Actual source code: asfls.c

  1: #include <../src/tao/complementarity/impls/ssls/ssls.h>
  2: /*
  3:    Context for ASXLS
  4:      -- active-set      - reduced matrices formed
  5:                           - inherit properties of original system
  6:      -- semismooth (S)  - function not differentiable
  7:                         - merit function continuously differentiable
  8:                         - Fischer-Burmeister reformulation of complementarity
  9:                           - Billups composition for two finite bounds
 10:      -- infeasible (I)  - iterates not guaranteed to remain within bounds
 11:      -- feasible (F)    - iterates guaranteed to remain within bounds
 12:      -- linesearch (LS) - Armijo rule on direction

 14:    Many other reformulations are possible and combinations of
 15:    feasible/infeasible and linesearch/trust region are possible.

 17:    Basic theory
 18:      Fischer-Burmeister reformulation is semismooth with a continuously
 19:      differentiable merit function and strongly semismooth if the F has
 20:      lipschitz continuous derivatives.

 22:      Every accumulation point generated by the algorithm is a stationary
 23:      point for the merit function.  Stationary points of the merit function
 24:      are solutions of the complementarity problem if
 25:        a.  the stationary point has a BD-regular subdifferential, or
 26:        b.  the Schur complement F'/F'_ff is a P_0-matrix where ff is the
 27:            index set corresponding to the free variables.

 29:      If one of the accumulation points has a BD-regular subdifferential then
 30:        a.  the entire sequence converges to this accumulation point at
 31:            a local q-superlinear rate
 32:        b.  if in addition the reformulation is strongly semismooth near
 33:            this accumulation point, then the algorithm converges at a
 34:            local q-quadratic rate.

 36:    The theory for the feasible version follows from the feasible descent
 37:    algorithm framework. See {cite}`billups:algorithms`, {cite}`deluca.facchinei.ea:semismooth`,
 38:    {cite}`ferris.kanzow.ea:feasible`, {cite}`fischer:special`, and {cite}`munson.facchinei.ea:semismooth`.
 39: */

 41: static PetscErrorCode TaoSetUp_ASFLS(Tao tao)
 42: {
 43:   TAO_SSLS *asls = (TAO_SSLS *)tao->data;

 45:   PetscFunctionBegin;
 46:   PetscCall(VecDuplicate(tao->solution, &tao->gradient));
 47:   PetscCall(VecDuplicate(tao->solution, &tao->stepdirection));
 48:   PetscCall(VecDuplicate(tao->solution, &asls->ff));
 49:   PetscCall(VecDuplicate(tao->solution, &asls->dpsi));
 50:   PetscCall(VecDuplicate(tao->solution, &asls->da));
 51:   PetscCall(VecDuplicate(tao->solution, &asls->db));
 52:   PetscCall(VecDuplicate(tao->solution, &asls->t1));
 53:   PetscCall(VecDuplicate(tao->solution, &asls->t2));
 54:   PetscCall(VecDuplicate(tao->solution, &asls->w));
 55:   asls->fixed    = NULL;
 56:   asls->free     = NULL;
 57:   asls->J_sub    = NULL;
 58:   asls->Jpre_sub = NULL;
 59:   asls->r1       = NULL;
 60:   asls->r2       = NULL;
 61:   asls->r3       = NULL;
 62:   asls->dxfree   = NULL;
 63:   PetscFunctionReturn(PETSC_SUCCESS);
 64: }

 66: static PetscErrorCode Tao_ASLS_FunctionGradient(TaoLineSearch ls, Vec X, PetscReal *fcn, Vec G, void *ptr)
 67: {
 68:   Tao       tao  = (Tao)ptr;
 69:   TAO_SSLS *asls = (TAO_SSLS *)tao->data;

