static char help[] = "Poisson Problem in 2d and 3d with simplicial finite elements.\n\ We solve the Poisson problem in a rectangular\n\ domain, using a parallel unstructured mesh (DMPLEX) to discretize it.\n\ This example supports discretized auxiliary fields (conductivity) as well as\n\ multilevel nonlinear solvers.\n\n\n"; /* A visualization of the adaptation can be accomplished using: -dm_adapt_view hdf5:$PWD/adapt.h5 -sol_adapt_view hdf5:$PWD/adapt.h5::append -dm_adapt_pre_view hdf5:$PWD/orig.h5 -sol_adapt_pre_view hdf5:$PWD/orig.h5::append Information on refinement: -info -info_exclude null,sys,vec,is,mat,ksp,snes,ts */ #include #include #include #include #include typedef enum {NEUMANN, DIRICHLET, NONE} BCType; typedef enum {RUN_FULL, RUN_EXACT, RUN_TEST, RUN_PERF} RunType; typedef enum {COEFF_NONE, COEFF_ANALYTIC, COEFF_FIELD, COEFF_NONLINEAR, COEFF_CIRCLE, COEFF_CROSS} CoeffType; typedef struct { PetscInt debug; /* The debugging level */ RunType runType; /* Whether to run tests, or solve the full problem */ PetscBool jacobianMF; /* Whether to calculate the Jacobian action on the fly */ PetscLogEvent createMeshEvent; PetscBool showInitial, showSolution, restart, check, quiet, nonzInit; /* Domain and mesh definition */ PetscInt dim; /* The topological mesh dimension */ DMBoundaryType periodicity[3]; /* The domain periodicity */ PetscInt cells[3]; /* The initial domain division */ char filename[2048]; /* The optional mesh file */ PetscBool interpolate; /* Generate intermediate mesh elements */ PetscReal refinementLimit; /* The largest allowable cell volume */ PetscBool viewHierarchy; /* Whether to view the hierarchy */ PetscBool simplex; /* Simplicial mesh */ /* Problem definition */ BCType bcType; CoeffType variableCoefficient; PetscErrorCode (**exactFuncs)(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx); PetscBool fieldBC; void (**exactFields)(PetscInt, PetscInt, PetscInt, const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[], PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]); PetscBool bdIntegral; /* Compute the integral of the solution on the boundary */ /* Solver */ PC pcmg; /* This is needed for error monitoring */ } AppCtx; static PetscErrorCode zero(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx) { u[0] = 0.0; return 0; } static PetscErrorCode ecks(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx) { u[0] = x[0]; return 0; } /* In 2D for Dirichlet conditions, we use exact solution: u = x^2 + y^2 f = 4 so that -\Delta u + f = -4 + 4 = 0 For Neumann conditions, we have -\nabla u \cdot -\hat y |_{y=0} = (2y)|_{y=0} = 0 (bottom) -\nabla u \cdot \hat y |_{y=1} = -(2y)|_{y=1} = -2 (top) -\nabla u \cdot -\hat x |_{x=0} = (2x)|_{x=0} = 0 (left) -\nabla u \cdot \hat x |_{x=1} = -(2x)|_{x=1} = -2 (right) Which we can express as \nabla u \cdot \hat n|_\Gamma = {2 x, 2 y} \cdot \hat n = 2 (x + y) The boundary integral of this solution is (assuming we are not orienting the edges) \int^1_0 x^2 dx + \int^1_0 (1 + y^2) dy + \int^1_0 (x^2 + 1) dx + \int^1_0 y^2 dy = 1/3 + 4/3 + 4/3 + 1/3 = 3 1/3 */ static PetscErrorCode quadratic_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx) { *u = x[0]*x[0] + x[1]*x[1]; return 0; } static void quadratic_u_field_2d(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar uexact[]) { uexact[0] = a[0]; } static PetscErrorCode circle_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx) { const PetscReal alpha = 500.; const PetscReal radius2 = PetscSqr(0.15); const PetscReal r2 = PetscSqr(x[0] - 0.5) + PetscSqr(x[1] - 0.5); const PetscReal xi = alpha*(radius2 - r2); *u = PetscTanhScalar(xi) + 1.0; return 0; } static PetscErrorCode cross_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx) { const PetscReal alpha = 50*4; const PetscReal xy = (x[0]-0.5)*(x[1]-0.5); *u = PetscSinScalar(alpha*xy) * (alpha*PetscAbsScalar(xy) < 2*PETSC_PI ? 1 : 0.01); return 0; } static void f0_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]) { f0[0] = 4.0; } static void f0_circle_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]) { const PetscReal alpha = 500.; const PetscReal radius2 = PetscSqr(0.15); const PetscReal r2 = PetscSqr(x[0] - 0.5) + PetscSqr(x[1] - 0.5); const PetscReal xi = alpha*(radius2 - r2); f0[0] = (-4.0*alpha - 8.0*PetscSqr(alpha)*r2*PetscTanhReal(xi)) * PetscSqr(1.0/PetscCoshReal(xi)); } static void f0_cross_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]) { const PetscReal alpha = 50*4; const PetscReal xy = (x[0]-0.5)*(x[1]-0.5); f0[0] = PetscSinScalar(alpha*xy) * (alpha*PetscAbsScalar(xy) < 2*PETSC_PI ? 1 : 0.01); } static void f0_bd_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]) { PetscInt d; for (d = 0, f0[0] = 0.0; d < dim; ++d) f0[0] += -n[d]*2.0*x[d]; } static void f1_bd_zero(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[]) { PetscInt comp; for (comp = 0; comp < dim; ++comp) f1[comp] = 0.0; } /* gradU[comp*dim+d] = {u_x, u_y} or {u_x, u_y, u_z} */ static void f1_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[]) { PetscInt d; for (d = 0; d < dim; ++d) f1[d] = u_x[d]; } /* < \nabla v, \nabla u + {\nabla u}^T > This just gives \nabla u, give the perdiagonal for the transpose */ static void g3_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[]) { PetscInt d; for (d = 0; d < dim; ++d) g3[d*dim+d] = 1.0; } /* In 2D for x periodicity and y Dirichlet conditions, we use exact solution: u = sin(2 pi x) f = -4 pi^2 sin(2 pi x) so that -\Delta u + f = 4 pi^2 sin(2 pi x) - 4 pi^2 sin(2 pi x) = 0 */ static PetscErrorCode xtrig_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx) { *u = PetscSinReal(2.0*PETSC_PI*x[0]); return 0; } static void f0_xtrig_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]) { f0[0] = -4.0*PetscSqr(PETSC_PI)*PetscSinReal(2.0*PETSC_PI*x[0]); } /* In 2D for x-y periodicity, we use exact solution: u = sin(2 pi x) sin(2 pi y) f = -8 pi^2 sin(2 pi x) so that -\Delta u + f = 4 pi^2 sin(2 pi x) sin(2 pi y) + 4 pi^2 sin(2 pi x) sin(2 pi y) - 8 pi^2 sin(2 pi x) = 0 */ static PetscErrorCode xytrig_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx) { *u = PetscSinReal(2.0*PETSC_PI*x[0])*PetscSinReal(2.0*PETSC_PI*x[1]); return 0; } static void f0_xytrig_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]) { f0[0] = -8.0*PetscSqr(PETSC_PI)*PetscSinReal(2.0*PETSC_PI*x[0]); } /* In 2D for Dirichlet conditions with a variable coefficient, we use exact solution: u = x^2 + y^2 f = 6 (x + y) nu = (x + y) so that -\div \nu \grad u + f = -6 (x + y) + 6 (x + y) = 0 */ static PetscErrorCode nu_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx) { *u = x[0] + x[1]; return 0; } void f0_analytic_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]) { f0[0] = 6.0*(x[0] + x[1]); } /* gradU[comp*dim+d] = {u_x, u_y} or {u_x, u_y, u_z} */ void f1_analytic_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[]) { PetscInt d; for (d = 0; d < dim; ++d) f1[d] = (x[0] + x[1])*u_x[d]; } void f1_field_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[]) { PetscInt d; for (d = 0; d < dim; ++d) f1[d] = a[0]*u_x[d]; } /* < \nabla v, \nabla u + {\nabla u}^T > This just gives \nabla u, give the perdiagonal for the transpose */ void g3_analytic_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[]) { PetscInt d; for (d = 0; d < dim; ++d) g3[d*dim+d] = x[0] + x[1]; } void g3_field_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[]) { PetscInt d; for (d = 0; d < dim; ++d) g3[d*dim+d] = a[0]; } /* In 2D for Dirichlet conditions with a nonlinear coefficient (p-Laplacian with p = 4), we use exact solution: u = x^2 + y^2 f = 16 (x^2 + y^2) nu = 1/2 |grad u|^2 so that -\div \nu \grad u + f = -16 (x^2 + y^2) + 16 (x^2 + y^2) = 0 */ void f0_analytic_nonlinear_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[]) { f0[0] = 16.0*(x[0]*x[0] + x[1]*x[1]); } /* gradU[comp*dim+d] = {u_x, u_y} or {u_x, u_y, u_z} */ void f1_analytic_nonlinear_u(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[]) { PetscScalar nu = 0.0; PetscInt d; for (d = 0; d < dim; ++d) nu += u_x[d]*u_x[d]; for (d = 0; d < dim; ++d) f1[d] = 0.5*nu*u_x[d]; } /* grad (u + eps w) - grad u = eps grad w 1/2 |grad (u + eps w)|^2 grad (u + eps w) - 1/2 |grad u|^2 grad u = 1/2 (|grad u|^2 + 2 eps ) (grad u + eps grad w) - 1/2 |grad u|^2 grad u = 1/2 (eps |grad u|^2 grad w + 2 eps grad u) = eps (1/2 |grad u|^2 grad w + grad u ) */ void g3_analytic_nonlinear_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[]) { PetscScalar nu = 0.0; PetscInt d, e; for (d = 0; d < dim; ++d) nu += u_x[d]*u_x[d]; for (d = 0; d < dim; ++d) { g3[d*dim+d] = 0.5*nu; for (e = 0; e < dim; ++e) { g3[d*dim+e] += u_x[d]*u_x[e]; } } } /* In 3D for Dirichlet conditions we use exact solution: u = 2/3 (x^2 + y^2 + z^2) f = 4 so that -\Delta u + f = -2/3 * 6 + 4 = 0 For Neumann conditions, we have -\nabla u \cdot -\hat z |_{z=0} = (2z)|_{z=0} = 0 (bottom) -\nabla u \cdot \hat z |_{z=1} = -(2z)|_{z=1} = -2 (top) -\nabla u \cdot -\hat y |_{y=0} = (2y)|_{y=0} = 0 (front) -\nabla u \cdot \hat y |_{y=1} = -(2y)|_{y=1} = -2 (back) -\nabla u \cdot -\hat x |_{x=0} = (2x)|_{x=0} = 0 (left) -\nabla u \cdot \hat x |_{x=1} = -(2x)|_{x=1} = -2 (right) Which we can express as \nabla u \cdot \hat n|_\Gamma = {2 x, 2 y, 2z} \cdot \hat n = 2 (x + y + z) */ static PetscErrorCode quadratic_u_3d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx) { *u = 2.0*(x[0]*x[0] + x[1]*x[1] + x[2]*x[2])/3.0; return 0; } static void quadratic_u_field_3d(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar uexact[]) { uexact[0] = a[0]; } static void bd_integral_2d(PetscInt dim, PetscInt Nf, PetscInt NfAux, const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[], const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[], PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar *uint) { uint[0] = u[0]; } static PetscErrorCode ProcessOptions(MPI_Comm comm, AppCtx *options) { const char *bcTypes[3] = {"neumann", "dirichlet", "none"}; const char *runTypes[4] = {"full", "exact", "test", "perf"}; const char *coeffTypes[6] = {"none", "analytic", "field", "nonlinear", "circle", "cross"}; PetscInt bd, bc, run, coeff, n; PetscBool flg; PetscErrorCode ierr; PetscFunctionBeginUser; options->debug = 0; options->runType = RUN_FULL; options->dim = 2; options->periodicity[0] = DM_BOUNDARY_NONE; options->periodicity[1] = DM_BOUNDARY_NONE; options->periodicity[2] = DM_BOUNDARY_NONE; options->cells[0] = 2; options->cells[1] = 2; options->cells[2] = 2; options->filename[0] = '\0'; options->interpolate = PETSC_FALSE; options->refinementLimit = 0.0; options->bcType = DIRICHLET; options->variableCoefficient = COEFF_NONE; options->fieldBC = PETSC_FALSE; options->jacobianMF = PETSC_FALSE; options->showInitial = PETSC_FALSE; options->showSolution = PETSC_FALSE; options->restart = PETSC_FALSE; options->check = PETSC_FALSE; options->viewHierarchy = PETSC_FALSE; options->simplex = PETSC_TRUE; options->quiet = PETSC_FALSE; options->nonzInit = PETSC_FALSE; options->bdIntegral = PETSC_FALSE; ierr = PetscOptionsBegin(comm, "", "Poisson Problem Options", "DMPLEX");CHKERRQ(ierr); ierr = PetscOptionsInt("-debug", "The debugging level", "ex12.c", options->debug, &options->debug, NULL);CHKERRQ(ierr); run = options->runType; ierr = PetscOptionsEList("-run_type", "The run type", "ex12.c", runTypes, 4, runTypes[options->runType], &run, NULL);CHKERRQ(ierr); options->runType = (RunType) run; ierr = PetscOptionsInt("-dim", "The topological mesh dimension", "ex12.c", options->dim, &options->dim, NULL);CHKERRQ(ierr); bd = options->periodicity[0]; ierr = PetscOptionsEList("-x_periodicity", "The x-boundary periodicity", "ex12.c", DMBoundaryTypes, 5, DMBoundaryTypes[options->periodicity[0]], &bd, NULL);CHKERRQ(ierr); options->periodicity[0] = (DMBoundaryType) bd; bd = options->periodicity[1]; ierr = PetscOptionsEList("-y_periodicity", "The y-boundary periodicity", "ex12.c", DMBoundaryTypes, 5, DMBoundaryTypes[options->periodicity[1]], &bd, NULL);CHKERRQ(ierr); options->periodicity[1] = (DMBoundaryType) bd; bd = options->periodicity[2]; ierr = PetscOptionsEList("-z_periodicity", "The z-boundary periodicity", "ex12.c", DMBoundaryTypes, 5, DMBoundaryTypes[options->periodicity[2]], &bd, NULL);CHKERRQ(ierr); options->periodicity[2] = (DMBoundaryType) bd; n = 3; ierr = PetscOptionsIntArray("-cells", "The initial mesh division", "ex12.c", options->cells, &n, NULL);CHKERRQ(ierr); ierr = PetscOptionsString("-f", "Mesh filename to read", "ex12.c", options->filename, options->filename, sizeof(options->filename), &flg);CHKERRQ(ierr); ierr = PetscOptionsBool("-interpolate", "Generate intermediate mesh elements", "ex12.c", options->interpolate, &options->interpolate, NULL);CHKERRQ(ierr); ierr = PetscOptionsReal("-refinement_limit", "The largest allowable cell volume", "ex12.c", options->refinementLimit, &options->refinementLimit, NULL);CHKERRQ(ierr); bc = options->bcType; ierr = PetscOptionsEList("-bc_type","Type of boundary condition","ex12.c",bcTypes,3,bcTypes[options->bcType],&bc,NULL);CHKERRQ(ierr); options->bcType = (BCType) bc; coeff = options->variableCoefficient; ierr = PetscOptionsEList("-variable_coefficient","Type of variable coefficent","ex12.c",coeffTypes,6,coeffTypes[options->variableCoefficient],&coeff,NULL);CHKERRQ(ierr); options->variableCoefficient = (CoeffType) coeff; ierr = PetscOptionsBool("-field_bc", "Use a field representation for the BC", "ex12.c", options->fieldBC, &options->fieldBC, NULL);CHKERRQ(ierr); ierr = PetscOptionsBool("-jacobian_mf", "Calculate the action of the Jacobian on the fly", "ex12.c", options->jacobianMF, &options->jacobianMF, NULL);CHKERRQ(ierr); ierr = PetscOptionsBool("-show_initial", "Output the initial guess for verification", "ex12.c", options->showInitial, &options->showInitial, NULL);CHKERRQ(ierr); ierr = PetscOptionsBool("-show_solution", "Output the solution for verification", "ex12.c", options->showSolution, &options->showSolution, NULL);CHKERRQ(ierr); ierr = PetscOptionsBool("-restart", "Read in the mesh and solution from a file", "ex12.c", options->restart, &options->restart, NULL);CHKERRQ(ierr); ierr = PetscOptionsBool("-check", "Compare with default integration routines", "ex12.c", options->check, &options->check, NULL);CHKERRQ(ierr); ierr = PetscOptionsBool("-dm_view_hierarchy", "View the coarsened hierarchy", "ex12.c", options->viewHierarchy, &options->viewHierarchy, NULL);CHKERRQ(ierr); ierr = PetscOptionsBool("-simplex", "Simplicial (true) or tensor (false) mesh", "ex12.c", options->simplex, &options->simplex, NULL);CHKERRQ(ierr); ierr = PetscOptionsBool("-quiet", "Don't print any vecs", "ex12.c", options->quiet, &options->quiet, NULL);CHKERRQ(ierr); ierr = PetscOptionsBool("-nonzero_initial_guess", "nonzero intial guess", "ex12.c", options->nonzInit, &options->nonzInit, NULL);CHKERRQ(ierr); ierr = PetscOptionsBool("-bd_integral", "Compute the integral of the solution on the boundary", "ex12.c", options->bdIntegral, &options->bdIntegral, NULL);CHKERRQ(ierr); ierr = PetscOptionsEnd(); ierr = PetscLogEventRegister("CreateMesh", DM_CLASSID, &options->createMeshEvent);CHKERRQ(ierr); PetscFunctionReturn(0); } static PetscErrorCode CreateBCLabel(DM dm, const char name[]) { DMLabel label; PetscErrorCode ierr; PetscFunctionBeginUser; ierr = DMCreateLabel(dm, name);CHKERRQ(ierr); ierr = DMGetLabel(dm, name, &label);CHKERRQ(ierr); ierr = DMPlexMarkBoundaryFaces(dm, 1, label);CHKERRQ(ierr); ierr = DMPlexLabelComplete(dm, label);CHKERRQ(ierr); PetscFunctionReturn(0); } static PetscErrorCode CreateMesh(MPI_Comm comm, AppCtx *user, DM *dm) { PetscInt dim = user->dim; const char *filename = user->filename; PetscBool interpolate = user->interpolate; PetscReal refinementLimit = user->refinementLimit; size_t len; PetscErrorCode ierr; PetscFunctionBeginUser; ierr = PetscLogEventBegin(user->createMeshEvent,0,0,0,0);CHKERRQ(ierr); ierr = PetscStrlen(filename, &len);CHKERRQ(ierr); if (!len) { PetscInt d; if (user->periodicity[0] || user->periodicity[1] || user->periodicity[2]) for (d = 0; d < dim; ++d) user->cells[d] = PetscMax(user->cells[d], 3); ierr = DMPlexCreateBoxMesh(comm, dim, user->simplex, user->cells, NULL, NULL, user->periodicity, interpolate, dm);CHKERRQ(ierr); ierr = PetscObjectSetName((PetscObject) *dm, "Mesh");CHKERRQ(ierr); } else { ierr = DMPlexCreateFromFile(comm, filename, interpolate, dm);CHKERRQ(ierr); ierr = DMPlexSetRefinementUniform(*dm, PETSC_FALSE);CHKERRQ(ierr); } { PetscPartitioner part; DM refinedMesh = NULL; DM distributedMesh = NULL; /* Refine mesh using a volume constraint */ if (refinementLimit > 0.0) { ierr = DMPlexSetRefinementLimit(*dm, refinementLimit);CHKERRQ(ierr); ierr = DMRefine(*dm, comm, &refinedMesh);CHKERRQ(ierr); if (refinedMesh) { const char *name; ierr = PetscObjectGetName((PetscObject) *dm, &name);CHKERRQ(ierr); ierr = PetscObjectSetName((PetscObject) refinedMesh, name);CHKERRQ(ierr); ierr = DMDestroy(dm);CHKERRQ(ierr); *dm = refinedMesh; } } /* Distribute mesh over processes */ ierr = DMPlexGetPartitioner(*dm,&part);CHKERRQ(ierr); ierr = PetscPartitionerSetFromOptions(part);CHKERRQ(ierr); ierr = DMPlexDistribute(*dm, 0, NULL, &distributedMesh);CHKERRQ(ierr); if (distributedMesh) { ierr = DMDestroy(dm);CHKERRQ(ierr); *dm = distributedMesh; } } if (user->bcType == NEUMANN) { DMLabel label; ierr = DMCreateLabel(*dm, "boundary");CHKERRQ(ierr); ierr = DMGetLabel(*dm, "boundary", &label);CHKERRQ(ierr); ierr = DMPlexMarkBoundaryFaces(*dm, 1, label);CHKERRQ(ierr); } else if (user->bcType == DIRICHLET) { PetscBool hasLabel; ierr = DMHasLabel(*dm,"marker",&hasLabel);CHKERRQ(ierr); if (!hasLabel) {ierr = CreateBCLabel(*dm, "marker");CHKERRQ(ierr);} } { char convType[256]; PetscBool