Actual source code: petscsystypes.h
1: /* Portions of this code are under:
2: Copyright (c) 2022 Advanced Micro Devices, Inc. All rights reserved.
3: */
5: #ifndef PETSCSYSTYPES_H
6: #define PETSCSYSTYPES_H
8: #include <petscconf.h>
9: #include <petscconf_poison.h>
10: #include <petscfix.h>
11: #include <petscmacros.h>
12: #include <stddef.h>
14: /* SUBMANSEC = Sys */
16: #include <limits.h> // INT_MIN, INT_MAX
18: #if defined(__clang__) || (PETSC_CPP_VERSION >= 17)
19: // clang allows both [[nodiscard]] and __attribute__((warn_unused_result)) on type
20: // definitions. GCC, however, does not, so check that we are using C++17 [[nodiscard]]
21: // instead of __attribute__((warn_unused_result))
22: #define PETSC_ERROR_CODE_NODISCARD PETSC_NODISCARD
23: #else
24: #define PETSC_ERROR_CODE_NODISCARD
25: #endif
27: #ifdef PETSC_CLANG_STATIC_ANALYZER
28: #undef PETSC_USE_STRICT_PETSCERRORCODE
29: #endif
31: #ifdef PETSC_USE_STRICT_PETSCERRORCODE
32: #define PETSC_ERROR_CODE_TYPEDEF typedef
33: #define PETSC_ERROR_CODE_ENUM_NAME PetscErrorCode
34: #else
35: #define PETSC_ERROR_CODE_TYPEDEF
36: #define PETSC_ERROR_CODE_ENUM_NAME
37: #endif
39: /*E
40: PetscErrorCode - Datatype used to return PETSc error codes.
42: Level: beginner
44: Notes:
45: Virtually all PETSc functions return an error code. It is the callers responsibility to check
46: the value of the returned error code after each PETSc call to determine if any errors
47: occurred. A set of convenience macros (e.g. `PetscCall()`, `PetscCallVoid()`) are provided
48: for this purpose. Failing to properly check for errors is not supported, as errors may leave
49: PETSc in an undetermined state.
51: One can retrieve the error string corresponding to a particular error code using
52: `PetscErrorMessage()`.
54: The user can also configure PETSc with the `--with-strict-petscerrorcode` option to enable
55: compiler warnings when the returned error codes are not captured and checked. Users are
56: *heavily* encouraged to opt-in to this option, as it will become enabled by default in a
57: future release.
59: Developer Notes:
61: These are the generic error codes. These error codes are used in many different places in the
62: PETSc source code. The C-string versions are at defined in `PetscErrorStrings[]` in
63: `src/sys/error/err.c`, while the Fortran versions are defined in
64: `src/sys/f90-mod/petscerror.h`. Any changes here must also be made in both locations.
66: .seealso: `PetscErrorMessage()`, `PetscCall()`, `SETERRQ()`
67: E*/
68: PETSC_ERROR_CODE_TYPEDEF enum PETSC_ERROR_CODE_NODISCARD {
69: PETSC_SUCCESS = 0,
70: PETSC_ERR_BOOLEAN_MACRO_FAILURE = 1, /* do not use */
72: PETSC_ERR_MIN_VALUE = 54, /* should always be one less then the smallest value */
74: PETSC_ERR_MEM = 55, /* unable to allocate requested memory */
75: PETSC_ERR_SUP = 56, /* no support for requested operation */
76: PETSC_ERR_SUP_SYS = 57, /* no support for requested operation on this computer system */
77: PETSC_ERR_ORDER = 58, /* operation done in wrong order */
78: PETSC_ERR_SIG = 59, /* signal received */
79: PETSC_ERR_FP = 72, /* floating point exception */
80: PETSC_ERR_COR = 74, /* corrupted PETSc object */
81: PETSC_ERR_LIB = 76, /* error in library called by PETSc */
82: PETSC_ERR_PLIB = 77, /* PETSc library generated inconsistent data */
83: PETSC_ERR_MEMC = 78, /* memory corruption */
84: PETSC_ERR_CONV_FAILED = 82, /* iterative method (KSP or SNES) failed */
85: PETSC_ERR_USER = 83, /* user has not provided needed function */
86: PETSC_ERR_SYS = 88, /* error in system call */
87: PETSC_ERR_POINTER = 70, /* pointer does not point to valid address */
88: PETSC_ERR_MPI_LIB_INCOMP = 87, /* MPI library at runtime is not compatible with MPI user compiled with */
90: PETSC_ERR_ARG_SIZ = 60, /* nonconforming object sizes used in operation */
91: PETSC_ERR_ARG_IDN = 61, /* two arguments not allowed to be the same */
92: PETSC_ERR_ARG_WRONG = 62, /* wrong argument (but object probably ok) */
93: PETSC_ERR_ARG_CORRUPT = 64, /* null or corrupted PETSc object as argument */
94: PETSC_ERR_ARG_OUTOFRANGE = 63, /* input argument, out of range */
95: PETSC_ERR_ARG_BADPTR = 68, /* invalid pointer argument */
96: PETSC_ERR_ARG_NOTSAMETYPE = 69, /* two args must be same object type */
97: PETSC_ERR_ARG_NOTSAMECOMM = 80, /* two args must be same communicators */
98: PETSC_ERR_ARG_WRONGSTATE = 73, /* object in argument is in wrong state, e.g. unassembled mat */
99: PETSC_ERR_ARG_TYPENOTSET = 89, /* the type of the object has not yet been set */
100: PETSC_ERR_ARG_INCOMP = 75, /* two arguments are incompatible */
101: PETSC_ERR_ARG_NULL = 85, /* argument is null that should not be */
102: PETSC_ERR_ARG_UNKNOWN_TYPE = 86, /* type name doesn't match any registered type */
104: PETSC_ERR_FILE_OPEN = 65, /* unable to open file */
105: PETSC_ERR_FILE_READ = 66, /* unable to read from file */
106: PETSC_ERR_FILE_WRITE = 67, /* unable to write to file */
