Actual source code: rvector.c

petsc-3.15.0 2021-04-05
Report Typos and Errors
  1: /*
  2:      Provides the interface functions for vector operations that have PetscScalar/PetscReal in the signature
  3:    These are the vector functions the user calls.
  4: */
  5: #include "petsc/private/sfimpl.h"
  6: #include "petscsystypes.h"
  7: #include <petsc/private/vecimpl.h>
  8: #if defined(PETSC_HAVE_CUDA)
  9: #include <../src/vec/vec/impls/dvecimpl.h>
 10: #include <petsc/private/cudavecimpl.h>
 11: #endif
 12: #if defined(PETSC_HAVE_HIP)
 13: #include <../src/vec/vec/impls/dvecimpl.h>
 14: #include <petsc/private/hipvecimpl.h>
 15: #endif
 16: static PetscInt VecGetSubVectorSavedStateId = -1;

 18: PETSC_EXTERN PetscErrorCode VecValidValues(Vec vec,PetscInt argnum,PetscBool begin)
 19: {
 20: #if defined(PETSC_USE_DEBUG)
 21:   PetscErrorCode    ierr;
 22:   PetscInt          n,i;
 23:   const PetscScalar *x;

 26: #if defined(PETSC_HAVE_DEVICE)
 27:   if ((vec->petscnative || vec->ops->getarray) && (vec->offloadmask & PETSC_OFFLOAD_CPU)) {
 28: #else
 29:   if (vec->petscnative || vec->ops->getarray) {
 30: #endif
 31:     VecGetLocalSize(vec,&n);
 32:     VecGetArrayRead(vec,&x);
 33:     for (i=0; i<n; i++) {
 34:       if (begin) {
 35:         if (PetscIsInfOrNanScalar(x[i])) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_FP,"Vec entry at local location %D is not-a-number or infinite at beginning of function: Parameter number %D",i,argnum);
 36:       } else {
 37:         if (PetscIsInfOrNanScalar(x[i])) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_FP,"Vec entry at local location %D is not-a-number or infinite at end of function: Parameter number %D",i,argnum);
 38:       }
 39:     }
 40:     VecRestoreArrayRead(vec,&x);
 41:   }
 42: #else
 44: #endif
 45:   return(0);
 46: }

 48: /*@
 49:    VecMaxPointwiseDivide - Computes the maximum of the componentwise division max = max_i abs(x_i/y_i).

 51:    Logically Collective on Vec

 53:    Input Parameters:
 54: .  x, y  - the vectors

 56:    Output Parameter:
 57: .  max - the result

 59:    Level: advanced

 61:    Notes:
 62:     x and y may be the same vector
 63:           if a particular y_i is zero, it is treated as 1 in the above formula

 65: .seealso: VecPointwiseDivide(), VecPointwiseMult(), VecPointwiseMax(), VecPointwiseMin(), VecPointwiseMaxAbs()
 66: @*/
 67: PetscErrorCode  VecMaxPointwiseDivide(Vec x,Vec y,PetscReal *max)
 68: {

 78:   VecCheckSameSize(x,1,y,2);
 79:   (*x->ops->maxpointwisedivide)(x,y,max);
 80:   return(0);
 81: }

 83: /*@
 84:    VecDot - Computes the vector dot product.

 86:    Collective on Vec

 88:    Input Parameters:
 89: .  x, y - the vectors

 91:    Output Parameter:
 92: .  val - the dot product

 94:    Performance Issues:
 95: $    per-processor memory bandwidth
 96: $    interprocessor latency
 97: $    work load inbalance that causes certain processes to arrive much earlier than others

 99:    Notes for Users of Complex Numbers:
100:    For complex vectors, VecDot() computes
101: $     val = (x,y) = y^H x,
102:    where y^H denotes the conjugate transpose of y. Note that this corresponds to the usual "mathematicians" complex
103:    inner product where the SECOND argument gets the complex conjugate. Since the BLASdot() complex conjugates the first
104:    first argument we call the BLASdot() with the arguments reversed.

106:    Use VecTDot() for the indefinite form
107: $     val = (x,y) = y^T x,
108:    where y^T denotes the transpose of y.

110:    Level: intermediate


113: .seealso: VecMDot(), VecTDot(), VecNorm(), VecDotBegin(), VecDotEnd(), VecDotRealPart()
114: @*/
115: PetscErrorCode  VecDot(Vec x,Vec y,PetscScalar *val)
116: {

126:   VecCheckSameSize(x,1,y,2);

128:   PetscLogEventBegin(VEC_Dot,x,y,0,0);
129:   (*x->ops->dot)(x,y,val);
130:   PetscLogEventEnd(VEC_Dot,x,y,0,0);
131:   return(0);
132: }

134: /*@
135:    VecDotRealPart - Computes the real part of the vector dot product.

137:    Collective on Vec

139:    Input Parameters:
140: .  x, y - the vectors

142:    Output Parameter:
143: .  val - the real part of the dot product;

145:    Performance Issues:
146: $    per-processor memory bandwidth
147: $    interprocessor latency
148: $    work load inbalance that causes certain processes to arrive much earlier than others

150:    Notes for Users of Complex Numbers:
151:      See VecDot() for more details on the definition of the dot product for complex numbers

153:      For real numbers this returns the same value as VecDot()

155:      For complex numbers in C^n (that is a vector of n components with a complex number for each component) this is equal to the usual real dot product on the
156:      the space R^{2n} (that is a vector of 2n components with the real or imaginary part of the complex numbers for components)

158:    Developer Note: This is not currently optimized to compute only the real part of the dot product.

160:    Level: intermediate


163: .seealso: VecMDot(), VecTDot(), VecNorm(), VecDotBegin(), VecDotEnd(), VecDot(), VecDotNorm2()
164: @*/
165: PetscErrorCode  VecDotRealPart(Vec x,Vec y,PetscReal *val)
166: {
168:   PetscScalar    fdot;

171:   VecDot(x,y,&fdot);
172:   *val = PetscRealPart(fdot);
173:   return(0);
174: }

176: /*@
177:    VecNorm  - Computes the vector norm.

179:    Collective on Vec

181:    Input Parameters:
182: +  x - the vector
183: -  type - one of NORM_1, NORM_2, NORM_INFINITY.  Also available
184:           NORM_1_AND_2, which computes both norms and stores them
185:           in a two element array.

187:    Output Parameter:
188: .  val - the norm

190:    Notes:
191: $     NORM_1 denotes sum_i |x_i|
192: $     NORM_2 denotes sqrt(sum_i |x_i|^2)
193: $     NORM_INFINITY denotes max_i |x_i|

195:       For complex numbers NORM_1 will return the traditional 1 norm of the 2 norm of the complex numbers; that is the 1
196:       norm of the absolute values of the complex entries. In PETSc 3.6 and earlier releases it returned the 1 norm of
197:       the 1 norm of the complex entries (what is returned by the BLAS routine asum()). Both are valid norms but most
198:       people expect the former.

200:    Level: intermediate

202:    Performance Issues:
203: $    per-processor memory bandwidth
204: $    interprocessor latency
205: $    work load inbalance that causes certain processes to arrive much earlier than others


208: .seealso: VecDot(), VecTDot(), VecNorm(), VecDotBegin(), VecDotEnd(), VecNormAvailable(),
209:           VecNormBegin(), VecNormEnd()

211: @*/

213: PetscErrorCode  VecNorm(Vec x,NormType type,PetscReal *val)
214: {
215:   PetscBool      flg;


223:   /*
224:    * Cached data?
225:    */
226:   if (type!=NORM_1_AND_2) {
227:     PetscObjectComposedDataGetReal((PetscObject)x,NormIds[type],*val,flg);
228:     if (flg) return(0);
229:   }
230:   PetscLogEventBegin(VEC_Norm,x,0,0,0);
231:   (*x->ops->norm)(x,type,val);
232:   PetscLogEventEnd(VEC_Norm,x,0,0,0);
233:   if (type!=NORM_1_AND_2) {
234:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[type],*val);
235:   }
236:   return(0);
237: }

239: /*@
240:    VecNormAvailable  - Returns the vector norm if it is already known.

242:    Not Collective

244:    Input Parameters:
245: +  x - the vector
246: -  type - one of NORM_1, NORM_2, NORM_INFINITY.  Also available
247:           NORM_1_AND_2, which computes both norms and stores them
248:           in a two element array.

250:    Output Parameter:
251: +  available - PETSC_TRUE if the val returned is valid
252: -  val - the norm

254:    Notes:
255: $     NORM_1 denotes sum_i |x_i|
256: $     NORM_2 denotes sqrt(sum_i (x_i)^2)
257: $     NORM_INFINITY denotes max_i |x_i|

259:    Level: intermediate

261:    Performance Issues:
262: $    per-processor memory bandwidth
263: $    interprocessor latency
264: $    work load inbalance that causes certain processes to arrive much earlier than others

266:    Compile Option:
267:    PETSC_HAVE_SLOW_BLAS_NORM2 will cause a C (loop unrolled) version of the norm to be used, rather
268:  than the BLAS. This should probably only be used when one is using the FORTRAN BLAS routines
269:  (as opposed to vendor provided) because the FORTRAN BLAS NRM2() routine is very slow.


272: .seealso: VecDot(), VecTDot(), VecNorm(), VecDotBegin(), VecDotEnd(), VecNorm()
273:           VecNormBegin(), VecNormEnd()

275: @*/
276: PetscErrorCode  VecNormAvailable(Vec x,NormType type,PetscBool  *available,PetscReal *val)
277: {


285:   *available = PETSC_FALSE;
286:   if (type!=NORM_1_AND_2) {
287:     PetscObjectComposedDataGetReal((PetscObject)x,NormIds[type],*val,*available);
288:   }
289:   return(0);
290: }

292: /*@
293:    VecNormalize - Normalizes a vector by 2-norm.

295:    Collective on Vec

297:    Input Parameters:
298: +  x - the vector

300:    Output Parameter:
301: .  x - the normalized vector
302: -  val - the vector norm before normalization

304:    Level: intermediate


307: @*/
308: PetscErrorCode  VecNormalize(Vec x,PetscReal *val)
309: {
311:   PetscReal      norm;

316:   PetscLogEventBegin(VEC_Normalize,x,0,0,0);
317:   VecNorm(x,NORM_2,&norm);
318:   if (norm == 0.0) {
319:     PetscInfo(x,"Vector of zero norm can not be normalized; Returning only the zero norm\n");
320:   } else if (norm != 1.0) {
321:     PetscScalar tmp = 1.0/norm;
322:     VecScale(x,tmp);
323:   }
324:   if (val) *val = norm;
325:   PetscLogEventEnd(VEC_Normalize,x,0,0,0);
326:   return(0);
327: }

329: /*@C
330:    VecMax - Determines the vector component with maximum real part and its location.