flg; ierr = PetscOptionsBegin(comm, "", "Mesh conversion options", "DMPLEX");CHKERRQ(ierr); ierr = PetscOptionsFList("-dm_plex_convert_type","Convert DMPlex to another format","ex12",DMList,DMPLEX,convType,256,&flg);CHKERRQ(ierr); ierr = PetscOptionsEnd(); if (flg) { DM dmConv; ierr = DMConvert(*dm,convType,&dmConv);CHKERRQ(ierr); if (dmConv) { ierr = DMDestroy(dm);CHKERRQ(ierr); *dm = dmConv; } } } ierr = DMLocalizeCoordinates(*dm);CHKERRQ(ierr); /* needed for periodic */ ierr = DMSetFromOptions(*dm);CHKERRQ(ierr); ierr = DMViewFromOptions(*dm, NULL, "-dm_view");CHKERRQ(ierr); if (user->viewHierarchy) { DM cdm = *dm; PetscInt i = 0; char buf[256]; while (cdm) { ierr = DMSetUp(cdm);CHKERRQ(ierr); ierr = DMGetCoarseDM(cdm, &cdm);CHKERRQ(ierr); ++i; } cdm = *dm; while (cdm) { PetscViewer viewer; PetscBool isHDF5, isVTK; --i; ierr = PetscViewerCreate(comm,&viewer);CHKERRQ(ierr); ierr = PetscViewerSetType(viewer,PETSCVIEWERHDF5);CHKERRQ(ierr); ierr = PetscViewerSetOptionsPrefix(viewer,"hierarchy_");CHKERRQ(ierr); ierr = PetscViewerSetFromOptions(viewer);CHKERRQ(ierr); ierr = PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERHDF5,&isHDF5);CHKERRQ(ierr); ierr = PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERVTK,&isVTK);CHKERRQ(ierr); if (isHDF5) { ierr = PetscSNPrintf(buf, 256, "ex12-%d.h5", i);CHKERRQ(ierr); } else if (isVTK) { ierr = PetscSNPrintf(buf, 256, "ex12-%d.vtu", i);CHKERRQ(ierr); ierr = PetscViewerPushFormat(viewer,PETSC_VIEWER_VTK_VTU);CHKERRQ(ierr); } else { ierr = PetscSNPrintf(buf, 256, "ex12-%d", i);CHKERRQ(ierr); } ierr = PetscViewerFileSetMode(viewer,FILE_MODE_WRITE);CHKERRQ(ierr); ierr = PetscViewerFileSetName(viewer,buf);CHKERRQ(ierr); ierr = DMView(cdm, viewer);CHKERRQ(ierr); ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr); ierr = DMGetCoarseDM(cdm, &cdm);CHKERRQ(ierr); } } ierr = PetscLogEventEnd(user->createMeshEvent,0,0,0,0);CHKERRQ(ierr); PetscFunctionReturn(0); } static PetscErrorCode SetupProblem(PetscDS prob, AppCtx *user) { const PetscInt id = 1; PetscErrorCode ierr; PetscFunctionBeginUser; switch (user->variableCoefficient) { case COEFF_NONE: if (user->periodicity[0]) { if (user->periodicity[1]) { ierr = PetscDSSetResidual(prob, 0, f0_xytrig_u, f1_u);CHKERRQ(ierr); ierr = PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_uu);CHKERRQ(ierr); } else { ierr = PetscDSSetResidual(prob, 0, f0_xtrig_u, f1_u);CHKERRQ(ierr); ierr = PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_uu);CHKERRQ(ierr); } } else { ierr = PetscDSSetResidual(prob, 0, f0_u, f1_u);CHKERRQ(ierr); ierr = PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_uu);CHKERRQ(ierr); } break; case COEFF_ANALYTIC: ierr = PetscDSSetResidual(prob, 0, f0_analytic_u, f1_analytic_u);CHKERRQ(ierr); ierr = PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_analytic_uu);CHKERRQ(ierr); break; case COEFF_FIELD: ierr = PetscDSSetResidual(prob, 0, f0_analytic_u, f1_field_u);CHKERRQ(ierr); ierr = PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_field_uu);CHKERRQ(ierr); break; case COEFF_NONLINEAR: ierr = PetscDSSetResidual(prob, 0, f0_analytic_nonlinear_u, f1_analytic_nonlinear_u);CHKERRQ(ierr); ierr = PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_analytic_nonlinear_uu);CHKERRQ(ierr); break; case COEFF_CIRCLE: ierr = PetscDSSetResidual(prob, 0, f0_circle_u, f1_u);CHKERRQ(ierr); ierr = PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_uu);CHKERRQ(ierr); break; case COEFF_CROSS: ierr = PetscDSSetResidual(prob, 0, f0_cross_u, f1_u);CHKERRQ(ierr); ierr = PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_uu);CHKERRQ(ierr); break; default: SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid variable coefficient type %d", user->variableCoefficient); } switch (user->dim) { case 2: switch (user->variableCoefficient) { case COEFF_CIRCLE: user->exactFuncs[0] = circle_u_2d;break; case COEFF_CROSS: user->exactFuncs[0] = cross_u_2d;break; default: if (user->periodicity[0]) { if (user->periodicity[1]) { user->exactFuncs[0] = xytrig_u_2d; } else { user->exactFuncs[0] = xtrig_u_2d; } } else { user->exactFuncs[0] = quadratic_u_2d; user->exactFields[0] = quadratic_u_field_2d; } } if (user->bcType == NEUMANN) {ierr = PetscDSSetBdResidual(prob, 0, f0_bd_u, f1_bd_zero);CHKERRQ(ierr);} break; case 3: user->exactFuncs[0] = quadratic_u_3d; user->exactFields[0] = quadratic_u_field_3d; if (user->bcType == NEUMANN) {ierr = PetscDSSetBdResidual(prob, 0, f0_bd_u, f1_bd_zero);CHKERRQ(ierr);} break; default: SETERRQ1(PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Invalid dimension %d", user->dim); } ierr = PetscDSAddBoundary(prob, user->bcType == DIRICHLET ? (user->fieldBC ? DM_BC_ESSENTIAL_FIELD : DM_BC_ESSENTIAL) : DM_BC_NATURAL, "wall", user->bcType == DIRICHLET ? "marker" : "boundary", 0, 0, NULL, user->fieldBC ? (void (*)(void)) user->exactFields[0] : (void (*)(void)) user->exactFuncs[0], 1, &id, user);CHKERRQ(ierr); ierr = PetscDSSetExactSolution(prob, 0, user->exactFuncs[0]);CHKERRQ(ierr); ierr = PetscDSSetFromOptions(prob);CHKERRQ(ierr); PetscFunctionReturn(0); } static PetscErrorCode SetupMaterial(DM dm, DM dmAux, AppCtx *user) { PetscErrorCode (*matFuncs[1])(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx) = {nu_2d}; Vec nu; PetscErrorCode ierr; PetscFunctionBegin; ierr = DMCreateLocalVector(dmAux, &nu);CHKERRQ(ierr); ierr = DMProjectFunctionLocal(dmAux, 0.0, matFuncs, NULL, INSERT_ALL_VALUES, nu);CHKERRQ(ierr); ierr = PetscObjectCompose((PetscObject) dm, "A", (PetscObject) nu);CHKERRQ(ierr); ierr = VecDestroy(&nu);CHKERRQ(ierr); PetscFunctionReturn(0); } static PetscErrorCode SetupBC(DM dm, DM dmAux, AppCtx *user) { PetscErrorCode (*bcFuncs[1])(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx); Vec uexact; PetscInt dim; PetscErrorCode ierr; PetscFunctionBegin; ierr = DMGetDimension(dm, &dim);CHKERRQ(ierr); if (dim == 2) bcFuncs[0] = quadratic_u_2d; else bcFuncs[0] = quadratic_u_3d; ierr = DMCreateLocalVector(dmAux, &uexact);CHKERRQ(ierr); ierr = DMProjectFunctionLocal(dmAux, 0.0, bcFuncs, NULL, INSERT_ALL_VALUES, uexact);CHKERRQ(ierr); ierr = PetscObjectCompose((PetscObject) dm, "A", (PetscObject) uexact);CHKERRQ(ierr); ierr = VecDestroy(&uexact);CHKERRQ(ierr); PetscFunctionReturn(0); } static PetscErrorCode SetupDiscretization(DM dm, AppCtx *user) { DM cdm = dm; const PetscInt dim = user->dim; PetscFE feAux = NULL; PetscFE feCh = NULL; PetscFE fe; PetscDS prob, probAux = NULL, probCh = NULL; PetscBool simplex = user->simplex; MPI_Comm comm; PetscErrorCode ierr; PetscFunctionBeginUser; /* Create finite element */ ierr = PetscObjectGetComm((PetscObject) dm, &comm);CHKERRQ(ierr); ierr = PetscFECreateDefault(comm, dim, 1, simplex, NULL, -1, &fe);CHKERRQ(ierr); ierr = PetscObjectSetName((PetscObject) fe, "potential");CHKERRQ(ierr); if (user->variableCoefficient == COEFF_FIELD) { PetscQuadrature q; ierr = PetscFECreateDefault(comm, dim, 1, simplex, "mat_", -1, &feAux);CHKERRQ(ierr); ierr = PetscFEGetQuadrature(fe, &q);CHKERRQ(ierr); ierr = PetscFESetQuadrature(feAux, q);CHKERRQ(ierr); ierr = PetscDSCreate(PetscObjectComm((PetscObject)dm),&probAux);CHKERRQ(ierr); ierr = PetscDSSetDiscretization(probAux, 0, (PetscObject) feAux);CHKERRQ(ierr); } else if (user->fieldBC) { PetscQuadrature q; ierr = PetscFECreateDefault(comm, dim, 1, simplex, "bc_", -1, &feAux);CHKERRQ(ierr); ierr = PetscFEGetQuadrature(fe, &q);CHKERRQ(ierr); ierr = PetscFESetQuadrature(feAux, q);CHKERRQ(ierr); ierr = PetscDSCreate(PetscObjectComm((PetscObject)dm),&probAux);CHKERRQ(ierr); ierr = PetscDSSetDiscretization(probAux, 0, (PetscObject) feAux);CHKERRQ(ierr); } if (user->check) { ierr = PetscFECreateDefault(comm, dim, 1, simplex, "ch_", -1, &feCh);CHKERRQ(ierr); ierr = PetscDSCreate(PetscObjectComm((PetscObject)dm),&probCh);CHKERRQ(ierr); ierr = PetscDSSetDiscretization(probCh, 0, (PetscObject) feCh);CHKERRQ(ierr); } /* Set discretization and boundary conditions for each mesh */ ierr = DMGetDS(dm, &prob);CHKERRQ(ierr); ierr = PetscDSSetDiscretization(prob, 0, (PetscObject) fe);CHKERRQ(ierr); ierr = SetupProblem(prob, user);CHKERRQ(ierr); while (cdm) { DM coordDM; ierr = DMSetDS(cdm,prob);CHKERRQ(ierr); ierr = DMGetCoordinateDM(cdm,&coordDM);CHKERRQ(ierr); if (feAux) { DM dmAux; ierr = DMClone(cdm, &dmAux);CHKERRQ(ierr); ierr = DMSetCoordinateDM(dmAux, coordDM);CHKERRQ(ierr); ierr = DMSetDS(dmAux, probAux);CHKERRQ(ierr); ierr = PetscObjectCompose((PetscObject) dm, "dmAux", (PetscObject) dmAux);CHKERRQ(ierr); if (user->fieldBC) {ierr = SetupBC(cdm, dmAux, user);CHKERRQ(ierr);} else {ierr = SetupMaterial(cdm, dmAux, user);CHKERRQ(ierr);} ierr = DMDestroy(&dmAux);CHKERRQ(ierr); } if (feCh) { DM dmCh; ierr = DMClone(cdm, &dmCh);CHKERRQ(ierr); ierr = DMSetCoordinateDM(dmCh, coordDM);CHKERRQ(ierr); ierr = DMSetDS(dmCh, probCh);CHKERRQ(ierr); ierr = PetscObjectCompose((PetscObject) dm, "dmCh", (PetscObject) dmCh);CHKERRQ(ierr); ierr = DMDestroy(&dmCh);CHKERRQ(ierr); } if (user->bcType == DIRICHLET) { PetscBool hasLabel; ierr = DMHasLabel(cdm, "marker", &hasLabel);CHKERRQ(ierr); if (!hasLabel) {ierr = CreateBCLabel(cdm, "marker");CHKERRQ(ierr);} } ierr = DMGetCoarseDM(cdm, &cdm);CHKERRQ(ierr); } ierr = PetscFEDestroy(&fe);CHKERRQ(ierr); ierr = PetscFEDestroy(&feAux);CHKERRQ(ierr); ierr = PetscFEDestroy(&feCh);CHKERRQ(ierr); ierr = PetscDSDestroy(&probAux);CHKERRQ(ierr); ierr = PetscDSDestroy(&probCh);CHKERRQ(ierr); PetscFunctionReturn(0); } #include "petsc/private/petscimpl.h" /*@C KSPMonitorError - Outputs the error at each iteration of an iterative solver. Collective on KSP Input Parameters: + ksp - the KSP . its - iteration number . rnorm - 2-norm, preconditioned residual value (may be estimated). - ctx - monitor context Level: intermediate .keywords: KSP, default, monitor, residual .seealso: KSPMonitorSet(), KSPMonitorTrueResidualNorm(), KSPMonitorDefault() @*/ static PetscErrorCode KSPMonitorError(KSP ksp, PetscInt its, PetscReal rnorm, void *ctx) { AppCtx *user = (AppCtx *) ctx; DM dm; Vec du = NULL, r; PetscInt level = 0; PetscBool hasLevel; #if defined(PETSC_HAVE_HDF5) PetscViewer viewer; char buf[256]; #endif PetscErrorCode ierr; PetscFunctionBegin; ierr = KSPGetDM(ksp, &dm);CHKERRQ(ierr); /* Calculate solution */ { PC pc = user->pcmg; /* The MG PC */ DM fdm = NULL, cdm = NULL; KSP fksp, cksp; Vec fu, cu = NULL; PetscInt levels, l; ierr = KSPBuildSolution(ksp, NULL, &du);CHKERRQ(ierr); ierr = PetscObjectComposedDataGetInt((PetscObject) ksp, PetscMGLevelId, level, hasLevel);CHKERRQ(ierr); ierr = PCMGGetLevels(pc, &levels);CHKERRQ(ierr); ierr = PCMGGetSmoother(pc, levels-1, &fksp);CHKERRQ(ierr); ierr = KSPBuildSolution(fksp, NULL, &fu);CHKERRQ(ierr); for (l = levels-1; l > level; --l) { Mat R; Vec s; ierr = PCMGGetSmoother(pc, l-1, &cksp);CHKERRQ(ierr); ierr = KSPGetDM(cksp, &cdm);CHKERRQ(ierr); ierr = DMGetGlobalVector(cdm, &cu);CHKERRQ(ierr); ierr = PCMGGetRestriction(pc, l, &R);CHKERRQ(ierr); ierr = PCMGGetRScale(pc, l, &s);CHKERRQ(ierr); ierr = MatRestrict(R, fu, cu);CHKERRQ(ierr); ierr = VecPointwiseMult(cu, cu, s);CHKERRQ(ierr); if (l < levels-1) {ierr = DMRestoreGlobalVector(fdm, &fu);CHKERRQ(ierr);} fdm = cdm; fu = cu; } if (levels-1 > level) { ierr = VecAXPY(du, 1.0, cu);CHKERRQ(ierr); ierr = DMRestoreGlobalVector(cdm, &cu);CHKERRQ(ierr); } } /* Calculate error */ ierr = DMGetGlobalVector(dm, &r);CHKERRQ(ierr); ierr = DMProjectFunction(dm, 0.0, user->exactFuncs, NULL, INSERT_ALL_VALUES, r);CHKERRQ(ierr); ierr = VecAXPY(r,-1.0,du);CHKERRQ(ierr); ierr = PetscObjectSetName((PetscObject) r, "solution error");CHKERRQ(ierr); /* View error */ #if defined(PETSC_HAVE_HDF5) ierr = PetscSNPrintf(buf, 256, "ex12-%D.h5", level);CHKERRQ(ierr); ierr = PetscViewerHDF5Open(PETSC_COMM_WORLD, buf, FILE_MODE_APPEND, &viewer);CHKERRQ(ierr); ierr = VecView(r, viewer);CHKERRQ(ierr); ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr); #endif ierr = DMRestoreGlobalVector(dm, &r);CHKERRQ(ierr); PetscFunctionReturn(0); } /*@C SNESMonitorError - Outputs the error at each iteration of an iterative solver. Collective on SNES Input Parameters: + snes - the SNES . its - iteration number . rnorm - 2-norm of residual - ctx - user context Level: intermediate .keywords: SNES, nonlinear, default, monitor, norm .seealso: SNESMonitorDefault(), SNESMonitorSet(), SNESMonitorSolution() @*/ static PetscErrorCode SNESMonitorError(SNES snes, PetscInt its, PetscReal rnorm, void *ctx) { AppCtx *user = (AppCtx *) ctx; DM dm; Vec u, r; PetscInt level = -1; PetscBool hasLevel; #if defined(PETSC_HAVE_HDF5) PetscViewer viewer; #endif char buf[256]; PetscErrorCode ierr; PetscFunctionBegin; ierr = SNESGetDM(snes, &dm);CHKERRQ(ierr); /* Calculate error */ ierr = SNESGetSolution(snes, &u);CHKERRQ(ierr); ierr = DMGetGlobalVector(dm, &r);CHKERRQ(ierr); ierr = PetscObjectSetName((PetscObject) r, "solution error");CHKERRQ(ierr); ierr = DMProjectFunction(dm, 0.0, user->exactFuncs, NULL, INSERT_ALL_VALUES, r);CHKERRQ(ierr); ierr = VecAXPY(r, -1.0, u);CHKERRQ(ierr); /* View error */ ierr = PetscObjectComposedDataGetInt((PetscObject) snes, PetscMGLevelId, level, hasLevel);CHKERRQ(ierr); ierr = PetscSNPrintf(buf, 256, "ex12-%D.h5", level);CHKERRQ(ierr); #if defined(PETSC_HAVE_HDF5) ierr = PetscViewerHDF5Open(PETSC_COMM_WORLD, buf, FILE_MODE_APPEND, &viewer);CHKERRQ(ierr); ierr = VecView(r, viewer);CHKERRQ(ierr); ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr); /* Cleanup */ ierr = DMRestoreGlobalVector(dm, &r);CHKERRQ(ierr); PetscFunctionReturn(0); #else SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"You need to configure with --download-hdf5"); #endif } int main(int argc, char **argv) { DM dm; /* Problem specification */ SNES snes; /* nonlinear solver */ Vec u; /* solution vector */ Mat A,J; /* Jacobian matrix */ MatNullSpace nullSpace; /* May be necessary for Neumann conditions */ AppCtx user; /* user-defined work context */ JacActionCtx userJ; /* context for Jacobian MF action */ PetscReal error = 0.0; /* L_2 error in the solution */ PetscBool isFAS; PetscErrorCode ierr; ierr = PetscInitialize(&argc, &argv, NULL,help);if (ierr) return ierr; ierr = ProcessOptions(PETSC_COMM_WORLD, &user);CHKERRQ(ierr); ierr = SNESCreate(PETSC_COMM_WORLD, &snes);CHKERRQ(ierr); ierr = CreateMesh(PETSC_COMM_WORLD, &user, &dm);CHKERRQ(ierr); ierr = SNESSetDM(snes, dm);CHKERRQ(ierr); ierr = DMSetApplicationContext(dm, &user);CHKERRQ(ierr); ierr = PetscMalloc2(1, &user.exactFuncs, 1, &user.exactFields);CHKERRQ(ierr); ierr = SetupDiscretization(dm, &user);CHKERRQ(ierr); ierr = DMCreateGlobalVector(dm, &u);CHKERRQ(ierr); ierr = PetscObjectSetName((PetscObject) u, "potential");CHKERRQ(ierr); ierr = DMCreateMatrix(dm, &J);CHKERRQ(ierr); if (user.jacobianMF) { PetscInt M, m, N, n; ierr = MatGetSize(J, &M, &N);CHKERRQ(ierr); ierr = MatGetLocalSize(J, &m, &n);CHKERRQ(ierr); ierr = MatCreate(PETSC_COMM_WORLD, &A);CHKERRQ(ierr); ierr = MatSetSizes(A, m, n, M, N);CHKERRQ(ierr); ierr = MatSetType(A, MATSHELL);CHKERRQ(ierr); ierr = MatSetUp(A);CHKERRQ(ierr); #if 0 ierr = MatShellSetOperation(A, MATOP_MULT, (void (*)(void))FormJacobianAction);CHKERRQ(ierr); #endif userJ.dm = dm; userJ.J = J; userJ.user = &user; ierr = DMCreateLocalVector(dm, &userJ.u);CHKERRQ(ierr); if (user.fieldBC) {ierr = DMProjectFieldLocal(dm, 0.0, userJ.u, user.exactFields, INSERT_BC_VALUES, userJ.u);CHKERRQ(ierr);} else {ierr = DMProjectFunctionLocal(dm, 0.0, user.exactFuncs, NULL, INSERT_BC_VALUES, userJ.u);CHKERRQ(ierr);} ierr = MatShellSetContext(A, &userJ);CHKERRQ(ierr); } else { A = J; } if (user.bcType == NEUMANN) { ierr = MatNullSpaceCreate(PetscObjectComm((PetscObject) dm), PETSC_TRUE, 0, NULL, &nullSpace);CHKERRQ(ierr); ierr = MatSetNullSpace(A, nullSpace);CHKERRQ(ierr); } ierr = DMPlexSetSNESLocalFEM(dm,&user,&user,&user);CHKERRQ(ierr); ierr = SNESSetJacobian(snes, A, J, NULL, NULL);CHKERRQ(ierr); ierr = SNESSetFromOptions(snes);CHKERRQ(ierr); if (user.fieldBC) {ierr = DMProjectField(dm, 0.0, u, user.exactFields, INSERT_ALL_VALUES, u);CHKERRQ(ierr);} else {ierr = DMProjectFunction(dm, 0.0, user.exactFuncs, NULL, INSERT_ALL_VALUES, u);CHKERRQ(ierr);} if (user.restart) { #if defined(PETSC_HAVE_HDF5) PetscViewer viewer; ierr = PetscViewerCreate(PETSC_COMM_WORLD, &viewer);CHKERRQ(ierr); ierr = PetscViewerSetType(viewer, PETSCVIEWERHDF5);CHKERRQ(ierr); ierr = PetscViewerFileSetMode(viewer, FILE_MODE_READ);CHKERRQ(ierr); ierr = PetscViewerFileSetName(viewer, user.filename);CHKERRQ(ierr); ierr = PetscViewerHDF5PushGroup(viewer, "/fields");CHKERRQ(ierr); ierr = VecLoad(u, viewer);CHKERRQ(ierr); ierr = PetscViewerHDF5PopGroup(viewer);CHKERRQ(ierr); ierr = PetscViewerDestroy(&viewer);CHKERRQ(ierr); #endif } if (user.showInitial) { Vec lv; ierr = DMGetLocalVector(dm, &lv);CHKERRQ(ierr); ierr = DMGlobalToLocalBegin(dm, u, INSERT_VALUES, lv);CHKERRQ(ierr); ierr = DMGlobalToLocalEnd(dm, u, INSERT_VALUES, lv);CHKERRQ(ierr); ierr = DMPrintLocalVec(dm, "Local function", 1.0e-10, lv);CHKERRQ(ierr); ierr = DMRestoreLocalVector(dm, &lv);CHKERRQ(ierr); } if (user.viewHierarchy) { SNES lsnes; KSP ksp; PC pc; PetscInt numLevels, l; PetscBool isMG; ierr = PetscObjectTypeCompare((PetscObject) snes, SNESFAS, &isFAS);CHKERRQ(ierr); if (isFAS) { ierr = SNESFASGetLevels(snes, &numLevels);CHKERRQ(ierr); for (l = 0; l < numLevels; ++l) { ierr = SNESFASGetCycleSNES(snes, l, &lsnes);CHKERRQ(ierr); ierr = SNESMonitorSet(lsnes, SNESMonitorError, &user, NULL);CHKERRQ(ierr); } } else { ierr = SNESGetKSP(snes, &ksp);CHKERRQ(ierr); ierr = KSPGetPC(ksp, &pc);CHKERRQ(ierr); ierr = PetscObjectTypeCompare((PetscObject) pc, PCMG, &isMG);CHKERRQ(ierr); if (isMG) { user.pcmg = pc; ierr = PCMGGetLevels(pc, &numLevels);CHKERRQ(ierr); for (l = 0; l < numLevels; ++l) { ierr = PCMGGetSmootherDown(pc, l, &ksp);CHKERRQ(ierr); ierr = KSPMonitorSet(ksp, KSPMonitorError, &user, NULL);CHKERRQ(ierr); } } } } if (user.runType == RUN_FULL || user.runType == RUN_EXACT) { PetscErrorCode (*initialGuess[1])(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx) = {zero}; if (user.nonzInit) initialGuess[0] = ecks; if (user.runType == RUN_FULL) { ierr = DMProjectFunction(dm, 0.0, initialGuess, NULL, INSERT_VALUES, u);CHKERRQ(ierr); } if (user.debug) { ierr = PetscPrintf(PETSC_COMM_WORLD, "Initial guess\n");CHKERRQ(ierr); ierr = VecView(u, PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); } ierr = SNESSolve(snes, NULL, u);CHKERRQ(ierr); ierr = SNESGetSolution(snes, &u);CHKERRQ(ierr); ierr = SNESGetDM(snes, &dm);CHKERRQ(ierr); if (user.showSolution) { ierr = PetscPrintf(PETSC_COMM_WORLD, "Solution\n");CHKERRQ(ierr); ierr = VecChop(u, 3.0e-9);CHKERRQ(ierr); ierr = VecView(u, PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); } ierr = VecViewFromOptions(u, NULL, "-vec_view");CHKERRQ(ierr); } else if (user.runType == RUN_PERF) { Vec r; PetscReal res = 0.0; ierr = SNESGetFunction(snes, &r, NULL, NULL);CHKERRQ(ierr); ierr = SNESComputeFunction(snes, u, r);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD, "Initial Residual\n");CHKERRQ(ierr); ierr = VecChop(r, 1.0e-10);CHKERRQ(ierr); ierr = VecNorm(r, NORM_2, &res);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD, "L_2 Residual: %g\n", res);CHKERRQ(ierr); } else { Vec r; PetscReal res = 0.0, tol = 1.0e-11; /* Check discretization error */ ierr = SNESGetFunction(snes, &r, NULL, NULL);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD, "Initial guess\n");CHKERRQ(ierr); if (!user.quiet) {ierr = VecView(u, PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);} ierr = DMComputeL2Diff(dm, 0.0, user.exactFuncs, NULL, u, &error);CHKERRQ(ierr); if (error < tol) {ierr = PetscPrintf(PETSC_COMM_WORLD, "L_2 Error: < %2.1e\n", tol);CHKERRQ(ierr);} else {ierr = PetscPrintf(PETSC_COMM_WORLD, "L_2 Error: %g\n", error);CHKERRQ(ierr);} /* Check residual */ ierr = SNESComputeFunction(snes, u, r);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD, "Initial Residual\n");CHKERRQ(ierr); ierr = VecChop(r, 1.0e-10);CHKERRQ(ierr); if (!user.quiet) {ierr = VecView(r, PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);} ierr = VecNorm(r, NORM_2, &res);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD, "L_2 Residual: %g\n", res);CHKERRQ(ierr); /* Check Jacobian */ { Vec b; ierr = SNESComputeJacobian(snes, u, A, A);CHKERRQ(ierr); ierr = VecDuplicate(u, &b);CHKERRQ(ierr); ierr = VecSet(r, 0.0);CHKERRQ(ierr); ierr = SNESComputeFunction(snes, r, b);CHKERRQ(ierr); ierr = MatMult(A, u, r);CHKERRQ(ierr); ierr = VecAXPY(r, 1.0, b);CHKERRQ(ierr); ierr = VecDestroy(&b);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD, "Au - b = Au + F(0)\n");CHKERRQ(ierr); ierr = VecChop(r, 1.0e-10);CHKERRQ(ierr); if (!user.quiet) {ierr = VecView(r, PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr);} ierr = VecNorm(r, NORM_2, &res);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD, "Linear L_2 Residual: %g\n", res);CHKERRQ(ierr); } } ierr = VecViewFromOptions(u, NULL, "-vec_view");CHKERRQ(ierr); if (user.bdIntegral) { DMLabel label; PetscInt id = 1; PetscScalar bdInt = 0.0; PetscReal exact = 3.3333333333; ierr = DMGetLabel(dm, "marker", &label);CHKERRQ(ierr); ierr = DMPlexComputeBdIntegral(dm, u, label, 1, &id, bd_integral_2d, &bdInt, NULL);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD, "Solution boundary integral: %.4g\n", (double) PetscAbsScalar(bdInt));CHKERRQ(ierr); if (PetscAbsReal(PetscAbsScalar(bdInt) - exact) > PETSC_SQRT_MACHINE_EPSILON) SETERRQ2(PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Invalid boundary integral %g != %g", bdInt, exact); } if (user.bcType == NEUMANN) {ierr = MatNullSpaceDestroy(&nullSpace);CHKERRQ(ierr);} if (user.jacobianMF) {ierr = VecDestroy(&userJ.u);CHKERRQ(ierr);} if (A != J) {ierr = MatDestroy(&A);CHKERRQ(ierr);} ierr = MatDestroy(&J);CHKERRQ(ierr); ierr = VecDestroy(&u);CHKERRQ(ierr); ierr = SNESDestroy(&snes);CHKERRQ(ierr); ierr = DMDestroy(&dm);CHKERRQ(ierr); ierr = PetscFree2(user.exactFuncs, user.exactFields);CHKERRQ(ierr); ierr = PetscFinalize(); return ierr; } /*TEST # 2D serial P1 test 0-4 test: suffix: 0 requires: triangle args: -run_type test -refinement_limit 0.0 -bc_type dirichlet -interpolate 0 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 test: suffix: 1 requires: triangle args: -run_type test -refinement_limit 0.0 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 test: suffix: 2 requires: triangle args: -run_type test -refinement_limit 0.0625 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 test: suffix: 3 requires: triangle args: -run_type test -refinement_limit 0.0 -bc_type neumann -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -dm_view ascii::ascii_info_detail test: suffix: 4 requires: triangle args: -run_type test -refinement_limit 0.0625 -bc_type neumann -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 # 2D serial P2 test 5-8 test: suffix: 5 requires: triangle args: -run_type test -refinement_limit 0.0 -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 test: suffix: 6 requires: triangle args: -run_type test -refinement_limit 0.0625 -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 test: suffix: 7 requires: triangle args: -run_type test -refinement_limit 0.0 -bc_type neumann -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -dm_view ascii::ascii_info_detail test: suffix: 8 requires: triangle args: -run_type test -refinement_limit 0.0625 -bc_type neumann -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -dm_view ascii::ascii_info_detail test: suffix: bd_int_0 requires: triangle args: -run_type test -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -bd_integral -dm_view -quiet test: suffix: bd_int_1 requires: triangle args: -run_type test -dm_refine 2 -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -bd_integral -dm_view -quiet # 3D serial P1 test 9-12 test: suffix: 9 requires: ctetgen args: -run_type test -dim 3 -refinement_limit 0.0 -bc_type dirichlet -interpolate 0 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -dm_view -cells 1,1,1 test: suffix: 10 requires: ctetgen args: -run_type test -dim 3 -refinement_limit 0.0 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -dm_view -cells 1,1,1 test: suffix: 11 requires: ctetgen args: -run_type test -dim 3 -refinement_limit 0.0125 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -dm_view -cells 1,1,1 test: suffix: 12 requires: ctetgen args: -run_type test -dim 3 -refinement_limit 0.0 -bc_type neumann -interpolate 1 -petscspace_degree 1 -snes_fd -show_initial -dm_plex_print_fem 1 -dm_view -cells 1,1,1 # Analytic variable coefficient 13-20 test: suffix: 13 requires: triangle args: -run_type test -refinement_limit 0.0 -variable_coefficient analytic -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 test: suffix: 14 requires: triangle args: -run_type test -refinement_limit 0.0625 -variable_coefficient analytic -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 test: suffix: 15 requires: triangle args: -run_type test -refinement_limit 0.0 -variable_coefficient analytic -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 test: suffix: 16 requires: triangle args: -run_type test -refinement_limit 0.0625 -variable_coefficient analytic -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 test: suffix: 17 requires: hdf5 ctetgen args: -run_type test -dim 3 -refinement_limit 0.0 -variable_coefficient analytic -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 test: suffix: 18 requires: ctetgen args: -run_type test -dim 3 -refinement_limit 0.0125 -variable_coefficient analytic -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 test: suffix: 19 requires: ctetgen args: -run_type test -dim 3 -refinement_limit 0.0 -variable_coefficient analytic -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 test: suffix: 20 requires: ctetgen args: -run_type test -dim 3 -refinement_limit 0.0125 -variable_coefficient analytic -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 # P1 variable coefficient 21-28 test: suffix: 21 requires: triangle args: -run_type test -refinement_limit 0.0 -variable_coefficient field -interpolate 1 -petscspace_degree 1 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1 test: suffix: 22 requires: triangle args: -run_type test -refinement_limit 0.0625 -variable_coefficient field -interpolate 1 -petscspace_degree 1 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1 test: suffix: 23 requires: triangle args: -run_type test -refinement_limit 0.0 -variable_coefficient field -interpolate 1 -petscspace_degree 2 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1 test: suffix: 24 