107: PETSC_ERR_FILE_UNEXPECTED = 79, /* unexpected data in file */
109: PETSC_ERR_MAT_LU_ZRPVT = 71, /* detected a zero pivot during LU factorization */
110: PETSC_ERR_MAT_CH_ZRPVT = 81, /* detected a zero pivot during Cholesky factorization */
112: PETSC_ERR_INT_OVERFLOW = 84,
113: PETSC_ERR_FLOP_COUNT = 90,
114: PETSC_ERR_NOT_CONVERGED = 91, /* solver did not converge */
115: PETSC_ERR_MISSING_FACTOR = 92, /* MatGetFactor() failed */
116: PETSC_ERR_OPT_OVERWRITE = 93, /* attempted to over write options which should not be changed */
117: PETSC_ERR_WRONG_MPI_SIZE = 94, /* example/application run with number of MPI ranks it does not support */
118: PETSC_ERR_USER_INPUT = 95, /* missing or incorrect user input */
119: PETSC_ERR_GPU_RESOURCE = 96, /* unable to load a GPU resource, for example cuBLAS */
120: PETSC_ERR_GPU = 97, /* An error from a GPU call, this may be due to lack of resources on the GPU or a true error in the call */
121: PETSC_ERR_MPI = 98, /* general MPI error */
122: PETSC_ERR_RETURN = 99, /* PetscError() incorrectly returned an error code of 0 */
123: PETSC_ERR_MAX_VALUE = 100, /* this is always the one more than the largest error code */
125: /*
126: do not use, exist purely to make the enum bounds equal that of a regular int (so conversion
127: to int in main() is not undefined behavior)
128: */
129: PETSC_ERR_MIN_SIGNED_BOUND_DO_NOT_USE = INT_MIN,
130: PETSC_ERR_MAX_SIGNED_BOUND_DO_NOT_USE = INT_MAX
131: } PETSC_ERROR_CODE_ENUM_NAME;
133: #ifndef PETSC_USE_STRICT_PETSCERRORCODE
134: typedef int PetscErrorCode;
136: /*
137: Needed so that C++ lambdas can deduce the return type as PetscErrorCode from
138: PetscFunctionReturn(PETSC_SUCCESS). Otherwise we get
140: error: return type '(unnamed enum at include/petscsystypes.h:50:1)' must match previous
141: return type 'int' when lambda expression has unspecified explicit return type
142: PetscFunctionReturn(PETSC_SUCCESS);
143: ^
144: */
145: #define PETSC_SUCCESS ((PetscErrorCode)0)
146: #endif
148: #undef PETSC_ERROR_CODE_NODISCARD
149: #undef PETSC_ERROR_CODE_TYPEDEF
150: #undef PETSC_ERROR_CODE_ENUM_NAME
152: /*MC
153: PetscClassId - A unique id used to identify each PETSc class.
155: Level: developer
157: Note:
158: Use `PetscClassIdRegister()` to obtain a new value for a new class being created. Usually
159: XXXInitializePackage() calls it for each class it defines.
161: Developer Note:
162: Internal integer stored in the `_p_PetscObject` data structure. These are all computed by an offset from the lowest one, `PETSC_SMALLEST_CLASSID`.
164: .seealso: `PetscClassIdRegister()`, `PetscLogEventRegister()`, `PetscHeaderCreate()`
165: M*/
166: typedef int PetscClassId;
168: /*MC
169: PetscMPIInt - datatype used to represent 'int' parameters to MPI functions.
171: Level: intermediate
173: Notes:
174: This is always a 32 bit integer, sometimes it is the same as `PetscInt`, but if PETSc was built with `--with-64-bit-indices` but
175: standard C/Fortran integers are 32 bit then this is NOT the same as `PetscInt`; it remains 32 bit.
177: `PetscMPIIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscMPIInt`, if not it
178: generates a `PETSC_ERR_ARG_OUTOFRANGE` error.
180: .seealso: `PetscBLASInt`, `PetscInt`, `PetscMPIIntCast()`
181: M*/
182: typedef int PetscMPIInt;
184: /* Limit MPI to 32-bits */
185: enum {
186: PETSC_MPI_INT_MIN = INT_MIN,
187: PETSC_MPI_INT_MAX = INT_MAX
188: };
190: /*MC
191: PetscSizeT - datatype used to represent sizes in memory (like `size_t`)
193: Level: intermediate
195: Notes:
196: This is equivalent to `size_t`, but defined for consistency with Fortran, which lacks a native equivalent of `size_t`.
198: .seealso: `PetscInt`, `PetscInt64`, `PetscCount`
199: M*/
200: typedef size_t PetscSizeT;
202: /*MC
203: PetscCount - signed datatype used to represent counts
205: Level: intermediate
207: Notes:
208: This is equivalent to `ptrdiff_t`, but defined for consistency with Fortran, which lacks a native equivalent of `ptrdiff_t`.
210: Use `PetscCount_FMT` to format with `PetscPrintf()`, `printf()`, and related functions.
212: .seealso: `PetscInt`, `PetscInt64`, `PetscSizeT`
213: M*/
214: typedef ptrdiff_t PetscCount;
215: #define PetscCount_FMT "td"
217: /*MC
218: PetscEnum - datatype used to pass enum types within PETSc functions.
220: Level: intermediate
222: .seealso: `PetscOptionsGetEnum()`, `PetscOptionsEnum()`, `PetscBagRegisterEnum()`
223: M*/
224: typedef enum {
225: ENUM_DUMMY
226: } PetscEnum;
228: typedef short PetscShort;
229: typedef char PetscChar;
230: typedef float PetscFloat;
232: /*MC
233: PetscInt - PETSc type that represents an integer, used primarily to
234: represent size of arrays and indexing into arrays. Its size can be configured with the option `--with-64-bit-indices` to be either 32-bit (default) or 64-bit.
236: Level: beginner
238: Notes:
239: For MPI calls that require datatypes, use `MPIU_INT` as the datatype for `PetscInt`. It will automatically work correctly regardless of the size of `PetscInt`.