 71:   PetscFunctionBegin;
 72:   PetscCall(TaoComputeConstraints(tao, X, tao->constraints));
 73:   PetscCall(VecFischer(X, tao->constraints, tao->XL, tao->XU, asls->ff));
 74:   PetscCall(VecNorm(asls->ff, NORM_2, &asls->merit));
 75:   *fcn = 0.5 * asls->merit * asls->merit;
 76:   PetscCall(TaoComputeJacobian(tao, tao->solution, tao->jacobian, tao->jacobian_pre));

 78:   PetscCall(MatDFischer(tao->jacobian, tao->solution, tao->constraints, tao->XL, tao->XU, asls->t1, asls->t2, asls->da, asls->db));
 79:   PetscCall(VecPointwiseMult(asls->t1, asls->ff, asls->db));
 80:   PetscCall(MatMultTranspose(tao->jacobian, asls->t1, G));
 81:   PetscCall(VecPointwiseMult(asls->t1, asls->ff, asls->da));
 82:   PetscCall(VecAXPY(G, 1.0, asls->t1));
 83:   PetscFunctionReturn(PETSC_SUCCESS);
 84: }

 86: static PetscErrorCode TaoDestroy_ASFLS(Tao tao)
 87: {
 88:   TAO_SSLS *ssls = (TAO_SSLS *)tao->data;

 90:   PetscFunctionBegin;
 91:   PetscCall(VecDestroy(&ssls->ff));
 92:   PetscCall(VecDestroy(&ssls->dpsi));
 93:   PetscCall(VecDestroy(&ssls->da));
 94:   PetscCall(VecDestroy(&ssls->db));
 95:   PetscCall(VecDestroy(&ssls->w));
 96:   PetscCall(VecDestroy(&ssls->t1));
 97:   PetscCall(VecDestroy(&ssls->t2));
 98:   PetscCall(VecDestroy(&ssls->r1));
 99:   PetscCall(VecDestroy(&ssls->r2));
100:   PetscCall(VecDestroy(&ssls->r3));
101:   PetscCall(VecDestroy(&ssls->dxfree));
102:   PetscCall(MatDestroy(&ssls->J_sub));
103:   PetscCall(MatDestroy(&ssls->Jpre_sub));
104:   PetscCall(ISDestroy(&ssls->fixed));
105:   PetscCall(ISDestroy(&ssls->free));
106:   PetscCall(KSPDestroy(&tao->ksp));
107:   PetscCall(PetscFree(tao->data));
108:   PetscFunctionReturn(PETSC_SUCCESS);
109: }

111: static PetscErrorCode TaoSolve_ASFLS(Tao tao)
112: {
113:   TAO_SSLS                    *asls = (TAO_SSLS *)tao->data;
114:   PetscReal                    psi, ndpsi, normd, innerd, t = 0;
115:   PetscInt                     nf;
116:   TaoLineSearchConvergedReason ls_reason;

118:   PetscFunctionBegin;
119:   /* Assume that Setup has been called!
120:      Set the structure for the Jacobian and create a linear solver. */

122:   PetscCall(TaoComputeVariableBounds(tao));
123:   PetscCall(TaoLineSearchSetObjectiveAndGradientRoutine(tao->linesearch, Tao_ASLS_FunctionGradient, tao));
124:   PetscCall(TaoLineSearchSetObjectiveRoutine(tao->linesearch, Tao_SSLS_Function, tao));
125:   PetscCall(TaoLineSearchSetVariableBounds(tao->linesearch, tao->XL, tao->XU));

127:   PetscCall(VecMedian(tao->XL, tao->solution, tao->XU, tao->solution));

129:   /* Calculate the function value and fischer function value at the
130:      current iterate */
131:   PetscCall(TaoLineSearchComputeObjectiveAndGradient(tao->linesearch, tao->solution, &psi, asls->dpsi));
132:   PetscCall(VecNorm(asls->dpsi, NORM_2, &ndpsi));