requires: triangle args: -run_type test -refinement_limit 0.0625 -variable_coefficient field -interpolate 1 -petscspace_degree 2 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1 test: suffix: 25 requires: ctetgen args: -run_type test -dim 3 -refinement_limit 0.0 -variable_coefficient field -interpolate 1 -petscspace_degree 1 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 test: suffix: 26 requires: ctetgen args: -run_type test -dim 3 -refinement_limit 0.0125 -variable_coefficient field -interpolate 1 -petscspace_degree 1 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 test: suffix: 27 requires: ctetgen args: -run_type test -dim 3 -refinement_limit 0.0 -variable_coefficient field -interpolate 1 -petscspace_degree 2 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 test: suffix: 28 requires: ctetgen args: -run_type test -dim 3 -refinement_limit 0.0125 -variable_coefficient field -interpolate 1 -petscspace_degree 2 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 # P0 variable coefficient 29-36 test: suffix: 29 requires: triangle args: -run_type test -refinement_limit 0.0 -variable_coefficient field -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 test: suffix: 30 requires: triangle args: -run_type test -refinement_limit 0.0625 -variable_coefficient field -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 test: suffix: 31 requires: triangle args: -run_type test -refinement_limit 0.0 -variable_coefficient field -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 test: requires: triangle suffix: 32 args: -run_type test -refinement_limit 0.0625 -variable_coefficient field -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 test: requires: ctetgen suffix: 33 args: -run_type test -dim 3 -refinement_limit 0.0 -variable_coefficient field -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 test: suffix: 34 requires: ctetgen args: -run_type test -dim 3 -refinement_limit 0.0125 -variable_coefficient field -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 test: suffix: 35 requires: ctetgen args: -run_type test -dim 3 -refinement_limit 0.0 -variable_coefficient field -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 test: suffix: 36 requires: ctetgen args: -run_type test -dim 3 -refinement_limit 0.0125 -variable_coefficient field -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 # Full solve 39-44 test: suffix: 39 requires: triangle !single args: -run_type full -refinement_limit 0.015625 -interpolate 1 -petscspace_degree 2 -pc_type gamg -ksp_rtol 1.0e-10 -ksp_monitor_short -ksp_converged_reason -snes_monitor_short -snes_converged_reason ::ascii_info_detail test: suffix: 40 requires: triangle !single args: -run_type full -refinement_limit 0.015625 -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 2 -pc_type svd -ksp_rtol 1.0e-10 -snes_monitor_short -snes_converged_reason ::ascii_info_detail test: suffix: 41 requires: triangle !single args: -run_type full -refinement_limit 0.03125 -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -pc_type svd -ksp_rtol 1.0e-10 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 1 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short test: suffix: 42 requires: triangle !single args: -run_type full -refinement_limit 0.0625 -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 3 -pc_type svd -ksp_rtol 1.0e-10 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 2 -dm_plex_print_fem 0 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short -fas_levels_2_snes_type newtonls -fas_levels_2_pc_type svd -fas_levels_2_ksp_rtol 1.0e-10 -fas_levels_2_snes_atol 1.0e-11 -fas_levels_2_snes_monitor_short test: suffix: 43 requires: triangle !single nsize: 2 args: -run_type full -refinement_limit 0.03125 -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -pc_type svd -ksp_rtol 1.0e-10 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 1 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short test: suffix: 44 requires: triangle !single nsize: 2 args: -run_type full -refinement_limit 0.0625 -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 3 -pc_type svd -ksp_rtol 1.0e-10 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 2 -dm_plex_print_fem 0 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short -fas_levels_2_snes_type newtonls -fas_levels_2_pc_type svd -fas_levels_2_ksp_rtol 1.0e-10 -fas_levels_2_snes_atol 1.0e-11 -fas_levels_2_snes_monitor_short # These tests use a loose tolerance just to exercise the PtAP operations for MATIS and multiple BDDC setup calls inside PCMG testset: requires: triangle !single nsize: 3 args: -interpolate -run_type full -petscspace_degree 1 -dm_mat_type is -pc_type mg -pc_mg_levels 2 -mg_coarse_pc_type bddc -pc_mg_galerkin pmat -ksp_rtol 1.0e-2 -snes_converged_reason -dm_refine_hierarchy 2 -snes_max_it 4 test: suffix: gmg_bddc args: -mg_levels_pc_type jacobi test: filter: sed -e "s/iterations 1/iterations 4/g" suffix: gmg_bddc_lev args: -mg_levels_pc_type bddc # Restarting testset: suffix: restart requires: hdf5 triangle !complex args: -run_type test -refinement_limit 0.0 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 test: args: -dm_view hdf5:sol.h5 -vec_view hdf5:sol.h5::append test: args: -f sol.h5 -restart # Periodicity test: suffix: periodic_0 requires: triangle args: -run_type full -refinement_limit 0.0 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -snes_converged_reason ::ascii_info_detail test: requires: !complex suffix: periodic_1 args: -quiet -run_type test -simplex 0 -x_periodicity periodic -y_periodicity periodic -vec_view vtk:test.vtu:vtk_vtu -interpolate 1 -petscspace_degree 1 -dm_refine 1 # 2D serial P1 test with field bc test: suffix: field_bc_p1_0 requires: triangle args: -run_type test -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 test: suffix: field_bc_p1_1 requires: triangle args: -run_type test -dm_refine 1 -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 test: suffix: field_bc_p1_2 requires: triangle args: -run_type test -interpolate 1 -bc_type neumann -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 test: suffix: field_bc_p1_3 requires: triangle args: -run_type test -dm_refine 1 -interpolate 1 -bc_type neumann -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 # 3D serial P1 test with field bc test: suffix: field_bc_p1_4 requires: ctetgen args: -run_type test -dim 3 -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 test: suffix: field_bc_p1_5 requires: ctetgen args: -run_type test -dim 3 -dm_refine 1 -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 test: suffix: field_bc_p1_6 requires: ctetgen args: -run_type test -dim 3 -interpolate 1 -bc_type neumann -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 test: suffix: field_bc_p1_7 requires: ctetgen args: -run_type test -dim 3 -dm_refine 1 -interpolate 1 -bc_type neumann -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 # 2D serial P2 test with field bc test: suffix: field_bc_p2_0 requires: triangle args: -run_type test -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 test: suffix: field_bc_p2_1 requires: triangle args: -run_type test -dm_refine 1 -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 test: suffix: field_bc_p2_2 requires: triangle args: -run_type test -interpolate 1 -bc_type neumann -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 test: suffix: field_bc_p2_3 requires: triangle args: -run_type test -dm_refine 1 -interpolate 1 -bc_type neumann -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 # 3D serial P2 test with field bc test: suffix: field_bc_p2_4 requires: ctetgen args: -run_type test -dim 3 -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 test: suffix: field_bc_p2_5 requires: ctetgen args: -run_type test -dim 3 -dm_refine 1 -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 test: suffix: field_bc_p2_6 requires: ctetgen args: -run_type test -dim 3 -interpolate 1 -bc_type neumann -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 test: suffix: field_bc_p2_7 requires: ctetgen args: -run_type test -dim 3 -dm_refine 1 -interpolate 1 -bc_type neumann -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1 # Full solve simplex: Convergence test: suffix: tet_conv_p1_r0 requires: ctetgen args: -run_type full -dim 3 -dm_refine 0 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -dm_view -snes_converged_reason ::ascii_info_detail -pc_type lu -cells 1,1,1 test: suffix: tet_conv_p1_r2 requires: ctetgen args: -run_type full -dim 3 -dm_refine 2 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -dm_view -snes_converged_reason ::ascii_info_detail -pc_type lu -cells 1,1,1 test: suffix: tet_conv_p1_r3 requires: ctetgen args: -run_type full -dim 3 -dm_refine 3 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -dm_view -snes_converged_reason ::ascii_info_detail -pc_type