241: .seealso: `PetscBLASInt`, `PetscMPIInt`, `PetscReal`, `PetscScalar`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`, `PetscIntCast()`
242: M*/
244: #if defined(PETSC_HAVE_STDINT_H)
245: #include <stdint.h>
246: #endif
247: #if defined(PETSC_HAVE_INTTYPES_H)
250: #endif
251: #include <inttypes.h>
252: #if !defined(PRId64)
253: #define PRId64 "ld"
254: #endif
255: #endif
257: #if defined(PETSC_HAVE_STDINT_H) && defined(PETSC_HAVE_INTTYPES_H) && defined(PETSC_HAVE_MPI_INT64_T) /* MPI_INT64_T is not guaranteed to be a macro */
258: typedef int64_t PetscInt64;
260: #define PETSC_INT64_MIN INT64_MIN
261: #define PETSC_INT64_MAX INT64_MAX
263: #elif (PETSC_SIZEOF_LONG_LONG == 8)
264: typedef long long PetscInt64;
266: #define PETSC_INT64_MIN LLONG_MIN
267: #define PETSC_INT64_MAX LLONG_MAX
269: #elif defined(PETSC_HAVE___INT64)
270: typedef __int64 PetscInt64;
272: #define PETSC_INT64_MIN INT64_MIN
273: #define PETSC_INT64_MAX INT64_MAX
275: #else
276: #error "cannot determine PetscInt64 type"
277: #endif
279: #if defined(PETSC_USE_64BIT_INDICES)
280: typedef PetscInt64 PetscInt;
282: #define PETSC_INT_MIN PETSC_INT64_MIN
283: #define PETSC_INT_MAX PETSC_INT64_MAX
284: #define PetscInt_FMT PetscInt64_FMT
285: #else
286: typedef int PetscInt;
288: enum {
289: PETSC_INT_MIN = INT_MIN,
290: PETSC_INT_MAX = INT_MAX
291: };
293: #define PetscInt_FMT "d"
294: #endif
296: #define PETSC_MIN_INT PETSC_INT_MIN
297: #define PETSC_MAX_INT PETSC_INT_MAX
298: #define PETSC_MAX_UINT16 65535
300: #if defined(PETSC_HAVE_STDINT_H) && defined(PETSC_HAVE_INTTYPES_H) && defined(PETSC_HAVE_MPI_INT64_T) /* MPI_INT64_T is not guaranteed to be a macro */
301: #define MPIU_INT64 MPI_INT64_T
302: #define PetscInt64_FMT PRId64
303: #elif (PETSC_SIZEOF_LONG_LONG == 8)
304: #define MPIU_INT64 MPI_LONG_LONG_INT
305: #define PetscInt64_FMT "lld"
306: #elif defined(PETSC_HAVE___INT64)
307: #define MPIU_INT64 MPI_INT64_T
308: #define PetscInt64_FMT "ld"
309: #else
310: #error "cannot determine PetscInt64 type"
311: #endif
313: /*MC
314: PetscBLASInt - datatype used to represent 'int' parameters to BLAS/LAPACK functions.
316: Level: intermediate
318: Notes:
319: Usually this is the same as `PetscInt`, but if PETSc was built with `--with-64-bit-indices` but
320: standard C/Fortran integers are 32 bit then this may not be the same as `PetscInt`,
321: except on some BLAS/LAPACK implementations that support 64 bit integers see the notes below.
323: `PetscErrorCode` `PetscBLASIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscBLASInt`, if not it
324: generates a `PETSC_ERR_ARG_OUTOFRANGE` error
326: Installation Notes:
327: ./configure automatically determines the size of the integers used by BLAS/LAPACK except when `--with-batch` is used
328: in that situation one must know (by some other means) if the integers used by BLAS/LAPACK are 64 bit and if so pass the flag `--known-64-bit-blas-indices`
330: MATLAB ships with BLAS and LAPACK that use 64 bit integers, for example if you run ./configure with, the option
331: `--with-blaslapack-lib`=[/Applications/MATLAB_R2010b.app/bin/maci64/libmwblas.dylib,/Applications/MATLAB_R2010b.app/bin/maci64/libmwlapack.dylib]
333: MKL ships with both 32 and 64 bit integer versions of the BLAS and LAPACK. If you pass the flag `-with-64-bit-blas-indices` PETSc will link
334: against the 64 bit version, otherwise it uses the 32 bit version
336: OpenBLAS can be built to use 64 bit integers. The ./configure options `--download-openblas` `-with-64-bit-blas-indices` will build a 64 bit integer version
338: External packages such as hypre, ML, SuperLU etc do not provide any support for passing 64 bit integers to BLAS/LAPACK so cannot
339: be used with PETSc when PETSc links against 64 bit integer BLAS/LAPACK. ./configure will generate an error if you attempt to link PETSc against any of
340: these external libraries while using 64 bit integer BLAS/LAPACK.
342: .seealso: `PetscMPIInt`, `PetscInt`, `PetscBLASIntCast()`
343: M*/
344: #if defined(PETSC_HAVE_64BIT_BLAS_INDICES)
345: typedef PetscInt64 PetscBLASInt;
347: #define PETSC_BLAS_INT_MIN PETSC_INT64_MIN
348: #define PETSC_BLAS_INT_MAX PETSC_INT64_MAX
349: #define PetscBLASInt_FMT PetscInt64_FMT
350: #else
351: typedef int PetscBLASInt;
353: enum {
354: PETSC_BLAS_INT_MIN = INT_MIN,
355: PETSC_BLAS_INT_MAX = INT_MAX
356: };
358: #define PetscBLASInt_FMT "d"
359: #endif
361: /*MC
362: PetscCuBLASInt - datatype used to represent 'int' parameters to cuBLAS/cuSOLVER functions.
364: Level: intermediate
366: Notes:
367: As of this writing `PetscCuBLASInt` is always the system `int`.
369: `PetscErrorCode` `PetscCuBLASIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscCuBLASInt`, if not it
370: generates a `PETSC_ERR_ARG_OUTOFRANGE` error
372: .seealso: `PetscBLASInt`, `PetscMPIInt`, `PetscInt`, `PetscCuBLASIntCast()`
373: M*/
374: typedef int PetscCuBLASInt;
376: enum {
377: PETSC_CUBLAS_INT_MIN = INT_MIN,
378: PETSC_CUBLAS_INT_MAX = INT_MAX
379: };
381: /*MC
382: PetscHipBLASInt - datatype used to represent 'int' parameters to hipBLAS/hipSOLVER functions.