332:    Collective on Vec

334:    Input Parameter:
335: .  x - the vector

337:    Output Parameters:
338: +  p - the location of val (pass NULL if you don't want this)
339: -  val - the maximum component

341:    Notes:
342:    Returns the value PETSC_MIN_REAL and p = -1 if the vector is of length 0.

344:    Returns the smallest index with the maximum value
345:    Level: intermediate


348: .seealso: VecNorm(), VecMin()
349: @*/
350: PetscErrorCode  VecMax(Vec x,PetscInt *p,PetscReal *val)
351: {

358:   PetscLogEventBegin(VEC_Max,x,0,0,0);
359:   (*x->ops->max)(x,p,val);
360:   PetscLogEventEnd(VEC_Max,x,0,0,0);
361:   return(0);
362: }

364: /*@C
365:    VecMin - Determines the vector component with minimum real part and its location.

367:    Collective on Vec

369:    Input Parameters:
370: .  x - the vector

372:    Output Parameter:
373: +  p - the location of val (pass NULL if you don't want this location)
374: -  val - the minimum component

376:    Level: intermediate

378:    Notes:
379:    Returns the value PETSC_MAX_REAL and p = -1 if the vector is of length 0.

381:    This returns the smallest index with the minumum value


384: .seealso: VecMax()
385: @*/
386: PetscErrorCode  VecMin(Vec x,PetscInt *p,PetscReal *val)
387: {

394:   PetscLogEventBegin(VEC_Min,x,0,0,0);
395:   (*x->ops->min)(x,p,val);
396:   PetscLogEventEnd(VEC_Min,x,0,0,0);
397:   return(0);
398: }

400: /*@
401:    VecTDot - Computes an indefinite vector dot product. That is, this
402:    routine does NOT use the complex conjugate.

404:    Collective on Vec

406:    Input Parameters:
407: .  x, y - the vectors

409:    Output Parameter:
410: .  val - the dot product

412:    Notes for Users of Complex Numbers:
413:    For complex vectors, VecTDot() computes the indefinite form
414: $     val = (x,y) = y^T x,
415:    where y^T denotes the transpose of y.

417:    Use VecDot() for the inner product
418: $     val = (x,y) = y^H x,
419:    where y^H denotes the conjugate transpose of y.

421:    Level: intermediate

423: .seealso: VecDot(), VecMTDot()
424: @*/
425: PetscErrorCode  VecTDot(Vec x,Vec y,PetscScalar *val)
426: {

436:   VecCheckSameSize(x,1,y,2);

438:   PetscLogEventBegin(VEC_TDot,x,y,0,0);
439:   (*x->ops->tdot)(x,y,val);
440:   PetscLogEventEnd(VEC_TDot,x,y,0,0);
441:   return(0);
442: }

444: /*@
445:    VecScale - Scales a vector.

447:    Not collective on Vec

449:    Input Parameters:
450: +  x - the vector
451: -  alpha - the scalar

453:    Output Parameter:
454: .  x - the scaled vector

456:    Note:
457:    For a vector with n components, VecScale() computes
458: $      x[i] = alpha * x[i], for i=1,...,n.

460:    Level: intermediate


463: @*/
464: PetscErrorCode  VecScale(Vec x, PetscScalar alpha)
465: {
466:   PetscReal      norms[4] = {0.0,0.0,0.0, 0.0};
467:   PetscBool      flgs[4];
469:   PetscInt       i;

474:   if (x->stash.insertmode != NOT_SET_VALUES) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Not for unassembled vector");
475:   PetscLogEventBegin(VEC_Scale,x,0,0,0);
476:   if (alpha != (PetscScalar)1.0) {
477:     VecSetErrorIfLocked(x,1);
478:     /* get current stashed norms */
479:     for (i=0; i<4; i++) {
480:       PetscObjectComposedDataGetReal((PetscObject)x,NormIds[i],norms[i],flgs[i]);
481:     }
482:     (*x->ops->scale)(x,alpha);
483:     PetscObjectStateIncrease((PetscObject)x);
484:     /* put the scaled stashed norms back into the Vec */
485:     for (i=0; i<4; i++) {
486:       if (flgs[i]) {
487:         PetscObjectComposedDataSetReal((PetscObject)x,NormIds[i],PetscAbsScalar(alpha)*norms[i]);
488:       }
489:     }
490:   }
491:   PetscLogEventEnd(VEC_Scale,x,0,0,0);
492:   return(0);
493: }

495: /*@
496:    VecSet - Sets all components of a vector to a single scalar value.

498:    Logically Collective on Vec

500:    Input Parameters:
501: +  x  - the vector
502: -  alpha - the scalar

504:    Output Parameter:
505: .  x  - the vector

507:    Note:
508:    For a vector of dimension n, VecSet() computes
509: $     x[i] = alpha, for i=1,...,n,
510:    so that all vector entries then equal the identical
511:    scalar value, alpha.  Use the more general routine
512:    VecSetValues() to set different vector entries.

514:    You CANNOT call this after you have called VecSetValues() but before you call
515:    VecAssemblyBegin/End().

517:    Level: beginner

519: .seealso VecSetValues(), VecSetValuesBlocked(), VecSetRandom()

521: @*/
522: PetscErrorCode  VecSet(Vec x,PetscScalar alpha)
523: {
524:   PetscReal      val;

530:   if (x->stash.insertmode != NOT_SET_VALUES) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"You cannot call this after you have called VecSetValues() but\n before you have called VecAssemblyBegin/End()");
532:   VecSetErrorIfLocked(x,1);

534:   PetscLogEventBegin(VEC_Set,x,0,0,0);
535:   (*x->ops->set)(x,alpha);
536:   PetscLogEventEnd(VEC_Set,x,0,0,0);
537:   PetscObjectStateIncrease((PetscObject)x);

539:   /*  norms can be simply set (if |alpha|*N not too large) */
540:   val  = PetscAbsScalar(alpha);
541:   if (x->map->N == 0) {
542:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_1],0.0l);
543:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_INFINITY],0.0);
544:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_2],0.0);
545:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_FROBENIUS],0.0);
546:   } else if (val > PETSC_MAX_REAL/x->map->N) {
547:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_INFINITY],val);
548:   } else {
549:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_1],x->map->N * val);
550:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_INFINITY],val);
551:     val  = PetscSqrtReal((PetscReal)x->map->N) * val;
552:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_2],val);
553:     PetscObjectComposedDataSetReal((PetscObject)x,NormIds[NORM_FROBENIUS],val);
554:   }
555:   return(0);
556: }


559: /*@
560:    VecAXPY - Computes y = alpha x + y.

562:    Logically Collective on Vec

564:    Input Parameters:
565: +  alpha - the scalar
566: -  x, y  - the vectors

568:    Output Parameter:
569: .  y - output vector

571:    Level: intermediate

573:    Notes:
574:     x and y MUST be different vectors
575:     This routine is optimized for alpha of 0.0, otherwise it calls the BLAS routine

577: $    VecAXPY(y,alpha,x)                   y = alpha x           +      y
578: $    VecAYPX(y,beta,x)                    y =       x           + beta y
579: $    VecAXPBY(y,alpha,beta,x)             y = alpha x           + beta y
580: $    VecWAXPY(w,alpha,x,y)                w = alpha x           +      y
581: $    VecAXPBYPCZ(w,alpha,beta,gamma,x,y)  z = alpha x           + beta y + gamma z
582: $    VecMAXPY(y,nv,alpha[],x[])           y = sum alpha[i] x[i] +      y


585: .seealso:  VecAYPX(), VecMAXPY(), VecWAXPY(), VecAXPBYPCZ(), VecAXPBY()
586: @*/
587: PetscErrorCode  VecAXPY(Vec y,PetscScalar alpha,Vec x)
588: {

597:   VecCheckSameSize(x,1,y,3);
598:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)x),PETSC_ERR_ARG_IDN,"x and y cannot be the same vector");
600:   if (alpha == (PetscScalar)0.0) return(0);
601:   VecSetErrorIfLocked(y,1);

603:   VecLockReadPush(x);
604:   PetscLogEventBegin(VEC_AXPY,x,y,0,0);
605:   (*y->ops->axpy)(y,alpha,x);
606:   PetscLogEventEnd(VEC_AXPY,x,y,0,0);
607:   VecLockReadPop(x);
608:   PetscObjectStateIncrease((PetscObject)y);
609:   return(0);
610: }

612: /*@
613:    VecAXPBY - Computes y = alpha x + beta y.

