(*da, m, n, p);
1437:   DMDASetBoundaryType(*da, bx, by, bz);
1438:   DMDASetDof(*da, dof);
1439:   DMDASetStencilType(*da, stencil_type);
1440:   DMDASetStencilWidth(*da, s);
1441:   DMDASetOwnershipRanges(*da, lx, ly, lz);
1442:   return(0);
1443: }