lu -cells 1,1,1 test: suffix: tet_conv_p2_r0 requires: ctetgen args: -run_type full -dim 3 -dm_refine 0 -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -dm_view -snes_converged_reason ::ascii_info_detail -pc_type lu -cells 1,1,1 test: suffix: tet_conv_p2_r2 requires: ctetgen args: -run_type full -dim 3 -dm_refine 2 -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -dm_view -snes_converged_reason ::ascii_info_detail -pc_type lu -cells 1,1,1 # Full solve simplex: BDDC test: suffix: tri_bddc requires: triangle !single nsize: 5 args: -run_type full -petscpartitioner_type simple -dm_refine 2 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -dm_mat_type is -pc_type bddc -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0 # Full solve simplex: BDDC test: suffix: tri_bddc_parmetis requires: hdf5 triangle !single parmetis nsize: 4 args: -run_type full -petscpartitioner_type parmetis -dm_refine 2 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -dm_mat_type is -pc_type bddc -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0 testset: args: -run_type full -petscpartitioner_type simple -dm_refine 2 -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -dm_mat_type is -pc_type bddc -ksp_type gmres -snes_monitor_short -ksp_monitor_short -snes_view -simplex 0 -petscspace_poly_tensor -pc_bddc_corner_selection -cells 3,3 -ksp_rtol 1.e-9 -pc_bddc_use_edges 0 nsize: 5 output_file: output/ex12_quad_bddc.out filter: sed -e "s/aijcusparse/aij/g" -e "s/aijviennacl/aij/g" -e "s/factorization: cusparse/factorization: petsc/g" test: requires: !single suffix: quad_bddc test: requires: !single veccuda suffix: quad_bddc_cuda args: -matis_localmat_type aijcusparse -pc_bddc_dirichlet_pc_factor_mat_solver_type cusparse -pc_bddc_neumann_pc_factor_mat_solver_type cusparse test: requires: !single viennacl suffix: quad_bddc_viennacl args: -matis_localmat_type aijviennacl # Full solve simplex: ASM test: suffix: tri_q2q1_asm_lu requires: triangle !single args: -run_type full -dm_refine 3 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -pc_type asm -pc_asm_type restrict -pc_asm_blocks 4 -sub_pc_type lu -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0 test: suffix: tri_q2q1_msm_lu requires: triangle !single args: -run_type full -dm_refine 3 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -pc_type asm -pc_asm_type restrict -pc_asm_local_type multiplicative -pc_asm_blocks 4 -sub_pc_type lu -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0 test: suffix: tri_q2q1_asm_sor requires: triangle !single args: -run_type full -dm_refine 3 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -pc_type asm -pc_asm_type restrict -pc_asm_blocks 4 -sub_pc_type sor -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0 test: suffix: tri_q2q1_msm_sor requires: triangle !single args: -run_type full -dm_refine 3 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -pc_type asm -pc_asm_type restrict -pc_asm_local_type multiplicative -pc_asm_blocks 4 -sub_pc_type sor -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0 # Full solve simplex: FAS test: suffix: fas_newton_0 requires: triangle !single args: -run_type full -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -pc_type svd -ksp_rtol 1.0e-10 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 1 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short test: suffix: fas_newton_1 requires: triangle !single args: -run_type full -dm_refine_hierarchy 3 -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 3 -ksp_rtol 1.0e-10 -fas_coarse_pc_type lu -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_snes_linesearch_type basic -fas_levels_ksp_rtol 1.0e-10 -fas_levels_snes_monitor_short test: suffix: fas_ngs_0 requires: triangle !single args: -run_type full -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -pc_type svd -ksp_rtol 1.0e-10 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 1 -snes_view -fas_levels_1_snes_type ngs -fas_levels_1_snes_monitor_short test: suffix: fas_newton_coarse_0 requires: pragmatic triangle TODO: broken args: -run_type full -dm_refine 2 -dm_plex_hash_location -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -pc_type svd -ksp_rtol 1.0e-10 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_coarsen_hierarchy 1 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short test: suffix: mg_newton_coarse_0 requires: triangle pragmatic args: -run_type full -dm_refine 3 -interpolate 1 -petscspace_degree 1 -snes_monitor_short -ksp_monitor_true_residual -snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_coarsen_hierarchy 3 -dm_plex_hash_location -snes_view -dm_view -ksp_type richardson -pc_type mg -pc_mg_levels 4 -snes_atol 1.0e-8 -ksp_atol 1.0e-8 -snes_rtol 0.0 -ksp_rtol 0.0 -ksp_norm_type unpreconditioned -mg_levels_ksp_type gmres -mg_levels_pc_type ilu -mg_levels_ksp_max_it 10 test: suffix: mg_newton_coarse_1 requires: triangle pragmatic args: -run_type full -dm_refine 5 -interpolate 1 -petscspace_degree 1 -dm_coarsen_hierarchy 5 -dm_plex_hash_location -dm_plex_separate_marker -dm_plex_coarsen_bd_label marker -dm_plex_remesh_bd -ksp_type richardson -ksp_rtol 1.0e-12 -pc_type mg -pc_mg_levels 3 -mg_levels_ksp_max_it 2 -snes_converged_reason ::ascii_info_detail -snes_monitor -ksp_monitor_true_residual -mg_levels_ksp_monitor_true_residual -dm_view -ksp_view test: suffix: mg_newton_coarse_2 requires: triangle pragmatic args: -run_type full -dm_refine 5 -interpolate 1 -petscspace_degree 1 -dm_coarsen_hierarchy 5 -dm_plex_hash_location -dm_plex_separate_marker -dm_plex_remesh_bd -ksp_type richardson -ksp_rtol 1.0e-12 -pc_type mg -pc_mg_levels 3 -mg_levels_ksp_max_it 2 -snes_converged_reason ::ascii_info_detail -snes_monitor -ksp_monitor_true_residual -mg_levels_ksp_monitor_true_residual -dm_view -ksp_view # Full solve tensor test: suffix: tensor_plex_2d args: -run_type test -refinement_limit 0.0 -simplex 0 -interpolate -bc_type dirichlet -petscspace_degree 1 -dm_refine_hierarchy 2 -cells 2,2 test: suffix: tensor_p4est_2d requires: p4est args: -run_type test -refinement_limit 0.0 -simplex 0 -interpolate -bc_type dirichlet -petscspace_degree 1 -dm_forest_initial_refinement 2 -dm_forest_minimum_refinement 0 -dm_plex_convert_type p4est -cells 2,2 test: suffix: tensor_plex_3d args: -run_type test -refinement_limit 0.0 -simplex 0 -interpolate -bc_type dirichlet -petscspace_degree 1 -dim 3 -dm_refine_hierarchy 1 -cells 2,2,2 test: suffix: tensor_p4est_3d requires: p4est args: -run_type test -refinement_limit 0.0 -simplex 0 -interpolate -bc_type dirichlet -petscspace_degree 1 -dm_forest_initial_refinement 1 -dm_forest_minimum_refinement 0 -dim 3 -dm_plex_convert_type p8est -cells 2,2,2 test: suffix: p4est_test_q2_conformal_serial requires: p4est args: -run_type test -interpolate 1 -petscspace_degree 2 -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -cells 2,2 test: suffix: p4est_test_q2_conformal_parallel requires: p4est nsize: 7 args: -run_type test -interpolate 1 -petscspace_degree 2 -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -petscpartitioner_type simple -cells 2,2 test: suffix: p4est_test_q2_conformal_parallel_parmetis requires: hdf5 p4est nsize: 4 args: -run_type test -interpolate 1 -petscspace_degree 2 -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -petscpartitioner_type parmetis -cells 2,2 test: suffix: p4est_test_q2_nonconformal_serial requires: p4est filter: grep -v "CG or CGNE: variant" args: -run_type test -interpolate 1 -petscspace_degree 2 -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -cells 2,2 test: suffix: p4est_test_q2_nonconformal_parallel requires: p4est filter: grep -v "CG or CGNE: variant" nsize: 7 args: -run_type test -interpolate 1 -petscspace_degree 2 -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple -cells 2,2 test: suffix: p4est_test_q2_nonconformal_parallel_parmetis requires: hdf5 p4est nsize: 4 args: -run_type test -interpolate 1 -petscspace_degree 2 -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type parmetis -cells 2,2 test: suffix: p4est_exact_q2_conformal_serial requires: p4est !single args: -run_type exact -interpolate 1 -petscspace_degree 2 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -pc_type none -ksp_type preonly -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -cells 2,2 test: suffix: p4est_exact_q2_conformal_parallel TODO: broken requires: p4est !single nsize: 7 args: -run_type exact -interpolate 1 -petscspace_degree 2 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -pc_type none -ksp_type preonly -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -cells 2,2 test: suffix: p4est_exact_q2_conformal_parallel_parmetis requires: hdf5 p4est !single nsize: 4 args: -run_type exact -interpolate 1 -petscspace_degree 2 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -pc_type none -ksp_type