615:    Logically Collective on Vec

617:    Input Parameters:
618: +  alpha,beta - the scalars
619: -  x, y  - the vectors

621:    Output Parameter:
622: .  y - output vector

624:    Level: intermediate

626:    Notes:
627:     x and y MUST be different vectors
628:     The implementation is optimized for alpha and/or beta values of 0.0 and 1.0


631: .seealso: VecAYPX(), VecMAXPY(), VecWAXPY(), VecAXPY(), VecAXPBYPCZ()
632: @*/
633: PetscErrorCode  VecAXPBY(Vec y,PetscScalar alpha,PetscScalar beta,Vec x)
634: {

643:   VecCheckSameSize(y,1,x,4);
644:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)x),PETSC_ERR_ARG_IDN,"x and y cannot be the same vector");
647:   if (alpha == (PetscScalar)0.0 && beta == (PetscScalar)1.0) return(0);
648:   VecSetErrorIfLocked(y,1);
649:   PetscLogEventBegin(VEC_AXPY,x,y,0,0);
650:   (*y->ops->axpby)(y,alpha,beta,x);
651:   PetscLogEventEnd(VEC_AXPY,x,y,0,0);
652:   PetscObjectStateIncrease((PetscObject)y);
653:   return(0);
654: }

656: /*@
657:    VecAXPBYPCZ - Computes z = alpha x + beta y + gamma z

659:    Logically Collective on Vec

661:    Input Parameters:
662: +  alpha,beta, gamma - the scalars
663: -  x, y, z  - the vectors

665:    Output Parameter:
666: .  z - output vector

668:    Level: intermediate

670:    Notes:
671:     x, y and z must be different vectors
672:     The implementation is optimized for alpha of 1.0 and gamma of 1.0 or 0.0


675: .seealso:  VecAYPX(), VecMAXPY(), VecWAXPY(), VecAXPY(), VecAXPBY()
676: @*/
677: PetscErrorCode  VecAXPBYPCZ(Vec z,PetscScalar alpha,PetscScalar beta,PetscScalar gamma,Vec x,Vec y)
678: {

690:   VecCheckSameSize(x,1,y,5);
691:   VecCheckSameSize(x,1,z,6);
692:   if (x == y || x == z) SETERRQ(PetscObjectComm((PetscObject)x),PETSC_ERR_ARG_IDN,"x, y, and z must be different vectors");
693:   if (y == z) SETERRQ(PetscObjectComm((PetscObject)y),PETSC_ERR_ARG_IDN,"x, y, and z must be different vectors");
697:   if (alpha == (PetscScalar)0.0 && beta == (PetscScalar)0.0 && gamma == (PetscScalar)1.0) return(0);
698:   VecSetErrorIfLocked(z,1);

700:   PetscLogEventBegin(VEC_AXPBYPCZ,x,y,z,0);
701:   (*y->ops->axpbypcz)(z,alpha,beta,gamma,x,y);
702:   PetscLogEventEnd(VEC_AXPBYPCZ,x,y,z,0);
703:   PetscObjectStateIncrease((PetscObject)z);
704:   return(0);
705: }

707: /*@
708:    VecAYPX - Computes y = x + beta y.

710:    Logically Collective on Vec

712:    Input Parameters:
713: +  beta - the scalar
714: -  x, y  - the vectors

716:    Output Parameter:
717: .  y - output vector

719:    Level: intermediate

721:    Notes:
722:     x and y MUST be different vectors
723:     The implementation is optimized for beta of -1.0, 0.0, and 1.0


726: .seealso:  VecMAXPY(), VecWAXPY(), VecAXPY(), VecAXPBYPCZ(), VecAXPBY()
727: @*/
728: PetscErrorCode  VecAYPX(Vec y,PetscScalar beta,Vec x)
729: {

738:   VecCheckSameSize(x,1,y,3);
739:   if (x == y) SETERRQ(PetscObjectComm((PetscObject)x),PETSC_ERR_ARG_IDN,"x and y must be different vectors");
741:   VecSetErrorIfLocked(y,1);

743:   PetscLogEventBegin(VEC_AYPX,x,y,0,0);
744:    (*y->ops->aypx)(y,beta,x);
745:   PetscLogEventEnd(VEC_AYPX,x,y,0,0);
746:   PetscObjectStateIncrease((PetscObject)y);
747:   return(0);
748: }


751: /*@
752:    VecWAXPY - Computes w = alpha x + y.

754:    Logically Collective on Vec

756:    Input Parameters:
757: +  alpha - the scalar
758: -  x, y  - the vectors

760:    Output Parameter:
761: .  w - the result

763:    Level: intermediate

765:    Notes:
766:     w cannot be either x or y, but x and y can be the same
767:     The implementation is optimzed for alpha of -1.0, 0.0, and 1.0


770: .seealso: VecAXPY(), VecAYPX(), VecAXPBY(), VecMAXPY(), VecAXPBYPCZ()
771: @*/
772: PetscErrorCode  VecWAXPY(Vec w,PetscScalar alpha,Vec x,Vec y)
773: {

785:   VecCheckSameSize(x,3,y,4);
786:   VecCheckSameSize(x,3,w,1);
787:   if (w == y) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Result vector w cannot be same as input vector y, suggest VecAXPY()");
788:   if (w == x) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Result vector w cannot be same as input vector x, suggest VecAYPX()");
790:   VecSetErrorIfLocked(w,1);

792:   PetscLogEventBegin(VEC_WAXPY,x,y,w,0);
793:    (*w->ops->waxpy)(w,alpha,x,y);
794:   PetscLogEventEnd(VEC_WAXPY,x,y,w,0);
795:   PetscObjectStateIncrease((PetscObject)w);
796:   return(0);
797: }


800: /*@C
801:    VecSetValues - Inserts or adds values into certain locations of a vector.

803:    Not Collective

805:    Input Parameters:
806: +  x - vector to insert in
807: .  ni - number of elements to add
808: .  ix - indices where to add
809: .  y - array of values
810: -  iora - either INSERT_VALUES or ADD_VALUES, where
811:    ADD_VALUES adds values to any existing entries, and
812:    INSERT_VALUES replaces existing entries with new values

814:    Notes:
815:    VecSetValues() sets x[ix[i]] = y[i], for i=0,...,ni-1.

817:    Calls to VecSetValues() with the INSERT_VALUES and ADD_VALUES
818:    options cannot be mixed without intervening calls to the assembly
819:    routines.

821:    These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
822:    MUST be called after all calls to VecSetValues() have been completed.

824:    VecSetValues() uses 0-based indices in Fortran as well as in C.

826:    If you call VecSetOption(x, VEC_IGNORE_NEGATIVE_INDICES,PETSC_TRUE),
827:    negative indices may be passed in ix. These rows are
828:    simply ignored. This allows easily inserting element load matrices
829:    with homogeneous Dirchlet boundary conditions that you don't want represented
830:    in the vector.

832:    Level: beginner

834: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValuesLocal(),
835:            VecSetValue(), VecSetValuesBlocked(), InsertMode, INSERT_VALUES, ADD_VALUES, VecGetValues()
836: @*/
837: PetscErrorCode  VecSetValues(Vec x,PetscInt ni,const PetscInt ix[],const PetscScalar y[],InsertMode iora)
838: {

843:   if (!ni) return(0);

848:   PetscLogEventBegin(VEC_SetValues,x,0,0,0);
849:   (*x->ops->setvalues)(x,ni,ix,y,iora);
850:   PetscLogEventEnd(VEC_SetValues,x,0,0,0);
851:   PetscObjectStateIncrease((PetscObject)x);
852:   return(0);
853: }

855: /*@C
856:    VecGetValues - Gets values from certain locations of a vector. Currently
857:           can only get values on the same processor

859:     Not Collective

861:    Input Parameters:
862: +  x - vector to get values from
863: .  ni - number of elements to get
864: -  ix - indices where to get them from (in global 1d numbering)

866:    Output Parameter:
867: .   y - array of values

869:    Notes:
870:    The user provides the allocated array y; it is NOT allocated in this routine

872:    VecGetValues() gets y[i] = x[ix[i]], for i=0,...,ni-1.

874:    VecAssemblyBegin() and VecAssemblyEnd()  MUST be called before calling this

876:    VecGetValues() uses 0-based indices in Fortran as well as in C.

878:    If you call VecSetOption(x, VEC_IGNORE_NEGATIVE_INDICES,PETSC_TRUE),
879:    negative indices may be passed in ix. These rows are
880:    simply ignored.

882:    Level: beginner

884: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValues()
885: @*/
886: PetscErrorCode  VecGetValues(Vec x,PetscInt ni,const PetscInt ix[],PetscScalar y[])
887: {

892:   if (!ni) return(0);
896:   (*x->ops->getvalues)(x,ni,ix,y);
897:   return(0);
898: }

900: /*@C
901:    VecSetValuesBlocked - Inserts or adds blocks of values into certain locations of a vector.

903:    Not Collective

905:    Input Parameters:
906: +  x - vector to insert in
907: .  ni - number of blocks to add
908: .  ix - indices where to add in block count, rather than element count
909: .  y - array of values
910: -  iora - either INSERT_VALUES or ADD_VALUES, where
911:    ADD_VALUES adds values to any existing entries, and
912:    INSERT_VALUES replaces existing entries with new values

914:    Notes:
915:    VecSetValuesBlocked() sets x[bs*ix[i]+j] = y[bs*i+j],
916:    for j=0,...,bs-1, for i=0,...,ni-1. where bs was set with VecSetBlockSize().

918:    Calls to VecSetValuesBlocked() with the INSERT_VALUES and ADD_VALUES
919:    options cannot be mixed without intervening calls to the assembly
920:    routines.

922:    These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
923:    MUST be called after all calls to VecSetValuesBlocked() have been completed.

925:    VecSetValuesBlocked() uses 0-based indices in Fortran as well as in C.

927:    Negative indices may be passed in ix, these rows are
928:    simply ignored. This allows easily inserting element load matrices
929:    with homogeneous Dirchlet boundary conditions that you don't want represented
930:    in the vector.

932:    Level: intermediate

934: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValuesBlockedLocal(),
935:            VecSetValues()
936: @*/
937: PetscErrorCode  VecSetValuesBlocked(Vec x,PetscInt ni,const PetscInt ix[],const PetscScalar y[],InsertMode iora)
938: {

943:   if (!ni) return(0);

948:   PetscLogEventBegin(VEC_SetValues,x,0,0,0);
949:   (*x->ops->setvaluesblocked)(x,ni,ix,y,iora);
950:   PetscLogEventEnd(VEC_SetValues,x,0,0,0);
951:   PetscObjectStateIncrease((PetscObject)x);
952:   return(0);
953: }


956: /*@C
957:    VecSetValuesLocal - Inserts or adds values into certain locations of a vector,
958:    using a local ordering of the nodes.

960:    Not Collective

962:    Input Parameters:
963: +  x - vector to insert in
964: .  ni - number of elements to add
965: .  ix - indices where to add
966: .  y - array of values
967: -  iora - either INSERT_VALUES or ADD_VALUES, where
968:    ADD_VALUES adds values to any existing entries, and
969:    INSERT_VALUES replaces existing entries with new values

971:    Level: intermediate

973:    Notes:
974:    VecSetValuesLocal() sets x[ix[i]] = y[i], for i=0,...,ni-1.

976:    Calls to VecSetValues() with the INSERT_VALUES and ADD_VALUES
977:    options cannot be mixed without intervening calls to the assembly
978:    routines.

980:    These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
981:    MUST be called after all calls to VecSetValuesLocal() have been completed.

983:    VecSetValuesLocal() uses 0-based indices in Fortran as well as in C.