384: Level: intermediate
386: Notes:
387: As of this writing `PetscHipBLASInt` is always the system `int`.
389: `PetscErrorCode` `PetscHipBLASIntCast`(a,&b) checks if the given `PetscInt` a will fit in a `PetscHipBLASInt`, if not it
390: generates a `PETSC_ERR_ARG_OUTOFRANGE` error
392: .seealso: PetscBLASInt, PetscMPIInt, PetscInt, PetscHipBLASIntCast()
393: M*/
394: typedef int PetscHipBLASInt;
396: enum {
397: PETSC_HIPBLAS_INT_MIN = INT_MIN,
398: PETSC_HIPBLAS_INT_MAX = INT_MAX
399: };
401: /*E
402: PetscBool - Logical variable. Actually an enum in C and a logical in Fortran.
404: Level: beginner
406: Developer Note:
407: Why have `PetscBool`, why not use bool in C? The problem is that K and R C, C99 and C++ all have different mechanisms for
408: boolean values. It is not easy to have a simple macro that that will work properly in all circumstances with all three mechanisms.
410: .seealso: `PETSC_TRUE`, `PETSC_FALSE`, `PetscNot()`, `PetscBool3`
411: E*/
412: typedef enum {
413: PETSC_FALSE,
414: PETSC_TRUE
415: } PetscBool;
416: PETSC_EXTERN const char *const PetscBools[];
418: /*E
419: PetscBool3 - Ternary logical variable. Actually an enum in C and a 4 byte integer in Fortran.
421: Level: beginner
423: Note:
424: Should not be used with the if (flg) or if (!flg) syntax.
426: .seealso: `PETSC_TRUE`, `PETSC_FALSE`, `PetscNot()`, `PETSC_BOOL3_TRUE`, `PETSC_BOOL3_FALSE`, `PETSC_BOOL3_UNKNOWN`
427: E*/
428: typedef enum {
429: PETSC_BOOL3_FALSE,
430: PETSC_BOOL3_TRUE,
431: PETSC_BOOL3_UNKNOWN = -1
432: } PetscBool3;
434: #define PetscBool3ToBool(a) ((a) == PETSC_BOOL3_TRUE ? PETSC_TRUE : PETSC_FALSE)
435: #define PetscBoolToBool3(a) ((a) == PETSC_TRUE ? PETSC_BOOL3_TRUE : PETSC_BOOL3_FALSE)
437: /*MC
438: PetscReal - PETSc type that represents a real number version of `PetscScalar`
440: Level: beginner
442: Notes:
443: For MPI calls that require datatypes, use `MPIU_REAL` as the datatype for `PetscReal` and `MPIU_SUM`, `MPIU_MAX`, etc. for operations.
444: They will automatically work correctly regardless of the size of `PetscReal`.
446: See `PetscScalar` for details on how to ./configure the size of `PetscReal`.
448: .seealso: `PetscScalar`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`
449: M*/
451: #if defined(PETSC_USE_REAL_SINGLE)
452: typedef float PetscReal;
453: #elif defined(PETSC_USE_REAL_DOUBLE)
454: typedef double PetscReal;
455: #elif defined(PETSC_USE_REAL___FLOAT128)
456: #if defined(__cplusplus)
457: extern "C" {
458: #endif
459: #include <quadmath.h>
460: #if defined(__cplusplus)
461: }
462: #endif
463: typedef __float128 PetscReal;
464: #elif defined(PETSC_USE_REAL___FP16)
465: typedef __fp16 PetscReal;
466: #endif /* PETSC_USE_REAL_* */
468: /*MC
469: PetscComplex - PETSc type that represents a complex number with precision matching that of `PetscReal`.
471: Synopsis:
472: #include <petscsys.h>
473: PetscComplex number = 1. + 2.*PETSC_i;
475: Level: beginner
477: Notes:
478: For MPI calls that require datatypes, use `MPIU_COMPLEX` as the datatype for `PetscComplex` and `MPIU_SUM` etc for operations.
479: They will automatically work correctly regardless of the size of `PetscComplex`.
481: See `PetscScalar` for details on how to ./configure the size of `PetscReal`
483: Complex numbers are automatically available if PETSc was able to find a working complex implementation
485: PETSc has a 'fix' for complex numbers to support expressions such as `std::complex<PetscReal>` + `PetscInt`, which are not supported by the standard
486: C++ library, but are convenient for petsc users. If the C++ compiler is able to compile code in `petsccxxcomplexfix.h` (This is checked by
487: configure), we include `petsccxxcomplexfix.h` to provide this convenience.
489: If the fix causes conflicts, or one really does not want this fix for a particular C++ file, one can define `PETSC_SKIP_CXX_COMPLEX_FIX`
490: at the beginning of the C++ file to skip the fix.