134:   tao->reason = TAO_CONTINUE_ITERATING;
135:   while (1) {
136:     /* Check the converged criteria */
137:     PetscCall(PetscInfo(tao, "iter %" PetscInt_FMT ", merit: %g, ||dpsi||: %g\n", tao->niter, (double)asls->merit, (double)ndpsi));
138:     PetscCall(TaoLogConvergenceHistory(tao, asls->merit, ndpsi, 0.0, tao->ksp_its));
139:     PetscCall(TaoMonitor(tao, tao->niter, asls->merit, ndpsi, 0.0, t));
140:     PetscUseTypeMethod(tao, convergencetest, tao->cnvP);
141:     if (TAO_CONTINUE_ITERATING != tao->reason) break;

143:     /* Call general purpose update function */
144:     PetscTryTypeMethod(tao, update, tao->niter, tao->user_update);
145:     tao->niter++;

147:     /* We are going to solve a linear system of equations.  We need to
148:        set the tolerances for the solve so that we maintain an asymptotic
149:        rate of convergence that is superlinear.
150:        Note: these tolerances are for the reduced system.  We really need
151:        to make sure that the full system satisfies the full-space conditions.

153:        This rule gives superlinear asymptotic convergence
154:        asls->atol = min(0.5, asls->merit*sqrt(asls->merit));
155:        asls->rtol = 0.0;

157:        This rule gives quadratic asymptotic convergence
158:        asls->atol = min(0.5, asls->merit*asls->merit);
159:        asls->rtol = 0.0;

161:        Calculate a free and fixed set of variables.  The fixed set of
162:        variables are those for the d_b is approximately equal to zero.
163:        The definition of approximately changes as we approach the solution
164:        to the problem.

166:        No one rule is guaranteed to work in all cases.  The following
167:        definition is based on the norm of the Jacobian matrix.  If the
168:        norm is large, the tolerance becomes smaller. */
169:     PetscCall(MatNorm(tao->jacobian, NORM_1, &asls->identifier));
170:     asls->identifier = PetscMin(asls->merit, 1e-2) / (1 + asls->identifier);

172:     PetscCall(VecSet(asls->t1, -asls->identifier));
173:     PetscCall(VecSet(asls->t2, asls->identifier));

175:     PetscCall(ISDestroy(&asls->fixed));
176:     PetscCall(ISDestroy(&asls->free));
177:     PetscCall(VecWhichBetweenOrEqual(asls->t1, asls->db, asls->t2, &asls->fixed));
178:     PetscCall(ISComplementVec(asls->fixed, asls->t1, &asls->free));

180:     PetscCall(ISGetSize(asls->fixed, &nf));
181:     PetscCall(PetscInfo(tao, "Number of fixed variables: %" PetscInt_FMT "\n", nf));

183:     /* We now have our partition.  Now calculate the direction in the
184:        fixed variable space. */
185:     PetscCall(TaoVecGetSubVec(asls->ff, asls->fixed, tao->subset_type, 0.0, &asls->r1));
186:     PetscCall(TaoVecGetSubVec(asls->da, asls->fixed, tao->subset_type, 1.0, &asls->r2));
187:     PetscCall(VecPointwiseDivide(asls->r1, asls->r1, asls->r2));
188:     PetscCall(VecSet(tao->stepdirection, 0.0));
189:     PetscCall(VecISAXPY(tao->stepdirection, asls->fixed, 1.0, asls->r1));

191:     /* Our direction in the Fixed Variable Set is fixed.  Calculate the
192:        information needed for the step in the Free Variable Set.  To
193:        do this, we need to know the diagonal perturbation and the
194:        right-hand side. */

196:     PetscCall(TaoVecGetSubVec(asls->da, asls->free, tao->subset_type, 0.0, &asls->r1));
197:     PetscCall(TaoVecGetSubVec(asls->ff, asls->free, tao->subset_type, 0.0, &asls->r2));
198:     PetscCall(TaoVecGetSubVec(asls->db, asls->free, tao->subset_type, 1.0, &asls->r3));
199:     PetscCall(VecPointwiseDivide(asls->r1, asls->r1, asls->r3));
200:     PetscCall(VecPointwiseDivide(asls->r2, asls->r2, asls->r3));