985: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValues(), VecSetLocalToGlobalMapping(),
986:            VecSetValuesBlockedLocal()
987: @*/
988: PetscErrorCode  VecSetValuesLocal(Vec x,PetscInt ni,const PetscInt ix[],const PetscScalar y[],InsertMode iora)
989: {
991:   PetscInt       lixp[128],*lix = lixp;

995:   if (!ni) return(0);

1000:   PetscLogEventBegin(VEC_SetValues,x,0,0,0);
1001:   if (!x->ops->setvalueslocal) {
1002:     if (!x->map->mapping) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Local to global never set with VecSetLocalToGlobalMapping()");
1003:     if (ni > 128) {
1004:       PetscMalloc1(ni,&lix);
1005:     }
1006:     ISLocalToGlobalMappingApply(x->map->mapping,ni,(PetscInt*)ix,lix);
1007:     (*x->ops->setvalues)(x,ni,lix,y,iora);
1008:     if (ni > 128) {
1009:       PetscFree(lix);
1010:     }
1011:   } else {
1012:     (*x->ops->setvalueslocal)(x,ni,ix,y,iora);
1013:   }
1014:   PetscLogEventEnd(VEC_SetValues,x,0,0,0);
1015:   PetscObjectStateIncrease((PetscObject)x);
1016:   return(0);
1017: }

1019: /*@
1020:    VecSetValuesBlockedLocal - Inserts or adds values into certain locations of a vector,
1021:    using a local ordering of the nodes.

1023:    Not Collective

1025:    Input Parameters:
1026: +  x - vector to insert in
1027: .  ni - number of blocks to add
1028: .  ix - indices where to add in block count, not element count
1029: .  y - array of values
1030: -  iora - either INSERT_VALUES or ADD_VALUES, where
1031:    ADD_VALUES adds values to any existing entries, and
1032:    INSERT_VALUES replaces existing entries with new values

1034:    Level: intermediate

1036:    Notes:
1037:    VecSetValuesBlockedLocal() sets x[bs*ix[i]+j] = y[bs*i+j],
1038:    for j=0,..bs-1, for i=0,...,ni-1, where bs has been set with VecSetBlockSize().

1040:    Calls to VecSetValuesBlockedLocal() with the INSERT_VALUES and ADD_VALUES
1041:    options cannot be mixed without intervening calls to the assembly
1042:    routines.

1044:    These values may be cached, so VecAssemblyBegin() and VecAssemblyEnd()
1045:    MUST be called after all calls to VecSetValuesBlockedLocal() have been completed.

1047:    VecSetValuesBlockedLocal() uses 0-based indices in Fortran as well as in C.


1050: .seealso:  VecAssemblyBegin(), VecAssemblyEnd(), VecSetValues(), VecSetValuesBlocked(),
1051:            VecSetLocalToGlobalMapping()
1052: @*/
1053: PetscErrorCode  VecSetValuesBlockedLocal(Vec x,PetscInt ni,const PetscInt ix[],const PetscScalar y[],InsertMode iora)
1054: {
1056:   PetscInt       lixp[128],*lix = lixp;

1060:   if (!ni) return(0);
1064:   if (ni > 128) {
1065:     PetscMalloc1(ni,&lix);
1066:   }

1068:   PetscLogEventBegin(VEC_SetValues,x,0,0,0);
1069:   ISLocalToGlobalMappingApplyBlock(x->map->mapping,ni,(PetscInt*)ix,lix);
1070:   (*x->ops->setvaluesblocked)(x,ni,lix,y,iora);
1071:   PetscLogEventEnd(VEC_SetValues,x,0,0,0);
1072:   if (ni > 128) {
1073:     PetscFree(lix);
1074:   }
1075:   PetscObjectStateIncrease((PetscObject)x);
1076:   return(0);
1077: }

1079: /*@
1080:    VecMTDot - Computes indefinite vector multiple dot products.
1081:    That is, it does NOT use the complex conjugate.

1083:    Collective on Vec

1085:    Input Parameters:
1086: +  x - one vector
1087: .  nv - number of vectors
1088: -  y - array of vectors.  Note that vectors are pointers

1090:    Output Parameter:
1091: .  val - array of the dot products

1093:    Notes for Users of Complex Numbers:
1094:    For complex vectors, VecMTDot() computes the indefinite form
1095: $      val = (x,y) = y^T x,
1096:    where y^T denotes the transpose of y.

1098:    Use VecMDot() for the inner product
1099: $      val = (x,y) = y^H x,
1100:    where y^H denotes the conjugate transpose of y.

1102:    Level: intermediate


1105: .seealso: VecMDot(), VecTDot()
1106: @*/
1107: PetscErrorCode  VecMTDot(Vec x,PetscInt nv,const Vec y[],PetscScalar val[])
1108: {

1114:   if (!nv) return(0);
1121:   VecCheckSameSize(x,1,*y,3);

1123:   PetscLogEventBegin(VEC_MTDot,x,*y,0,0);
1124:   (*x->ops->mtdot)(x,nv,y,val);
1125:   PetscLogEventEnd(VEC_MTDot,x,*y,0,0);
1126:   return(0);
1127: }

1129: /*@
1130:    VecMDot - Computes vector multiple dot products.

1132:    Collective on Vec

1134:    Input Parameters:
1135: +  x - one vector
1136: .  nv - number of vectors
1137: -  y - array of vectors.

1139:    Output Parameter:
1140: .  val - array of the dot products (does not allocate the array)

1142:    Notes for Users of Complex Numbers:
1143:    For complex vectors, VecMDot() computes
1144: $     val = (x,y) = y^H x,
1145:    where y^H denotes the conjugate transpose of y.

1147:    Use VecMTDot() for the indefinite form
1148: $     val = (x,y) = y^T x,
1149:    where y^T denotes the transpose of y.

1151:    Level: intermediate


1154: .seealso: VecMTDot(), VecDot()
1155: @*/
1156: PetscErrorCode  VecMDot(Vec x,PetscInt nv,const Vec y[],PetscScalar val[])
1157: {

1163:   if (!nv) return(0);
1164:   if (nv < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Number of vectors (given %D) cannot be negative",nv);
1171:   VecCheckSameSize(x,1,*y,3);

1173:   PetscLogEventBegin(VEC_MDot,x,*y,0,0);
1174:   (*x->ops->mdot)(x,nv,y,val);
1175:   PetscLogEventEnd(VEC_MDot,x,*y,0,0);
1176:   return(0);
1177: }

1179: /*@
1180:    VecMAXPY - Computes y = y + sum alpha[i] x[i]

1182:    Logically Collective on Vec

1184:    Input Parameters:
1185: +  nv - number of scalars and x-vectors
1186: .  alpha - array of scalars
1187: .  y - one vector
1188: -  x - array of vectors

1190:    Level: intermediate

1192:    Notes:
1193:     y cannot be any of the x vectors

1195: .seealso:  VecAYPX(), VecWAXPY(), VecAXPY(), VecAXPBYPCZ(), VecAXPBY()
1196: @*/
1197: PetscErrorCode  VecMAXPY(Vec y,PetscInt nv,const PetscScalar alpha[],Vec x[])
1198: {
1200:   PetscInt       i;
1201:   PetscBool      nonzero;

1206:   if (!nv) return(0);
1207:   if (nv < 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Number of vectors (given %D) cannot be negative",nv);
1214:   VecCheckSameSize(y,1,*x,4);
1216:   for (i=0, nonzero = PETSC_FALSE; i<nv && !nonzero; i++) nonzero = (PetscBool)(nonzero || alpha[i] != (PetscScalar)0.0);
1217:   if (!nonzero) return(0);
1218:   VecSetErrorIfLocked(y,1);
1219:   PetscLogEventBegin(VEC_MAXPY,*x,y,0,0);
1220:   (*y->ops->maxpy)(y,nv,alpha,x);
1221:   PetscLogEventEnd(VEC_MAXPY,*x,y,0,0);
1222:   PetscObjectStateIncrease((PetscObject)y);
1223:   return(0);
1224: }

1226: /*@
1227:    VecConcatenate - Creates a new vector that is a vertical concatenation of all the given array of vectors
1228:                     in the order they appear in the array. The concatenated vector resides on the same
1229:                     communicator and is the same type as the source vectors.

1231:    Collective on X

1233:    Input Arguments:
1234: +  nx   - number of vectors to be concatenated
1235: -  X    - array containing the vectors to be concatenated in the order of concatenation

1237:    Output Arguments:
1238: +  Y    - concatenated vector
1239: -  x_is - array of index sets corresponding to the concatenated components of Y (NULL if not needed)

1241:    Notes:
1242:    Concatenation is similar to the functionality of a VecNest object; they both represent combination of
1243:    different vector spaces. However, concatenated vectors do not store any information about their
1244:    sub-vectors and own their own data. Consequently, this function provides index sets to enable the
1245:    manipulation of data in the concatenated vector that corresponds to the original components at creation.

1247:    This is a useful tool for outer loop algorithms, particularly constrained optimizers, where the solver
1248:    has to operate on combined vector spaces and cannot utilize VecNest objects due to incompatibility with
1249:    bound projections.