492: .seealso: `PetscReal`, `PetscScalar`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`, `PETSC_i`
493: M*/
494: #if !defined(PETSC_SKIP_COMPLEX)
495: #if defined(PETSC_CLANGUAGE_CXX)
496: #if !defined(PETSC_USE_REAL___FP16) && !defined(PETSC_USE_REAL___FLOAT128)
497: #if defined(__cplusplus) && defined(PETSC_HAVE_CXX_COMPLEX) /* enable complex for library code */
498: #define PETSC_HAVE_COMPLEX 1
499: #elif !defined(__cplusplus) && defined(PETSC_HAVE_C99_COMPLEX) && defined(PETSC_HAVE_CXX_COMPLEX) /* User code only - conditional on library code complex support */
500: #define PETSC_HAVE_COMPLEX 1
501: #endif
502: #elif defined(PETSC_USE_REAL___FLOAT128) && defined(PETSC_HAVE_C99_COMPLEX)
503: #define PETSC_HAVE_COMPLEX 1
504: #endif
505: #else /* !PETSC_CLANGUAGE_CXX */
506: #if !defined(PETSC_USE_REAL___FP16)
508: #define PETSC_HAVE_COMPLEX 1
509: #elif defined(__cplusplus) && defined(PETSC_HAVE_C99_COMPLEX) && defined(PETSC_HAVE_CXX_COMPLEX) /* User code only - conditional on library code complex support */
510: #define PETSC_HAVE_COMPLEX 1
511: #endif
512: #endif
513: #endif /* PETSC_CLANGUAGE_CXX */
514: #endif /* !PETSC_SKIP_COMPLEX */
516: #if defined(PETSC_HAVE_COMPLEX)
517: #if defined(__cplusplus) /* C++ complex support */
518: /* Locate a C++ complex template library */
519: #if defined(PETSC_DESIRE_KOKKOS_COMPLEX) /* Defined in petscvec_kokkos.hpp for *.kokkos.cxx files */
520: #define petsccomplexlib Kokkos
521: #include <Kokkos_Complex.hpp>
522: #elif defined(__CUDACC__) || defined(__HIPCC__)
523: #define petsccomplexlib thrust
524: #include <thrust/complex.h>
525: #elif defined(PETSC_USE_REAL___FLOAT128)
526: #include <complex.h>
527: #else
528: #define petsccomplexlib std
529: #include <complex>
530: #endif
532: /* Define PetscComplex based on the precision */
533: #if defined(PETSC_USE_REAL_SINGLE)
534: typedef petsccomplexlib::complex<float> PetscComplex;
535: #elif defined(PETSC_USE_REAL_DOUBLE)
536: typedef petsccomplexlib::complex<double> PetscComplex;
537: #elif defined(PETSC_USE_REAL___FLOAT128)
538: typedef __complex128 PetscComplex;
539: #endif
541: /* Include a PETSc C++ complex 'fix'. Check PetscComplex manual page for details */
542: #if defined(PETSC_HAVE_CXX_COMPLEX_FIX) && !defined(PETSC_SKIP_CXX_COMPLEX_FIX)
543: #include <petsccxxcomplexfix.h>
544: #endif
545: #else /* c99 complex support */
546: #include <complex.h>
547: #if defined(PETSC_USE_REAL_SINGLE) || defined(PETSC_USE_REAL___FP16)
548: typedef float _Complex PetscComplex;
549: #elif defined(PETSC_USE_REAL_DOUBLE)
550: typedef double _Complex PetscComplex;
551: #elif defined(PETSC_USE_REAL___FLOAT128)
552: typedef __complex128 PetscComplex;
553: #endif /* PETSC_USE_REAL_* */
554: #endif /* !__cplusplus */
555: #endif /* PETSC_HAVE_COMPLEX */
557: /*MC
558: PetscScalar - PETSc type that represents either a double precision real number, a double precision
559: complex number, a single precision real number, a __float128 real or complex or a __fp16 real - if the code is configured
560: with `--with-scalar-type`=real,complex `--with-precision`=single,double,__float128,__fp16
562: Level: beginner
564: Note:
565: For MPI calls that require datatypes, use `MPIU_SCALAR` as the datatype for `PetscScalar` and `MPIU_SUM`, etc for operations. They will automatically work correctly regardless of the size of `PetscScalar`.
567: .seealso: `PetscReal`, `PetscComplex`, `PetscInt`, `MPIU_REAL`, `MPIU_SCALAR`, `MPIU_COMPLEX`, `MPIU_INT`, `PetscRealPart()`, `PetscImaginaryPart()`
568: M*/
570: #if defined(PETSC_USE_COMPLEX) && defined(PETSC_HAVE_COMPLEX)
571: typedef PetscComplex PetscScalar;
572: #else /* PETSC_USE_COMPLEX */
573: typedef PetscReal PetscScalar;
574: #endif /* PETSC_USE_COMPLEX */
576: /*E
577: PetscCopyMode - Determines how an array or `PetscObject` passed to certain functions is copied or retained by the aggregate `PetscObject`
579: Level: beginner
581: Values for array input:
582: + `PETSC_COPY_VALUES` - the array values are copied into new space, the user is free to reuse or delete the passed in array
583: . `PETSC_OWN_POINTER` - the array values are NOT copied, the object takes ownership of the array and will free it later, the user cannot change or
584: delete the array. The array MUST have been obtained with `PetscMalloc()`. Hence this mode cannot be used in Fortran.
585: - `PETSC_USE_POINTER` - the array values are NOT copied, the object uses the array but does NOT take ownership of the array. The user cannot use
586: the array but the user must delete the array after the object is destroyed.
588: Values for PetscObject:
589: + `PETSC_COPY_VALUES` - the input `PetscObject` is cloned into the aggregate `PetscObject`; the user is free to reuse/modify the input `PetscObject` without side effects.
590: . `PETSC_OWN_POINTER` - the input `PetscObject` is referenced by pointer (with reference count), thus should not be modified by the user.
591: increases its reference count).
592: - `PETSC_USE_POINTER` - invalid for `PetscObject` inputs.
593: E*/
594: typedef enum {
595: PETSC_COPY_VALUES,
596: PETSC_OWN_POINTER,
597: PETSC_USE_POINTER
598: } PetscCopyMode;
599: PETSC_EXTERN const char *const PetscCopyModes[];
601: /*MC
602: PETSC_FALSE - False value of `PetscBool`
604: Level: beginner
606: Note:
607: Zero integer
609: .seealso: `PetscBool`, `PetscBool3`, `PETSC_TRUE`
610: M*/
612: /*MC
613: PETSC_TRUE - True value of `PetscBool`
615: Level: beginner
617: Note:
618: Nonzero integer
620: .seealso: `PetscBool`, `PetscBool3`, `PETSC_FALSE`
621: M*/
623: /*MC
624: PetscLogDouble - Used for logging times
626: Level: developer
628: Note:
629: Contains double precision numbers that are not used in the numerical computations, but rather in logging, timing etc.
631: M*/
632: typedef double PetscLogDouble;
634: /*E
635: PetscDataType - Used for handling different basic data types.
637: Level: beginner
639: Notes:
640: Use of this should be avoided if one can directly use `MPI_Datatype` instead.