preonly -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -petscpartitioner_type parmetis -cells 2,2 test: suffix: p4est_exact_q2_nonconformal_serial requires: p4est args: -run_type exact -interpolate 1 -petscspace_degree 2 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -pc_type none -ksp_type preonly -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -cells 2,2 test: suffix: p4est_exact_q2_nonconformal_parallel requires: p4est nsize: 7 args: -run_type exact -interpolate 1 -petscspace_degree 2 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -pc_type none -ksp_type preonly -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple -cells 2,2 test: suffix: p4est_exact_q2_nonconformal_parallel_parmetis requires: hdf5 p4est nsize: 4 args: -run_type exact -interpolate 1 -petscspace_degree 2 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -pc_type none -ksp_type preonly -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type parmetis -cells 2,2 test: suffix: p4est_full_q2_nonconformal_serial requires: p4est !single filter: grep -v "variant HERMITIAN" args: -run_type full -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -pc_type jacobi -ksp_type cg -fas_coarse_pc_type jacobi -fas_coarse_ksp_type cg -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type jacobi -fas_levels_ksp_type cg -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -cells 2,2 test: suffix: p4est_full_q2_nonconformal_parallel requires: p4est !single filter: grep -v "variant HERMITIAN" nsize: 7 args: -run_type full -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -pc_type jacobi -ksp_type cg -fas_coarse_pc_type jacobi -fas_coarse_ksp_type cg -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type jacobi -fas_levels_ksp_type cg -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple -cells 2,2 test: suffix: p4est_full_q2_nonconformal_parallel_bddcfas requires: p4est filter: grep -v "variant HERMITIAN" nsize: 7 args: -run_type full -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -dm_mat_type is -pc_type bddc -ksp_type cg -fas_coarse_pc_type bddc -fas_coarse_ksp_type cg -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type bddc -fas_levels_ksp_type cg -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple -cells 2,2 test: suffix: p4est_full_q2_nonconformal_parallel_bddc requires: p4est filter: grep -v "variant HERMITIAN" nsize: 7 args: -run_type full -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type newtonls -dm_mat_type is -pc_type bddc -ksp_type cg -snes_monitor_short -snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple -cells 2,2 test: suffix: p4est_fas_q2_conformal_serial requires: p4est args: -run_type full -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -pc_type jacobi -ksp_type gmres -fas_coarse_pc_type svd -fas_coarse_ksp_type gmres -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type svd -fas_levels_ksp_type gmres -fas_levels_snes_monitor_short -simplex 0 -dm_refine_hierarchy 3 -cells 2,2 TODO: broken test: suffix: p4est_fas_q2_nonconformal_serial requires: p4est broken args: -run_type full -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -pc_type jacobi -ksp_type gmres -fas_coarse_pc_type jacobi -fas_coarse_ksp_type gmres -fas_coarse_ksp_monitor_true_residual -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type jacobi -fas_levels_ksp_type gmres -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -cells 2,2 test: suffix: fas_newton_0_p4est requires: p4est !single args: -run_type full -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -pc_type svd -ksp_rtol 1.0e-10 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -cells 2,2 # Full solve simplicial AMR test: suffix: tri_p1_adapt_0 requires: pragmatic args: -run_type exact -dim 2 -dm_refine 5 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -variable_coefficient circle -snes_converged_reason ::ascii_info_detail -pc_type lu -adaptor_refinement_factor 1.0 -dm_view -dm_adapt_view -snes_adapt_initial test: suffix: tri_p1_adapt_1 requires: pragmatic args: -run_type exact -dim 2 -dm_refine 5 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -variable_coefficient circle -snes_converged_reason ::ascii_info_detail -pc_type lu -adaptor_refinement_factor 1.0 -dm_view -dm_adapt_iter_view -dm_adapt_view -snes_adapt_sequence 2 test: suffix: tri_p1_adapt_analytic_0 requires: pragmatic args: -run_type exact -dim 2 -dm_refine 3 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -variable_coefficient cross -snes_adapt_initial 4 -adaptor_target_num 500 -adaptor_monitor -dm_view -dm_adapt_iter_view # Full solve tensor AMR test: suffix: quad_q1_adapt_0 requires: p4est args: -run_type exact -dim 2 -simplex 0 -dm_plex_convert_type p4est -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -variable_coefficient circle -snes_converged_reason ::ascii_info_detail -pc_type lu -dm_forest_initial_refinement 4 -snes_adapt_initial -dm_view filter: grep -v DM_ test: suffix: amr_0 nsize: 5 args: -run_type test -petscpartitioner_type simple -refinement_limit 0.0 -simplex 0 -interpolate -bc_type dirichlet -petscspace_degree 1 -dm_refine 1 -cells 2,2 test: suffix: amr_1 requires: p4est !complex args: -run_type test -refinement_limit 0.0 -simplex 0 -interpolate -bc_type dirichlet -petscspace_degree 1 -dm_plex_convert_type p4est -dm_p4est_refine_pattern center -dm_forest_maximum_refinement 5 -dm_view vtk:amr.vtu:vtk_vtu -vec_view vtk:amr.vtu:vtk_vtu:append -cells 2,2 test: suffix: p4est_solve_bddc requires: p4est args: -run_type full -variable_coefficient nonlinear -nonzero_initial_guess 1 -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type newtonls -dm_mat_type is -pc_type bddc -ksp_type cg -snes_monitor_short -ksp_monitor -snes_linesearch_type bt -snes_converged_reason -snes_view -simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple -pc_bddc_detect_disconnected nsize: 4 test: suffix: p4est_solve_fas requires: p4est args: -run_type full -variable_coefficient nonlinear -nonzero_initial_guess 1 -interpolate 1 -petscspace_degree 2 -snes_max_it 10 -snes_type fas -snes_linesearch_type bt -snes_fas_levels 3 -fas_coarse_snes_type newtonls -fas_coarse_snes_linesearch_type basic -fas_coarse_ksp_type cg -fas_coarse_pc_type jacobi -fas_coarse_snes_monitor_short -fas_levels_snes_max_it 4 -fas_levels_snes_type newtonls -fas_levels_snes_linesearch_type bt -fas_levels_ksp_type cg -fas_levels_pc_type jacobi -fas_levels_snes_monitor_short -fas_levels_cycle_snes_linesearch_type bt -snes_monitor_short -snes_converged_reason -snes_view -simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash nsize: 4 TODO: identical machine two runs produce slightly different solver trackers test: suffix: p4est_convergence_test_1 requires: p4est args: -quiet -run_type test -interpolate 1 -petscspace_degree 1 -simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 2 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash nsize: 4 test: suffix: p4est_convergence_test_2 requires: p4est args: -quiet -run_type test -interpolate 1 -petscspace_degree 1 -simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 3 -dm_forest_initial_refinement 3 -dm_forest_maximum_refinement 5 -dm_p4est_refine_pattern hash test: suffix: p4est_convergence_test_3 requires: p4est args: -quiet -run_type test -interpolate 1 -petscspace_degree 1 -simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 4 -dm_forest_initial_refinement 4 -dm_forest_maximum_refinement 6 -dm_p4est_refine_pattern hash test: suffix: p4est_convergence_test_4 requires: p4est args: -quiet -run_type test -interpolate 1 -petscspace_degree 1 -simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 5 -dm_forest_initial_refinement 5 -dm_forest_maximum_refinement 7 -dm_p4est_refine_pattern hash timeoutfactor: 5 # Serial tests with GLVis visualization test: suffix: glvis_2d_tet_p1 args: -quiet -run_type test -interpolate 1 -bc_type dirichlet -petscspace_degree 1 -vec_view glvis: -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/square_periodic.msh test: suffix: glvis_2d_tet_p2 args: -quiet -run_type test -interpolate 1 -bc_type dirichlet -petscspace_degree 2 -vec_view glvis: -f${wPETSC_DIR}/share/petsc/datafiles/meshes/square_periodic.msh test: suffix: glvis_2d_hex_p1 args: -quiet -run_type test -interpolate 1 -bc_type dirichlet -petscspace_degree 1 -vec_view glvis: -simplex 0 -dm_refine 1 test: suffix: glvis_2d_hex_p2 args: -quiet -run_type test -interpolate 1 -bc_type dirichlet -petscspace_degree 2 -vec_view glvis: -simplex 0 -dm_refine 1 test: suffix: glvis_2d_hex_p2_p4est requires: p4est args: -quiet -run_type test -interpolate 1 -bc_type dirichlet -petscspace_degree 2 -vec_view glvis: -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 1 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -cells 2,2 -viewer_glvis_dm_plex_enable_ncmesh TEST*/