1251:    Level: advanced

1253: .seealso: VECNEST, VECSCATTER, VecScatterCreate()
1254: @*/
1255: PetscErrorCode VecConcatenate(PetscInt nx, const Vec X[], Vec *Y, IS *x_is[])
1256: {
1257:   MPI_Comm       comm;
1258:   VecType        vec_type;
1259:   Vec            Ytmp, Xtmp;
1260:   IS             *is_tmp;
1261:   PetscInt       i, shift=0, Xnl, Xng, Xbegin;


1270:   if ((*X)->ops->concatenate) {
1271:     /* use the dedicated concatenation function if available */
1272:     (*(*X)->ops->concatenate)(nx,X,Y,x_is);
1273:   } else {
1274:     /* loop over vectors and start creating IS */
1275:     comm = PetscObjectComm((PetscObject)(*X));
1276:     VecGetType(*X, &vec_type);
1277:     PetscMalloc1(nx, &is_tmp);
1278:     for (i=0; i<nx; i++) {
1279:       VecGetSize(X[i], &Xng);
1280:       VecGetLocalSize(X[i], &Xnl);
1281:       VecGetOwnershipRange(X[i], &Xbegin, NULL);
1282:       ISCreateStride(comm, Xnl, shift + Xbegin, 1, &is_tmp[i]);
1283:       shift += Xng;
1284:     }
1285:     /* create the concatenated vector */
1286:     VecCreate(comm, &Ytmp);
1287:     VecSetType(Ytmp, vec_type);
1288:     VecSetSizes(Ytmp, PETSC_DECIDE, shift);
1289:     VecSetUp(Ytmp);
1290:     /* copy data from X array to Y and return */
1291:     for (i=0; i<nx; i++) {
1292:       VecGetSubVector(Ytmp, is_tmp[i], &Xtmp);
1293:       VecCopy(X[i], Xtmp);
1294:       VecRestoreSubVector(Ytmp, is_tmp[i], &Xtmp);
1295:     }
1296:     *Y = Ytmp;
1297:     if (x_is) {
1298:       *x_is = is_tmp;
1299:     } else {
1300:       for (i=0; i<nx; i++) {
1301:         ISDestroy(&is_tmp[i]);
1302:       }
1303:       PetscFree(is_tmp);
1304:     }
1305:   }
1306:   return(0);
1307: }

1309: /*@
1310:    VecGetSubVector - Gets a vector representing part of another vector

1312:    Collective on X and IS

1314:    Input Arguments:
1315: + X - vector from which to extract a subvector
1316: - is - index set representing portion of X to extract

1318:    Output Arguments:
1319: . Y - subvector corresponding to is

1321:    Level: advanced

1323:    Notes:
1324:    The subvector Y should be returned with VecRestoreSubVector().
1325:    X and is must be defined on the same communicator

1327:    This function may return a subvector without making a copy, therefore it is not safe to use the original vector while
1328:    modifying the subvector.  Other non-overlapping subvectors can still be obtained from X using this function.
1329:    The resulting subvector inherits the block size from the IS if greater than one. Otherwise, the block size is guessed from the block size of the original vec.

1331: .seealso: MatCreateSubMatrix()
1332: @*/
1333: PetscErrorCode  VecGetSubVector(Vec X,IS is,Vec *Y)
1334: {
1335:   PetscErrorCode   ierr;
1336:   Vec              Z;

1343:   if (X->ops->getsubvector) {
1344:     (*X->ops->getsubvector)(X,is,&Z);
1345:   } else { /* Default implementation currently does no caching */
1346:     PetscInt  gstart,gend,start;
1347:     PetscBool red[2] = { PETSC_TRUE, PETSC_TRUE };
1348:     PetscInt  n,N,ibs,vbs,bs = -1;

1350:     ISGetLocalSize(is,&n);
1351:     ISGetSize(is,&N);
1352:     ISGetBlockSize(is,&ibs);
1353:     VecGetBlockSize(X,&vbs);
1354:     VecGetOwnershipRange(X,&gstart,&gend);
1355:     ISContiguousLocal(is,gstart,gend,&start,&red[0]);
1356:     /* block size is given by IS if ibs > 1; otherwise, check the vector */
1357:     if (ibs > 1) {
1358:       MPIU_Allreduce(MPI_IN_PLACE,red,1,MPIU_BOOL,MPI_LAND,PetscObjectComm((PetscObject)is));
1359:       bs   = ibs;
1360:     } else {
1361:       if (n%vbs || vbs == 1) red[1] = PETSC_FALSE; /* this process invalidate the collectiveness of block size */
1362:       MPIU_Allreduce(MPI_IN_PLACE,red,2,MPIU_BOOL,MPI_LAND,PetscObjectComm((PetscObject)is));
1363:       if (red[0] && red[1]) bs = vbs; /* all processes have a valid block size and the access will be contiguous */
1364:     }
1365:     if (red[0]) { /* We can do a no-copy implementation */
1366:       const PetscScalar *x;
1367:       PetscInt          state = 0;
1368:       PetscBool         isstd,iscuda,iship;

1370:       PetscObjectTypeCompareAny((PetscObject)X,&isstd,VECSEQ,VECMPI,VECSTANDARD,"");
1371:       PetscObjectTypeCompareAny((PetscObject)X,&iscuda,VECSEQCUDA,VECMPICUDA,"");
1372:       PetscObjectTypeCompareAny((PetscObject)X,&iship,VECSEQHIP,VECMPIHIP,"");
1373:       if (iscuda) {
1374: #if defined(PETSC_HAVE_CUDA)
1375:         const PetscScalar *x_d;
1376:         PetscMPIInt       size;
1377:         PetscOffloadMask  flg;

1379:         VecCUDAGetArrays_Private(X,&x,&x_d,&flg);
1380:         if (flg == PETSC_OFFLOAD_UNALLOCATED) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Not for PETSC_OFFLOAD_UNALLOCATED");
1381:         if (n && !x && !x_d) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Missing vector data");
1382:         if (x) x += start;
1383:         if (x_d) x_d += start;
1384:         MPI_Comm_size(PetscObjectComm((PetscObject)X),&size);
1385:         if (size == 1) {
1386:           VecCreateSeqCUDAWithArrays(PetscObjectComm((PetscObject)X),bs,n,x,x_d,&Z);
1387:         } else {
1388:           VecCreateMPICUDAWithArrays(PetscObjectComm((PetscObject)X),bs,n,N,x,x_d,&Z);
1389:         }
1390:         Z->offloadmask = flg;
1391: #endif
1392:       } else if (iship) {
1393: #if defined(PETSC_HAVE_HIP)
1394:         const PetscScalar *x_d;
1395:         PetscMPIInt       size;
1396:         PetscOffloadMask  flg;

1398:         VecHIPGetArrays_Private(X,&x,&x_d,&flg);
1399:         if (flg == PETSC_OFFLOAD_UNALLOCATED) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Not for PETSC_OFFLOAD_UNALLOCATED");
1400:         if (n && !x && !x_d) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_SUP,"Missing vector data");
1401:         if (x) x += start;
1402:         if (x_d) x_d += start;
1403:         MPI_Comm_size(PetscObjectComm((PetscObject)X),&size);
1404:         if (size == 1) {
1405:           VecCreateSeqHIPWithArrays(PetscObjectComm((PetscObject)X),bs,n,x,x_d,&Z);
1406:         } else {
1407:           VecCreateMPIHIPWithArrays(PetscObjectComm((PetscObject)X),bs,n,N,x,x_d,&Z);
1408:         }
1409:         Z->offloadmask = flg;
1410: #endif
1411:       } else if (isstd) {
1412:         PetscMPIInt size;

1414:         MPI_Comm_size(PetscObjectComm((PetscObject)X),&size);
1415:         VecGetArrayRead(X,&x);
1416:         if (x) x += start;
1417:         if (size == 1) {
1418:           VecCreateSeqWithArray(PetscObjectComm((PetscObject)X),bs,n,x,&Z);
1419:         } else {
1420:           VecCreateMPIWithArray(PetscObjectComm((PetscObject)X),bs,n,N,x,&Z);
1421:         }
1422:         VecRestoreArrayRead(X,&x);
1423:       } else { /* default implementation: use place array */
1424:         VecGetArrayRead(X,&x);
1425:         VecCreate(PetscObjectComm((PetscObject)X),&Z);
1426:         VecSetType(Z,((PetscObject)X)->type_name);
1427:         VecSetSizes(Z,n,N);
1428:         VecSetBlockSize(Z,bs);
1429:         VecPlaceArray(Z,x ? x+start : NULL);
1430:         VecRestoreArrayRead(X,&x);
1431:       }

1433:       /* this is relevant only in debug mode */
1434:       VecLockGet(X,&state);
1435:       if (state) {
1436:         VecLockReadPush(Z);
1437:       }
1438:       Z->ops->placearray = NULL;
1439:       Z->ops->replacearray = NULL;
1440:     } else { /* Have to create a scatter and do a copy */
1441:       VecScatter scatter;

1443:       VecCreate(PetscObjectComm((PetscObject)is),&Z);
1444:       VecSetSizes(Z,n,N);
1445:       VecSetBlockSize(Z,bs);
1446:       VecSetType(Z,((PetscObject)X)->type_name);
1447:       VecScatterCreate(X,is,Z,NULL,&scatter);
1448:       VecScatterBegin(scatter,X,Z,INSERT_VALUES,SCATTER_FORWARD);
1449:       VecScatterEnd(scatter,X,Z,INSERT_VALUES,SCATTER_FORWARD);
1450:       PetscObjectCompose((PetscObject)Z,"VecGetSubVector_Scatter",(PetscObject)scatter);
1451:       VecScatterDestroy(&scatter);
1452:     }
1453:   }
1454:   /* Record the state when the subvector was gotten so we know whether its values need to be put back */
1455:   if (VecGetSubVectorSavedStateId < 0) {PetscObjectComposedDataRegister(&VecGetSubVectorSavedStateId);}
1456:   PetscObjectComposedDataSetInt((PetscObject)Z,VecGetSubVectorSavedStateId,1);
1457:   *Y   = Z;
1458:   return(0);
1459: }

1461: /*@
1462:    VecRestoreSubVector - Restores a subvector extracted using VecGetSubVector()

1464:    Collective on IS

1466:    Input Arguments:
1467: + X - vector from which subvector was obtained
1468: . is - index set representing the subset of X
1469: - Y - subvector being restored

1471:    Level: advanced

1473: .seealso: VecGetSubVector()
1474: @*/
1475: PetscErrorCode  VecRestoreSubVector(Vec X,IS is,Vec *Y)
1476: {

1485:   if (X->ops->restoresubvector) {
1486:     (*X->ops->restoresubvector)(X,is,Y);
1487:   } else {
1488:     PETSC_UNUSED PetscObjectState dummystate = 0;
1489:     PetscBool valid;

1491:     PetscObjectComposedDataGetInt((PetscObject)*Y,VecGetSubVectorSavedStateId,dummystate,valid);
1492:     if (!valid) {
1493:       VecScatter scatter;
1494:       PetscInt   state;

1496:       VecLockGet(X,&state);
1497:       if (state != 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Vec X is locked for read-only or read/write access");

1499:       PetscObjectQuery((PetscObject)*Y,"VecGetSubVector_Scatter",(PetscObject*)&scatter);
1500:       if (scatter) {
1501:         VecScatterBegin(scatter,*Y,X,INSERT_VALUES,SCATTER_REVERSE);
1502:         VecScatterEnd(scatter,*Y,X,INSERT_VALUES,SCATTER_REVERSE);
1503:       } else {
1504:         PetscBool         iscuda,iship;
1505:         PetscObjectTypeCompareAny((PetscObject)X,&iscuda,VECSEQCUDA,VECMPICUDA,"");
1506:         PetscObjectTypeCompareAny((PetscObject)X,&iship,VECSEQHIP,VECMPIHIP,"");