642: `PETSC_INT` is the datatype for a `PetscInt`, regardless of whether it is 4 or 8 bytes.
643: `PETSC_REAL`, `PETSC_COMPLEX` and `PETSC_SCALAR` are the datatypes for `PetscReal`, `PetscComplex` and `PetscScalar`, regardless of their sizes.
645: Developer Notes:
646: It would be nice if we could always just use MPI Datatypes, why can we not?
648: If you change any values in `PetscDatatype` make sure you update their usage in
649: share/petsc/matlab/PetscBagRead.m and share/petsc/matlab/@PetscOpenSocket/read/write.m
651: TODO:
652: Add PETSC_INT32 and remove use of improper `PETSC_ENUM`
654: .seealso: `PetscBinaryRead()`, `PetscBinaryWrite()`, `PetscDataTypeToMPIDataType()`,
655: `PetscDataTypeGetSize()`
656: E*/
657: typedef enum {
658: PETSC_DATATYPE_UNKNOWN = 0,
659: PETSC_DOUBLE = 1,
660: PETSC_COMPLEX = 2,
661: PETSC_LONG = 3,
662: PETSC_SHORT = 4,
663: PETSC_FLOAT = 5,
664: PETSC_CHAR = 6,
665: PETSC_BIT_LOGICAL = 7,
666: PETSC_ENUM = 8,
667: PETSC_BOOL = 9,
668: PETSC___FLOAT128 = 10,
669: PETSC_OBJECT = 11,
670: PETSC_FUNCTION = 12,
671: PETSC_STRING = 13,
672: PETSC___FP16 = 14,
673: PETSC_STRUCT = 15,
674: PETSC_INT = 16,
675: PETSC_INT64 = 17,
676: PETSC_COUNT = 18
677: } PetscDataType;
678: PETSC_EXTERN const char *const PetscDataTypes[];
680: #if defined(PETSC_USE_REAL_SINGLE)
681: #define PETSC_REAL PETSC_FLOAT
682: #elif defined(PETSC_USE_REAL_DOUBLE)
683: #define PETSC_REAL PETSC_DOUBLE
684: #elif defined(PETSC_USE_REAL___FLOAT128)
685: #define PETSC_REAL PETSC___FLOAT128
686: #elif defined(PETSC_USE_REAL___FP16)
687: #define PETSC_REAL PETSC___FP16
688: #else
689: #define PETSC_REAL PETSC_DOUBLE
690: #endif
692: #if defined(PETSC_USE_COMPLEX)
693: #define PETSC_SCALAR PETSC_COMPLEX
694: #else
695: #define PETSC_SCALAR PETSC_REAL
696: #endif
698: #define PETSC_FORTRANADDR PETSC_LONG
700: /*S
701: PetscToken - 'Token' used for managing tokenizing strings
703: Level: intermediate
705: .seealso: `PetscTokenCreate()`, `PetscTokenFind()`, `PetscTokenDestroy()`
706: S*/
707: typedef struct _p_PetscToken *PetscToken;
709: /*S
710: PetscObject - any PETSc object, `PetscViewer`, `Mat`, `Vec`, `KSP` etc
712: Level: beginner
714: Notes:
715: This is the base class from which all PETSc objects are derived from.
717: In certain situations one can cast an object, for example a `Vec`, to a `PetscObject` with (`PetscObject`)vec
719: .seealso: `PetscObjectDestroy()`, `PetscObjectView()`, `PetscObjectGetName()`, `PetscObjectSetName()`, `PetscObjectReference()`, `PetscObjectDereference()`
720: S*/
721: typedef struct _p_PetscObject *PetscObject;
723: /*MC
724: PetscObjectId - unique integer Id for a `PetscObject`
726: Level: developer
728: Note:
729: Unlike pointer values, object ids are never reused so one may save a `PetscObjectId` and compare it to one obtained later from a `PetscObject` to determine
730: if the objects are the same. Never compare two object pointer values.
732: .seealso: `PetscObjectState`, `PetscObjectGetId()`
733: M*/
734: typedef PetscInt64 PetscObjectId;
736: /*MC
737: PetscObjectState - integer state for a `PetscObject`
739: Level: developer
741: Notes:
742: Object state is always-increasing and (for objects that track state) can be used to determine if an object has
743: changed since the last time you interacted with it. It is 64-bit so that it will not overflow for a very long time.
745: .seealso: `PetscObjectId`, `PetscObjectStateGet()`, `PetscObjectStateIncrease()`, `PetscObjectStateSet()`
746: M*/
747: typedef PetscInt64 PetscObjectState;
749: /*S
750: PetscFunctionList - Linked list of functions, possibly stored in dynamic libraries, accessed
751: by string name
753: Level: advanced
755: .seealso: `PetscFunctionListAdd()`, `PetscFunctionListDestroy()`
756: S*/
757: typedef struct _n_PetscFunctionList *PetscFunctionList;
759: /*E
760: PetscFileMode - Access mode for a file.