202:     /* r1 is the diagonal perturbation
203:        r2 is the right-hand side
204:        r3 is no longer needed

206:        Now need to modify r2 for our direction choice in the fixed
207:        variable set:  calculate t1 = J*d, take the reduced vector
208:        of t1 and modify r2. */

210:     PetscCall(MatMult(tao->jacobian, tao->stepdirection, asls->t1));
211:     PetscCall(TaoVecGetSubVec(asls->t1, asls->free, tao->subset_type, 0.0, &asls->r3));
212:     PetscCall(VecAXPY(asls->r2, -1.0, asls->r3));

214:     /* Calculate the reduced problem matrix and the direction */
215:     PetscCall(TaoMatGetSubMat(tao->jacobian, asls->free, asls->w, tao->subset_type, &asls->J_sub));
216:     if (tao->jacobian != tao->jacobian_pre) {
217:       PetscCall(TaoMatGetSubMat(tao->jacobian_pre, asls->free, asls->w, tao->subset_type, &asls->Jpre_sub));
218:     } else {
219:       PetscCall(MatDestroy(&asls->Jpre_sub));
220:       asls->Jpre_sub = asls->J_sub;
221:       PetscCall(PetscObjectReference((PetscObject)asls->Jpre_sub));
222:     }
223:     PetscCall(MatDiagonalSet(asls->J_sub, asls->r1, ADD_VALUES));
224:     PetscCall(TaoVecGetSubVec(tao->stepdirection, asls->free, tao->subset_type, 0.0, &asls->dxfree));
225:     PetscCall(VecSet(asls->dxfree, 0.0));

227:     /* Calculate the reduced direction.  (Really negative of Newton
228:        direction.  Therefore, rest of the code uses -d.) */
229:     PetscCall(KSPReset(tao->ksp));
230:     PetscCall(KSPSetOperators(tao->ksp, asls->J_sub, asls->Jpre_sub));
231:     PetscCall(KSPSolve(tao->ksp, asls->r2, asls->dxfree));
232:     PetscCall(KSPGetIterationNumber(tao->ksp, &tao->ksp_its));
233:     tao->ksp_tot_its += tao->ksp_its;

235:     /* Add the direction in the free variables back into the real direction. */
236:     PetscCall(VecISAXPY(tao->stepdirection, asls->free, 1.0, asls->dxfree));

238:     /* Check the projected real direction for descent and if not, use the negative
239:        gradient direction. */
240:     PetscCall(VecCopy(tao->stepdirection, asls->w));
241:     PetscCall(VecScale(asls->w, -1.0));
242:     PetscCall(VecBoundGradientProjection(asls->w, tao->solution, tao->XL, tao->XU, asls->w));
243:     PetscCall(VecNorm(asls->w, NORM_2, &normd));
244:     PetscCall(VecDot(asls->w, asls->dpsi, &innerd));

246:     if (innerd >= -asls->delta * PetscPowReal(normd, asls->rho)) {
247:       PetscCall(PetscInfo(tao, "Gradient direction: %5.4e.\n", (double)innerd));
248:       PetscCall(PetscInfo(tao, "Iteration %" PetscInt_FMT ": newton direction not descent\n", tao->niter));
249:       PetscCall(VecCopy(asls->dpsi, tao->stepdirection));
250:       PetscCall(VecDot(asls->dpsi, tao->stepdirection, &innerd));
251:     }

253:     PetscCall(VecScale(tao->stepdirection, -1.0));
254:     innerd = -innerd;

256:     /* We now have a correct descent direction.  Apply a linesearch to
257:        find the new iterate. */
258:     PetscCall(TaoLineSearchSetInitialStepLength(tao->linesearch, 1.0));
259:     PetscCall(TaoLineSearchApply(tao->linesearch, tao->solution, &psi, asls->dpsi, tao->stepdirection, &t, &ls_reason));
260:     PetscCall(VecNorm(asls->dpsi, NORM_2, &ndpsi));
261:   }
262:   PetscFunctionReturn(PETSC_SUCCESS);
263: }