1508:         if (iscuda) {
1509: #if defined(PETSC_HAVE_CUDA)
1510:           PetscOffloadMask ymask = (*Y)->offloadmask;

1512:           /* The offloadmask of X dictates where to move memory
1513:              If X GPU data is valid, then move Y data on GPU if needed
1514:              Otherwise, move back to the CPU */
1515:           switch (X->offloadmask) {
1516:           case PETSC_OFFLOAD_BOTH:
1517:             if (ymask == PETSC_OFFLOAD_CPU) {
1518:               VecCUDAResetArray(*Y);
1519:             } else if (ymask == PETSC_OFFLOAD_GPU) {
1520:               X->offloadmask = PETSC_OFFLOAD_GPU;
1521:             }
1522:             break;
1523:           case PETSC_OFFLOAD_GPU:
1524:             if (ymask == PETSC_OFFLOAD_CPU) {
1525:               VecCUDAResetArray(*Y);
1526:             }
1527:             break;
1528:           case PETSC_OFFLOAD_CPU:
1529:             if (ymask == PETSC_OFFLOAD_GPU) {
1530:               VecResetArray(*Y);
1531:             }
1532:             break;
1533:           case PETSC_OFFLOAD_UNALLOCATED:
1534:           case PETSC_OFFLOAD_VECKOKKOS:
1535:             SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"This should not happen");
1536:             break;
1537:           }
1538: #endif
1539:         } else if (iship) {
1540: #if defined(PETSC_HAVE_HIP)
1541:           PetscOffloadMask ymask = (*Y)->offloadmask;

1543:           /* The offloadmask of X dictates where to move memory
1544:              If X GPU data is valid, then move Y data on GPU if needed
1545:              Otherwise, move back to the CPU */
1546:           switch (X->offloadmask) {
1547:           case PETSC_OFFLOAD_BOTH:
1548:             if (ymask == PETSC_OFFLOAD_CPU) {
1549:               VecHIPResetArray(*Y);
1550:             } else if (ymask == PETSC_OFFLOAD_GPU) {
1551:               X->offloadmask = PETSC_OFFLOAD_GPU;
1552:             }
1553:             break;
1554:           case PETSC_OFFLOAD_GPU:
1555:             if (ymask == PETSC_OFFLOAD_CPU) {
1556:               VecHIPResetArray(*Y);
1557:             }
1558:             break;
1559:           case PETSC_OFFLOAD_CPU:
1560:             if (ymask == PETSC_OFFLOAD_GPU) {
1561:               VecResetArray(*Y);
1562:             }
1563:             break;
1564:           case PETSC_OFFLOAD_UNALLOCATED:
1565:           case PETSC_OFFLOAD_VECKOKKOS:
1566:             SETERRQ(PETSC_COMM_SELF,PETSC_ERR_PLIB,"This should not happen");
1567:             break;
1568:           }
1569: #endif
1570:         } else {
1571:           /* If OpenCL vecs updated the device memory, this triggers a copy on the CPU */
1572:           VecResetArray(*Y);
1573:         }
1574:         PetscObjectStateIncrease((PetscObject)X);
1575:       }
1576:     }
1577:     VecDestroy(Y);
1578:   }
1579:   return(0);
1580: }

1582: /*@
1583:    VecGetLocalVectorRead - Maps the local portion of a vector into a
1584:    vector.  You must call VecRestoreLocalVectorRead() when the local
1585:    vector is no longer needed.

1587:    Not collective.

1589:    Input parameter:
1590: .  v - The vector for which the local vector is desired.

1592:    Output parameter:
1593: .  w - Upon exit this contains the local vector.

1595:    Level: beginner

1597:    Notes:
1598:    This function is similar to VecGetArrayRead() which maps the local
1599:    portion into a raw pointer.  VecGetLocalVectorRead() is usually
1600:    almost as efficient as VecGetArrayRead() but in certain circumstances
1601:    VecGetLocalVectorRead() can be much more efficient than
1602:    VecGetArrayRead().  This is because the construction of a contiguous
1603:    array representing the vector data required by VecGetArrayRead() can
1604:    be an expensive operation for certain vector types.  For example, for
1605:    GPU vectors VecGetArrayRead() requires that the data between device
1606:    and host is synchronized.

1608:    Unlike VecGetLocalVector(), this routine is not collective and
1609:    preserves cached information.

1611: .seealso: VecRestoreLocalVectorRead(), VecGetLocalVector(), VecGetArrayRead(), VecGetArray()
1612: @*/
1613: PetscErrorCode VecGetLocalVectorRead(Vec v,Vec w)
1614: {
1616:   PetscScalar    *a;

1621:   VecCheckSameLocalSize(v,1,w,2);
1622:   if (v->ops->getlocalvectorread) {
1623:     (*v->ops->getlocalvectorread)(v,w);
1624:   } else {
1625:     VecGetArrayRead(v,(const PetscScalar**)&a);
1626:     VecPlaceArray(w,a);
1627:   }
1628:   PetscObjectStateIncrease((PetscObject)w);
1629:   VecLockReadPush(v);
1630:   VecLockReadPush(w);
1631:   return(0);
1632: }

1634: /*@
1635:    VecRestoreLocalVectorRead - Unmaps the local portion of a vector
1636:    previously mapped into a vector using VecGetLocalVectorRead().

1638:    Not collective.

1640:    Input parameter:
1641: +  v - The local portion of this vector was previously mapped into w using VecGetLocalVectorRead().
1642: -  w - The vector into which the local portion of v was mapped.

1644:    Level: beginner

1646: .seealso: VecGetLocalVectorRead(), VecGetLocalVector(), VecGetArrayRead(), VecGetArray()
1647: @*/
1648: PetscErrorCode VecRestoreLocalVectorRead(Vec v,Vec w)
1649: {
1651:   PetscScalar    *a;

1656:   if (v->ops->restorelocalvectorread) {
1657:     (*v->ops->restorelocalvectorread)(v,w);
1658:   } else {
1659:     VecGetArrayRead(w,(const PetscScalar**)&a);
1660:     VecRestoreArrayRead(v,(const PetscScalar**)&a);
1661:     VecResetArray(w);
1662:   }
1663:   VecLockReadPop(v);
1664:   VecLockReadPop(w);
1665:   PetscObjectStateIncrease((PetscObject)w);
1666:   return(0);
1667: }

1669: /*@
1670:    VecGetLocalVector - Maps the local portion of a vector into a
1671:    vector.

1673:    Collective on v, not collective on w.

1675:    Input parameter:
1676: .  v - The vector for which the local vector is desired.

1678:    Output parameter:
1679: .  w - Upon exit this contains the local vector.

1681:    Level: beginner

1683:    Notes:
1684:    This function is similar to VecGetArray() which maps the local
1685:    portion into a raw pointer.  VecGetLocalVector() is usually about as
1686:    efficient as VecGetArray() but in certain circumstances
1687:    VecGetLocalVector() can be much more efficient than VecGetArray().
1688:    This is because the construction of a contiguous array representing
1689:    the vector data required by VecGetArray() can be an expensive
1690:    operation for certain vector types.  For example, for GPU vectors
1691:    VecGetArray() requires that the data between device and host is
1692:    synchronized.

1694: .seealso: VecRestoreLocalVector(), VecGetLocalVectorRead(), VecGetArrayRead(), VecGetArray()
1695: @*/
1696: PetscErrorCode VecGetLocalVector(Vec v,Vec w)
1697: {
1699:   PetscScalar    *a;

1704:   VecCheckSameLocalSize(v,1,w,2);
1705:   if (v->ops->getlocalvector) {
1706:     (*v->ops->getlocalvector)(v,w);
1707:   } else {
1708:     VecGetArray(v,&a);
1709:     VecPlaceArray(w,a);
1710:   }
1711:   PetscObjectStateIncrease((PetscObject)w);
1712:   return(0);
1713: }

1715: /*@
1716:    VecRestoreLocalVector - Unmaps the local portion of a vector
1717:    previously mapped into a vector using VecGetLocalVector().

1719:    Logically collective.

1721:    Input parameter:
1722: +  v - The local portion of this vector was previously mapped into w using VecGetLocalVector().
1723: -  w - The vector into which the local portion of v was mapped.

1725:    Level: beginner

1727: .seealso: VecGetLocalVector(), VecGetLocalVectorRead(), VecRestoreLocalVectorRead(), LocalVectorRead(), VecGetArrayRead(), VecGetArray()
1728: @*/
1729: PetscErrorCode VecRestoreLocalVector(Vec v,Vec w)
1730: {
1732:   PetscScalar    *a;

1737:   if (v->ops->restorelocalvector) {
1738:     (*v->ops->restorelocalvector)(v,w);
1739:   } else {
1740:     VecGetArray(w,&a);
1741:     VecRestoreArray(v,&a);
1742:     VecResetArray(w);
1743:   }
1744:   PetscObjectStateIncrease((PetscObject)w);
1745:   PetscObjectStateIncrease((PetscObject)v);
1746:   return(0);
1747: }

1749: /*@C
1750:    VecGetArray - Returns a pointer to a contiguous array that contains this
1751:    processor's portion of the vector data. For the standard PETSc
1752:    vectors, VecGetArray() returns a pointer to the local data array and
1753:    does not use any copies. If the underlying vector data is not stored
1754:    in a contiguous array this routine will copy the data to a contiguous
1755:    array and return a pointer to that. You MUST call VecRestoreArray()
1756:    when you no longer need access to the array.

1758:    Logically Collective on Vec

1760:    Input Parameter:
1761: .  x - the vector

1763:    Output Parameter:
1764: .  a - location to put pointer to the array

1766:    Fortran Note:
1767:    This routine is used differently from Fortran 77
1768: $    Vec         x
1769: $    PetscScalar x_array(1)
1770: $    PetscOffset i_x
1771: $    PetscErrorCode ierr
1772: $       call VecGetArray(x,x_array,i_x,ierr)
1773: $
1774: $   Access first local entry in vector with
1775: $      value = x_array(i_x + 1)
1776: $
1777: $      ...... other code
1778: $       call VecRestoreArray(x,x_array,i_x,ierr)
1779:    For Fortran 90 see VecGetArrayF90()

1781:    See the Fortran chapter of the users manual and
1782:    petsc/src/snes/tutorials/ex5f.F for details.