762: Values:
763: + `FILE_MODE_UNDEFINED` - initial invalid value
764: . `FILE_MODE_READ` - open a file at its beginning for reading
765: . `FILE_MODE_WRITE` - open a file at its beginning for writing (will create if the file does not exist)
766: . `FILE_MODE_APPEND` - open a file at end for writing
767: . `FILE_MODE_UPDATE` - open a file for updating, meaning for reading and writing
768: - `FILE_MODE_APPEND_UPDATE` - open a file for updating, meaning for reading and writing, at the end
770: Level: beginner
772: .seealso: `PetscViewerFileSetMode()`
773: E*/
774: typedef enum {
775: FILE_MODE_UNDEFINED = -1,
776: FILE_MODE_READ = 0,
777: FILE_MODE_WRITE,
778: FILE_MODE_APPEND,
779: FILE_MODE_UPDATE,
780: FILE_MODE_APPEND_UPDATE
781: } PetscFileMode;
782: PETSC_EXTERN const char *const PetscFileModes[];
784: typedef void *PetscDLHandle;
785: typedef enum {
786: PETSC_DL_DECIDE = 0,
787: PETSC_DL_NOW = 1,
788: PETSC_DL_LOCAL = 2
789: } PetscDLMode;
791: /*S
792: PetscObjectList - Linked list of PETSc objects, each accessible by string name
794: Level: developer
796: Note:
797: Used by `PetscObjectCompose()` and `PetscObjectQuery()`
799: .seealso: `PetscObjectListAdd()`, `PetscObjectListDestroy()`, `PetscObjectListFind()`, `PetscObjectCompose()`, `PetscObjectQuery()`, `PetscFunctionList`
800: S*/
801: typedef struct _n_PetscObjectList *PetscObjectList;
803: /*S
804: PetscDLLibrary - Linked list of dynamic libraries to search for functions
806: Level: developer
808: .seealso: `PetscDLLibraryOpen()`
809: S*/
810: typedef struct _n_PetscDLLibrary *PetscDLLibrary;
812: /*S
813: PetscContainer - Simple PETSc object that contains a pointer to any required data
815: Level: advanced
817: Note:
818: This is useful to attach arbitrary data to a `PetscObject` with `PetscObjectCompose()` and `PetscObjectQuery()`
820: .seealso: `PetscObject`, `PetscContainerCreate()`, `PetscObjectCompose()`, `PetscObjectQuery()`
821: S*/
822: typedef struct _p_PetscContainer *PetscContainer;
824: /*S
825: PetscRandom - Abstract PETSc object that manages generating random numbers
827: Level: intermediate
829: .seealso: `PetscRandomCreate()`, `PetscRandomGetValue()`, `PetscRandomType`
830: S*/
831: typedef struct _p_PetscRandom *PetscRandom;
833: /*
834: In binary files variables are stored using the following lengths,
835: regardless of how they are stored in memory on any one particular
836: machine. Use these rather then sizeof() in computing sizes for
837: PetscBinarySeek().
838: */
839: #define PETSC_BINARY_INT_SIZE (32 / 8)
840: #define PETSC_BINARY_FLOAT_SIZE (32 / 8)
841: #define PETSC_BINARY_CHAR_SIZE (8 / 8)
842: #define PETSC_BINARY_SHORT_SIZE (16 / 8)
843: #define PETSC_BINARY_DOUBLE_SIZE (64 / 8)
844: #define PETSC_BINARY_SCALAR_SIZE sizeof(PetscScalar)
846: /*E
847: PetscBinarySeekType - argument to `PetscBinarySeek()`
849: Values:
850: + `PETSC_BINARY_SEEK_SET` - offset is an absolute location in the file
851: . `PETSC_BINARY_SEEK_CUR` - offset is an offset from the current location of the file pointer
852: - `PETSC_BINARY_SEEK_END` - offset is an offset from the end of the file
854: Level: advanced
856: .seealso: `PetscBinarySeek()`, `PetscBinarySynchronizedSeek()`
857: E*/
858: typedef enum {
859: PETSC_BINARY_SEEK_SET = 0,
860: PETSC_BINARY_SEEK_CUR = 1,
861: PETSC_BINARY_SEEK_END = 2
862: } PetscBinarySeekType;
864: /*E
865: PetscBuildTwoSidedType - algorithm for setting up two-sided communication for use with `PetscSF`
867: Values:
868: + `PETSC_BUILDTWOSIDED_ALLREDUCE` - classical algorithm using an `MPI_Allreduce()` with
869: a buffer of length equal to the communicator size. Not memory-scalable due to
870: the large reduction size. Requires only an MPI-1 implementation.
871: . `PETSC_BUILDTWOSIDED_IBARRIER` - nonblocking algorithm based on `MPI_Issend()` and `MPI_Ibarrier()`.
872: Proved communication-optimal in Hoefler, Siebert, and Lumsdaine (2010). Requires an MPI-3 implementation.
873: - `PETSC_BUILDTWOSIDED_REDSCATTER` - similar to above, but use more optimized function
874: that only communicates the part of the reduction that is necessary. Requires an MPI-2 implementation.
876: Level: developer
878: .seealso: `PetscCommBuildTwoSided()`, `PetscCommBuildTwoSidedSetType()`, `PetscCommBuildTwoSidedGetType()`
879: E*/
880: typedef enum {
881: PETSC_BUILDTWOSIDED_NOTSET = -1,
882: PETSC_BUILDTWOSIDED_ALLREDUCE = 0,
883: PETSC_BUILDTWOSIDED_IBARRIER = 1,
884: PETSC_BUILDTWOSIDED_REDSCATTER = 2
885: /* Updates here must be accompanied by updates in finclude/petscsys.h and the string array in mpits.c */
886: } PetscBuildTwoSidedType;
887: PETSC_EXTERN const char *const PetscBuildTwoSidedTypes[];
889: /* NOTE: If you change this, you must also change the values in src/vec/f90-mod/petscvec.h */
890: /*E
891: InsertMode - How the entries are combined with the current values in the vectors or matrices
893: Values:
894: + `NOT_SET_VALUES` - do not actually use the values
895: . `INSERT_VALUES` - replace the current values with the provided values, unless the index is marked as constrained by the `PetscSection`
896: . `ADD_VALUES` - add the values to the current values, unless the index is marked as constrained by the `PetscSection`
897: . `MAX_VALUES` - use the maximum of each current value and provided value
898: . `MIN_VALUES` - use the minimum of each current value and provided value
899: . `INSERT_ALL_VALUES` - insert, even if indices that are not marked as constrained by the `PetscSection`
900: . `ADD_ALL_VALUES` - add, even if indices that are not marked as constrained by the `PetscSection`
901: . `INSERT_BC_VALUES` - insert, but ignore indices that are not marked as constrained by the `PetscSection`
902: - `ADD_BC_VALUES` - add, but ignore indices that are not marked as constrained by the `PetscSection`
904: Level: beginner
906: Note:
907: The `PetscSection` that determines the effects of the `InsertMode` values can be obtained by the `Vec` object with `VecGetDM()`
908: and `DMGetLocalSection()`.
910: Not all options are supported for all operations or PETSc object types.
