#include "petscmat.h" PetscErrorCode MatCreateSeqAIJCUSPARSE(MPI_Comm comm,PetscInt m,PetscInt n,PetscInt nz,const PetscInt nnz[],Mat *A)Collective on MPI_Comm

comm | - MPI communicator, set to PETSC_COMM_SELF | |

m | - number of rows | |

n | - number of columns | |

nz | - number of nonzeros per row (same for all rows) | |

nnz | - array containing the number of nonzeros in the various rows (possibly different for each row) or NULL |

It is recommended that one use the MatCreate(), MatSetType() and/or MatSetFromOptions(), MatXXXXSetPreallocation() paradgm instead of this routine directly. [MatXXXXSetPreallocation() is, for example, MatSeqAIJSetPreallocation]

The AIJ format (also called the Yale sparse matrix format or compressed row storage), is fully compatible with standard Fortran 77 storage. That is, the stored row and column indices can begin at either one (as in Fortran) or zero. See the users' manual for details.

Specify the preallocated storage with either nz or nnz (not both). Set nz=PETSC_DEFAULT and nnz=NULL for PETSc to control dynamic memory allocation. For large problems you MUST preallocate memory or you will get TERRIBLE performance, see the users' manual chapter on matrices.

By default, this format uses inodes (identical nodes) when possible, to improve numerical efficiency of matrix-vector products and solves. We search for consecutive rows with the same nonzero structure, thereby reusing matrix information to achieve increased efficiency.

Index of all Mat routines

Table of Contents for all manual pages

Index of all manual pages