1784:    Level: beginner

1786: .seealso: VecRestoreArray(), VecGetArrayRead(), VecGetArrays(), VecGetArrayF90(), VecGetArrayReadF90(), VecPlaceArray(), VecGetArray2d(),
1787:           VecGetArrayPair(), VecRestoreArrayPair(), VecGetArrayWrite(), VecRestoreArrayWrite()
1788: @*/
1789: PetscErrorCode VecGetArray(Vec x,PetscScalar **a)
1790: {

1795:   VecSetErrorIfLocked(x,1);
1796:   if (x->ops->getarray) { /* The if-else order matters! VECNEST, VECCUDA etc should have ops->getarray while VECCUDA etc are petscnative */
1797:     (*x->ops->getarray)(x,a);
1798:   } else if (x->petscnative) { /* VECSTANDARD */
1799:     *a = *((PetscScalar**)x->data);
1800:   } else SETERRQ1(PetscObjectComm((PetscObject)x),PETSC_ERR_SUP,"Cannot get array for vector type \"%s\"",((PetscObject)x)->type_name);
1801:   return(0);
1802: }

1804: /*@C
1805:    VecRestoreArray - Restores a vector after VecGetArray() has been called.

1807:    Logically Collective on Vec

1809:    Input Parameters:
1810: +  x - the vector
1811: -  a - location of pointer to array obtained from VecGetArray()

1813:    Level: beginner

1815: .seealso: VecGetArray(), VecRestoreArrayRead(), VecRestoreArrays(), VecRestoreArrayF90(), VecRestoreArrayReadF90(), VecPlaceArray(), VecRestoreArray2d(),
1816:           VecGetArrayPair(), VecRestoreArrayPair()
1817: @*/
1818: PetscErrorCode VecRestoreArray(Vec x,PetscScalar **a)
1819: {

1824:   if (x->ops->restorearray) { /* VECNEST, VECCUDA etc */
1825:     (*x->ops->restorearray)(x,a);
1826:   } else if (x->petscnative) { /* VECSTANDARD */
1827:     /* nothing */
1828:   } else SETERRQ1(PetscObjectComm((PetscObject)x),PETSC_ERR_SUP,"Cannot restore array for vector type \"%s\"",((PetscObject)x)->type_name);
1829:   if (a) *a = NULL;
1830:   PetscObjectStateIncrease((PetscObject)x);
1831:   return(0);
1832: }
1833: /*@C
1834:    VecGetArrayRead - Get read-only pointer to contiguous array containing this processor's portion of the vector data.

1836:    Not Collective

1838:    Input Parameter:
1839: .  x - the vector

1841:    Output Parameter:
1842: .  a - the array

1844:    Level: beginner

1846:    Notes:
1847:    The array must be returned using a matching call to VecRestoreArrayRead().

1849:    Unlike VecGetArray(), this routine is not collective and preserves cached information like vector norms.

1851:    Standard PETSc vectors use contiguous storage so that this routine does not perform a copy.  Other vector
1852:    implementations may require a copy, but must such implementations should cache the contiguous representation so that
1853:    only one copy is performed when this routine is called multiple times in sequence.

1855: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrayPair(), VecRestoreArrayPair()
1856: @*/
1857: PetscErrorCode VecGetArrayRead(Vec x,const PetscScalar **a)
1858: {

1863:   if (x->ops->getarray) { /* VECNEST, VECCUDA, VECKOKKOS etc */
1864:     (*x->ops->getarray)(x,(PetscScalar**)a);
1865:   } else if (x->petscnative) { /* VECSTANDARD */
1866:     *a = *((PetscScalar**)x->data);
1867:   } else SETERRQ1(PetscObjectComm((PetscObject)x),PETSC_ERR_SUP,"Cannot get array read for vector type \"%s\"",((PetscObject)x)->type_name);
1868:   return(0);
1869: }

1871: /*@C
1872:    VecRestoreArrayRead - Restore array obtained with VecGetArrayRead()

1874:    Not Collective

1876:    Input Parameters:
1877: +  vec - the vector
1878: -  array - the array

1880:    Level: beginner

1882: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrayPair(), VecRestoreArrayPair()
1883: @*/
1884: PetscErrorCode VecRestoreArrayRead(Vec x,const PetscScalar **a)
1885: {

1890:   if (x->petscnative) { /* VECSTANDARD, VECCUDA, VECKOKKOS etc */
1891:     /* nothing */
1892:   } else if (x->ops->restorearrayread) { /* VECNEST */
1893:     (*x->ops->restorearrayread)(x,a);
1894:   } else { /* No one? */
1895:     (*x->ops->restorearray)(x,(PetscScalar**)a);
1896:   }
1897:   if (a) *a = NULL;
1898:   return(0);
1899: }

1901: /*@C
1902:    VecGetArrayWrite - Returns a pointer to a contiguous array that WILL contains this
1903:    processor's portion of the vector data. The values in this array are NOT valid, the routine calling this
1904:    routine is responsible for putting values into the array; any values it does not set will be invalid

1906:    Logically Collective on Vec

1908:    Input Parameter:
1909: .  x - the vector

1911:    Output Parameter:
1912: .  a - location to put pointer to the array

1914:    Level: intermediate

1916:    This is for vectors associate with GPUs, the vector is not copied up before giving access. If you need correct
1917:    values in the array use VecGetArray()

1919:    Concepts: vector^accessing local values

1921: .seealso: VecRestoreArray(), VecGetArrayRead(), VecGetArrays(), VecGetArrayF90(), VecGetArrayReadF90(), VecPlaceArray(), VecGetArray2d(),
1922:           VecGetArrayPair(), VecRestoreArrayPair(), VecGetArray(), VecRestoreArrayWrite()
1923: @*/
1924: PetscErrorCode VecGetArrayWrite(Vec x,PetscScalar **a)
1925: {

1930:   VecSetErrorIfLocked(x,1);
1931:   if (x->ops->getarraywrite) {
1932:     (*x->ops->getarraywrite)(x,a);
1933:   } else {
1934:     VecGetArray(x,a);
1935:   }
1936:   return(0);
1937: }

1939: /*@C
1940:    VecRestoreArrayWrite - Restores a vector after VecGetArrayWrite() has been called.

1942:    Logically Collective on Vec

1944:    Input Parameters:
1945: +  x - the vector
1946: -  a - location of pointer to array obtained from VecGetArray()

1948:    Level: beginner

1950: .seealso: VecGetArray(), VecRestoreArrayRead(), VecRestoreArrays(), VecRestoreArrayF90(), VecRestoreArrayReadF90(), VecPlaceArray(), VecRestoreArray2d(),
1951:           VecGetArrayPair(), VecRestoreArrayPair(), VecGetArrayWrite()
1952: @*/
1953: PetscErrorCode VecRestoreArrayWrite(Vec x,PetscScalar **a)
1954: {

1959:   if (x->ops->restorearraywrite) {
1960:     (*x->ops->restorearraywrite)(x,a);
1961:   } else if (x->ops->restorearray) {
1962:     (*x->ops->restorearray)(x,a);
1963:   }
1964:   if (a) *a = NULL;
1965:   PetscObjectStateIncrease((PetscObject)x);
1966:   return(0);
1967: }

1969: /*@C
1970:    VecGetArrays - Returns a pointer to the arrays in a set of vectors
1971:    that were created by a call to VecDuplicateVecs().  You MUST call
1972:    VecRestoreArrays() when you no longer need access to the array.

1974:    Logically Collective on Vec

1976:    Input Parameters:
1977: +  x - the vectors
1978: -  n - the number of vectors

1980:    Output Parameter:
1981: .  a - location to put pointer to the array

1983:    Fortran Note:
1984:    This routine is not supported in Fortran.

1986:    Level: intermediate

1988: .seealso: VecGetArray(), VecRestoreArrays()
1989: @*/
1990: PetscErrorCode  VecGetArrays(const Vec x[],PetscInt n,PetscScalar **a[])
1991: {
1993:   PetscInt       i;
1994:   PetscScalar    **q;

2000:   if (n <= 0) SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Must get at least one array n = %D",n);
2001:   PetscMalloc1(n,&q);
2002:   for (i=0; i<n; ++i) {
2003:     VecGetArray(x[i],&q[i]);
2004:   }
2005:   *a = q;
2006:   return(0);
2007: }

2009: /*@C
2010:    VecRestoreArrays - Restores a group of vectors after VecGetArrays()
2011:    has been called.

2013:    Logically Collective on Vec

2015:    Input Parameters:
2016: +  x - the vector
2017: .  n - the number of vectors
2018: -  a - location of pointer to arrays obtained from VecGetArrays()

2020:    Notes:
2021:    For regular PETSc vectors this routine does not involve any copies. For
2022:    any special vectors that do not store local vector data in a contiguous
2023:    array, this routine will copy the data back into the underlying
2024:    vector data structure from the arrays obtained with VecGetArrays().

2026:    Fortran Note:
2027:    This routine is not supported in Fortran.

2029:    Level: intermediate

2031: .seealso: VecGetArrays(), VecRestoreArray()
2032: @*/
2033: PetscErrorCode  VecRestoreArrays(const Vec x[],PetscInt n,PetscScalar **a[])
2034: {
2036:   PetscInt       i;
2037:   PetscScalar    **q = *a;


2044:   for (i=0; i<n; ++i) {
2045:     VecRestoreArray(x[i],&q[i]);
2046:   }
2047:   PetscFree(q);
2048:   return(0);
2049: }

2051: /*@C
2052:    VecGetArrayAndMemType - Like VecGetArray(), but if this is a GPU vector and it is currently offloaded to GPU,
2053:    the returned pointer will be a GPU pointer to the GPU memory that contains this processor's portion of the
2054:    vector data. Otherwise, it functions as VecGetArray().