265: /*MC
266:    TAOASFLS - Active-set feasible linesearch algorithm for solving complementarity constraints

268:    Options Database Keys:
269: + -tao_ssls_delta - descent test fraction
270: - -tao_ssls_rho   - descent test power

272:    Level: beginner

274:    Note:
275:    See {cite}`billups:algorithms`, {cite}`deluca.facchinei.ea:semismooth`,
276:    {cite}`ferris.kanzow.ea:feasible`, {cite}`fischer:special`, and {cite}`munson.facchinei.ea:semismooth`.

278: .seealso: `Tao`, `TaoType`, `TAOASILS`
279: M*/
280: PETSC_EXTERN PetscErrorCode TaoCreate_ASFLS(Tao tao)
281: {
282:   TAO_SSLS   *asls;
283:   const char *armijo_type = TAOLINESEARCHARMIJO;

285:   PetscFunctionBegin;
286:   PetscCall(PetscNew(&asls));
287:   tao->data                = (void *)asls;
288:   tao->ops->solve          = TaoSolve_ASFLS;
289:   tao->ops->setup          = TaoSetUp_ASFLS;
290:   tao->ops->view           = TaoView_SSLS;
291:   tao->ops->setfromoptions = TaoSetFromOptions_SSLS;
292:   tao->ops->destroy        = TaoDestroy_ASFLS;
293:   tao->subset_type         = TAO_SUBSET_SUBVEC;
294:   asls->delta              = 1e-10;
295:   asls->rho                = 2.1;
296:   asls->fixed              = NULL;
297:   asls->free               = NULL;
298:   asls->J_sub              = NULL;
299:   asls->Jpre_sub           = NULL;
300:   asls->w                  = NULL;
301:   asls->r1                 = NULL;
302:   asls->r2                 = NULL;
303:   asls->r3                 = NULL;
304:   asls->t1                 = NULL;
305:   asls->t2                 = NULL;
306:   asls->dxfree             = NULL;
307:   asls->identifier         = 1e-5;

309:   PetscCall(TaoLineSearchCreate(((PetscObject)tao)->comm, &tao->linesearch));
310:   PetscCall(PetscObjectIncrementTabLevel((PetscObject)tao->linesearch, (PetscObject)tao, 1));
311:   PetscCall(TaoLineSearchSetType(tao->linesearch, armijo_type));
312:   PetscCall(TaoLineSearchSetOptionsPrefix(tao->linesearch, tao->hdr.prefix));
313:   PetscCall(TaoLineSearchSetFromOptions(tao->linesearch));

315:   PetscCall(KSPCreate(((PetscObject)tao)->comm, &tao->ksp));
316:   PetscCall(PetscObjectIncrementTabLevel((PetscObject)tao->ksp, (PetscObject)tao, 1));
317:   PetscCall(KSPSetOptionsPrefix(tao->ksp, tao->hdr.prefix));
318:   PetscCall(KSPSetFromOptions(tao->ksp));

320:   /* Override default settings (unless already changed) */
321:   if (!tao->max_it_changed) tao->max_it = 2000;
322:   if (!tao->max_funcs_changed) tao->max_funcs = 4000;
323:   if (!tao->gttol_changed) tao->gttol = 0;
324:   if (!tao->grtol_changed) tao->grtol = 0;
325: #if defined(PETSC_USE_REAL_SINGLE)
326:   if (!tao->gatol_changed) tao->gatol = 1.0e-6;
327:   if (!tao->fmin_changed) tao->fmin = 1.0e-4;
328: #else
329:   if (!tao->gatol_changed) tao->gatol = 1.0e-16;
330:   if (!tao->fmin_changed) tao->fmin = 1.0e-8;
331: #endif
332:   PetscFunctionReturn(PETSC_SUCCESS);
333: }