912: .seealso: `VecSetValues()`, `MatSetValues()`, `VecSetValue()`, `VecSetValuesBlocked()`,
913: `VecSetValuesLocal()`, `VecSetValuesBlockedLocal()`, `MatSetValuesBlocked()`,
914: `MatSetValuesBlockedLocal()`, `MatSetValuesLocal()`, `VecScatterBegin()`, `VecScatterEnd()`
915: E*/
916: typedef enum {
917: NOT_SET_VALUES,
918: INSERT_VALUES,
919: ADD_VALUES,
920: MAX_VALUES,
921: MIN_VALUES,
922: INSERT_ALL_VALUES,
923: ADD_ALL_VALUES,
924: INSERT_BC_VALUES,
925: ADD_BC_VALUES
926: } InsertMode;
928: /*MC
929: INSERT_VALUES - Put a value into a vector or matrix, overwrites any previous value
931: Level: beginner
933: .seealso: `InsertMode`, `VecSetValues()`, `MatSetValues()`, `VecSetValue()`, `VecSetValuesBlocked()`,
934: `VecSetValuesLocal()`, `VecSetValuesBlockedLocal()`, `MatSetValuesBlocked()`, `ADD_VALUES`,
935: `MatSetValuesBlockedLocal()`, `MatSetValuesLocal()`, `VecScatterBegin()`, `VecScatterEnd()`, `MAX_VALUES`
936: M*/
938: /*MC
939: ADD_VALUES - Adds a value into a vector or matrix, if there previously was no value, just puts the
940: value into that location
942: Level: beginner
944: .seealso: `InsertMode`, `VecSetValues()`, `MatSetValues()`, `VecSetValue()`, `VecSetValuesBlocked()`,
945: `VecSetValuesLocal()`, `VecSetValuesBlockedLocal()`, `MatSetValuesBlocked()`, `INSERT_VALUES`,
946: `MatSetValuesBlockedLocal()`, `MatSetValuesLocal()`, `VecScatterBegin()`, `VecScatterEnd()`, `MAX_VALUES`
947: M*/
949: /*MC
950: MAX_VALUES - Puts the maximum of the scattered/gathered value and the current value into each location
952: Level: beginner
954: .seealso: `InsertMode`, `VecScatterBegin()`, `VecScatterEnd()`, `ADD_VALUES`, `INSERT_VALUES`
955: M*/
957: /*MC
958: MIN_VALUES - Puts the minimal of the scattered/gathered value and the current value into each location
960: Level: beginner
962: .seealso: `InsertMode`, `VecScatterBegin()`, `VecScatterEnd()`, `ADD_VALUES`, `INSERT_VALUES`
963: M*/
965: /*S
966: PetscSubcomm - A decomposition of an MPI communicator into subcommunicators
968: Values:
969: + `PETSC_SUBCOMM_GENERAL` - similar to `MPI_Comm_split()` each process sets the new communicator (color) they will belong to and the order within that communicator
970: . `PETSC_SUBCOMM_CONTIGUOUS` - each new communicator contains a set of process with contiguous ranks in the original MPI communicator
971: - `PETSC_SUBCOMM_INTERLACED` - each new communictor contains a set of processes equally far apart in rank from the others in that new communicator
973: Sample Usage:
974: .vb
975: PetscSubcommCreate()
976: PetscSubcommSetNumber()
977: PetscSubcommSetType(PETSC_SUBCOMM_INTERLACED);
978: ccomm = PetscSubcommChild()
979: PetscSubcommDestroy()
980: .ve
982: Example:
983: Consider a communicator with six processes split into 3 subcommunicators.
984: .vb
985: PETSC_SUBCOMM_CONTIGUOUS - the first communicator contains rank 0,1 the second rank 2,3 and the third rank 4,5 in the original ordering of the original communicator
986: PETSC_SUBCOMM_INTERLACED - the first communicator contains rank 0,3, the second 1,4 and the third 2,5
987: .ve
989: Level: advanced
991: Note:
992: After a call to `PetscSubcommSetType()`, `PetscSubcommSetTypeGeneral()`, or `PetscSubcommSetFromOptions()` one may call
993: .vb
994: PetscSubcommChild() returns the associated subcommunicator on this process
995: PetscSubcommContiguousParent() returns a parent communitor but with all child of the same subcommunicator having contiguous rank
996: .ve
998: Developer Note:
999: This is used in objects such as `PCREDUNDANT` to manage the subcommunicators on which the redundant computations
1000: are performed.
1002: .seealso: `PetscSubcommCreate()`, `PetscSubcommSetNumber()`, `PetscSubcommSetType()`, `PetscSubcommView()`, `PetscSubcommSetFromOptions()`
1003: S*/
1004: typedef struct _n_PetscSubcomm *PetscSubcomm;
1005: typedef enum {
1006: PETSC_SUBCOMM_GENERAL = 0,
1007: PETSC_SUBCOMM_CONTIGUOUS = 1,
1008: PETSC_SUBCOMM_INTERLACED = 2
1009: } PetscSubcommType;
1010: PETSC_EXTERN const char *const PetscSubcommTypes[];
1012: /*S
1013: PetscHeap - A simple class for managing heaps
1015: Level: intermediate
1017: .seealso: `PetscHeapCreate()`, `PetscHeapAdd()`, `PetscHeapPop()`, `PetscHeapPeek()`, `PetscHeapStash()`, `PetscHeapUnstash()`, `PetscHeapView()`, `PetscHeapDestroy()`
1018: S*/
1019: typedef struct _PetscHeap *PetscHeap;
1021: typedef struct _n_PetscShmComm *PetscShmComm;
1022: typedef struct _n_PetscOmpCtrl *PetscOmpCtrl;
1024: /*S
1025: PetscSegBuffer - a segmented extendable buffer
1027: Level: developer
1029: .seealso: `PetscSegBufferCreate()`, `PetscSegBufferGet()`, `PetscSegBufferExtract()`, `PetscSegBufferDestroy()`
1030: S*/
1031: typedef struct _n_PetscSegBuffer *PetscSegBuffer;
1033: typedef struct _n_PetscOptionsHelpPrinted *PetscOptionsHelpPrinted;
1034: #endif