2056:    Logically Collective on Vec

2058:    Input Parameter:
2059: .  x - the vector

2061:    Output Parameters:
2062: +  a - location to put pointer to the array
2063: -  mtype - memory type of the array

2065:    Level: beginner

2067: .seealso: VecRestoreArrayAndMemType(), VecRestoreArrayAndMemType(), VecRestoreArray(), VecGetArrayRead(), VecGetArrays(), VecGetArrayF90(), VecGetArrayReadF90(),
2068:           VecPlaceArray(), VecGetArray2d(), VecGetArrayPair(), VecRestoreArrayPair(), VecGetArrayWrite(), VecRestoreArrayWrite()
2069: @*/
2070: PetscErrorCode VecGetArrayAndMemType(Vec x,PetscScalar **a,PetscMemType *mtype)
2071: {

2077:   VecSetErrorIfLocked(x,1);
2078:   if (x->ops->getarrayandmemtype) { /* VECCUDA, VECKOKKOS etc */
2079:     (*x->ops->getarrayandmemtype)(x,a,mtype);
2080:   } else { /* VECSTANDARD, VECNEST, VECVIENNACL */
2081:     VecGetArray(x,a);
2082:     if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2083:   }
2084:   return(0);
2085: }

2087: /*@C
2088:    VecRestoreArrayAndMemType - Restores a vector after VecGetArrayAndMemType() has been called.

2090:    Logically Collective on Vec

2092:    Input Parameters:
2093: +  x - the vector
2094: -  a - location of pointer to array obtained from VecGetArrayAndMemType()

2096:    Level: beginner

2098: .seealso: VecGetArrayAndMemType(), VecGetArray(), VecRestoreArrayRead(), VecRestoreArrays(), VecRestoreArrayF90(), VecRestoreArrayReadF90(),
2099:           VecPlaceArray(), VecRestoreArray2d(), VecGetArrayPair(), VecRestoreArrayPair()
2100: @*/
2101: PetscErrorCode VecRestoreArrayAndMemType(Vec x,PetscScalar **a)
2102: {

2108:   if (x->ops->restorearrayandmemtype) { /* VECCUDA, VECKOKKOS etc */
2109:     (*x->ops->restorearrayandmemtype)(x,a);
2110:   } else if (x->ops->restorearray) { /* VECNEST, VECVIENNACL */
2111:     (*x->ops->restorearray)(x,a);
2112:   } /* VECSTANDARD does nothing */
2113:   if (a) *a = NULL;
2114:   PetscObjectStateIncrease((PetscObject)x);
2115:   return(0);
2116: }

2118: /*@C
2119:    VecGetArrayReadAndMemType - Like VecGetArrayRead(), but if this is a CUDA vector and it is currently offloaded to GPU,
2120:    the returned pointer will be a GPU pointer to the GPU memory that contains this processor's portion of the
2121:    vector data. Otherwise, it functions as VecGetArrayRead().

2123:    Not Collective

2125:    Input Parameter:
2126: .  x - the vector

2128:    Output Parameters:
2129: +  a - the array
2130: -  mtype - memory type of the array

2132:    Level: beginner

2134:    Notes:
2135:    The array must be returned using a matching call to VecRestoreArrayReadAndMemType().


2138: .seealso: VecRestoreArrayReadAndMemType(), VecGetArray(), VecRestoreArray(), VecGetArrayPair(), VecRestoreArrayPair(), VecGetArrayAndMemType()
2139: @*/
2140: PetscErrorCode VecGetArrayReadAndMemType(Vec x,const PetscScalar **a,PetscMemType *mtype)
2141: {

2147:  #if defined(PETSC_USE_DEBUG)
2148:   if (x->ops->getarrayreadandmemtype) SETERRQ1(PetscObjectComm((PetscObject)x),PETSC_ERR_SUP,"Not expected vector type \"%s\" has ops->getarrayreadandmemtype",((PetscObject)x)->type_name);
2149:  #endif

2151:   if (x->ops->getarrayandmemtype) { /* VECCUDA, VECKOKKOS etc, though they are also petscnative */
2152:     (*x->ops->getarrayandmemtype)(x,(PetscScalar**)a,mtype);
2153:   } else if (x->ops->getarray) { /* VECNEST, VECVIENNACL */
2154:     (*x->ops->getarray)(x,(PetscScalar**)a);
2155:     if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2156:   } else if (x->petscnative) { /* VECSTANDARD */
2157:     *a = *((PetscScalar**)x->data);
2158:     if (mtype) *mtype = PETSC_MEMTYPE_HOST;
2159:   } else SETERRQ1(PetscObjectComm((PetscObject)x),PETSC_ERR_SUP,"Cannot get array read in place for vector type \"%s\"",((PetscObject)x)->type_name);
2160:   return(0);
2161: }

2163: /*@C
2164:    VecRestoreArrayReadAndMemType - Restore array obtained with VecGetArrayReadAndMemType()

2166:    Not Collective

2168:    Input Parameters:
2169: +  vec - the vector
2170: -  array - the array

2172:    Level: beginner

2174: .seealso: VecGetArrayReadAndMemType(), VecRestoreArrayAndMemType(), VecGetArray(), VecRestoreArray(), VecGetArrayPair(), VecRestoreArrayPair()
2175: @*/
2176: PetscErrorCode VecRestoreArrayReadAndMemType(Vec x,const PetscScalar **a)
2177: {

2183:   if (x->petscnative) { /* VECSTANDARD, VECCUDA, VECKOKKOS, VECVIENNACL etc */
2184:     /* nothing */
2185:   } else if (x->ops->restorearrayread) { /* VECNEST */
2186:     (*x->ops->restorearrayread)(x,a);
2187:   } else SETERRQ1(PetscObjectComm((PetscObject)x),PETSC_ERR_SUP,"Cannot restore array read in place for vector type \"%s\"",((PetscObject)x)->type_name);
2188:   if (a) *a = NULL;
2189:   return(0);
2190: }

2192: /*@
2193:    VecPlaceArray - Allows one to replace the array in a vector with an
2194:    array provided by the user. This is useful to avoid copying an array
2195:    into a vector.

2197:    Not Collective

2199:    Input Parameters:
2200: +  vec - the vector
2201: -  array - the array

2203:    Notes:
2204:    You can return to the original array with a call to VecResetArray()

2206:    Level: developer

2208: .seealso: VecGetArray(), VecRestoreArray(), VecReplaceArray(), VecResetArray()

2210: @*/
2211: PetscErrorCode  VecPlaceArray(Vec vec,const PetscScalar array[])
2212: {

2219:   if (vec->ops->placearray) {
2220:     (*vec->ops->placearray)(vec,array);
2221:   } else SETERRQ(PetscObjectComm((PetscObject)vec),PETSC_ERR_SUP,"Cannot place array in this type of vector");
2222:   PetscObjectStateIncrease((PetscObject)vec);
2223:   return(0);
2224: }

2226: /*@C
2227:    VecReplaceArray - Allows one to replace the array in a vector with an
2228:    array provided by the user. This is useful to avoid copying an array
2229:    into a vector.

2231:    Not Collective

2233:    Input Parameters:
2234: +  vec - the vector
2235: -  array - the array

2237:    Notes:
2238:    This permanently replaces the array and frees the memory associated
2239:    with the old array.

2241:    The memory passed in MUST be obtained with PetscMalloc() and CANNOT be
2242:    freed by the user. It will be freed when the vector is destroyed.

2244:    Not supported from Fortran

2246:    Level: developer

2248: .seealso: VecGetArray(), VecRestoreArray(), VecPlaceArray(), VecResetArray()

2250: @*/
2251: PetscErrorCode  VecReplaceArray(Vec vec,const PetscScalar array[])
2252: {

2258:   if (vec->ops->replacearray) {
2259:     (*vec->ops->replacearray)(vec,array);
2260:   } else SETERRQ(PetscObjectComm((PetscObject)vec),PETSC_ERR_SUP,"Cannot replace array in this type of vector");
2261:   PetscObjectStateIncrease((PetscObject)vec);
2262:   return(0);
2263: }


2266: /*@C
2267:    VecCUDAGetArray - Provides access to the CUDA buffer inside a vector.

2269:    This function has semantics similar to VecGetArray():  the pointer
2270:    returned by this function points to a consistent view of the vector
2271:    data.  This may involve a copy operation of data from the host to the
2272:    device if the data on the device is out of date.  If the device
2273:    memory hasn't been allocated previously it will be allocated as part
2274:    of this function call.  VecCUDAGetArray() assumes that
2275:    the user will modify the vector data.  This is similar to
2276:    intent(inout) in fortran.

2278:    The CUDA device pointer has to be released by calling
2279:    VecCUDARestoreArray().  Upon restoring the vector data
2280:    the data on the host will be marked as out of date.  A subsequent
2281:    access of the host data will thus incur a data transfer from the
2282:    device to the host.


2285:    Input Parameter:
2286: .  v - the vector

2288:    Output Parameter:
2289: .  a - the CUDA device pointer

2291:    Fortran note:
2292:    This function is not currently available from Fortran.

2294:    Level: intermediate

2296: .seealso: VecCUDARestoreArray(), VecCUDAGetArrayRead(), VecCUDAGetArrayWrite(), VecGetArray(), VecGetArrayRead()
2297: @*/
2298: PETSC_EXTERN PetscErrorCode VecCUDAGetArray(Vec v, PetscScalar **a)
2299: {
2302:  #if defined(PETSC_HAVE_CUDA)
2303:   {
2305:     VecCUDACopyToGPU(v);
2306:     *a   = ((Vec_CUDA*)v->spptr)->GPUarray;
2307:   }
2308:  #endif
2309:   return(0);
2310: }

2312: /*@C
2313:    VecCUDARestoreArray - Restore a CUDA device pointer previously acquired with VecCUDAGetArray().

2315:    This marks the host data as out of date.  Subsequent access to the
2316:    vector data on the host side with for instance VecGetArray() incurs a
2317:    data transfer.

2319:    Input Parameter:
2320: +  v - the vector
2321: -  a - the CUDA device pointer.  This pointer is invalid after
2322:        VecCUDARestoreArray() returns.

2324:    Fortran note:
2325:    This function is not currently available from Fortran.

2327:    Level: intermediate

2329: .seealso: VecCUDAGetArray(), VecCUDAGetArrayRead(), VecCUDAGetArrayWrite(), VecGetArray(), VecRestoreArray(), VecGetArrayRead()
2330: @*/
2331: PETSC_EXTERN PetscErrorCode VecCUDARestoreArray(Vec v, PetscScalar **a)
2332: {

2337: #if defined(PETSC_HAVE_CUDA)
2338:   v->offloadmask = PETSC_OFFLOAD_GPU;
2339: #endif
2340:   PetscObjectStateIncrease((PetscObject)v);
2341:   return(0);
2342: }

2344: /*@C
2345:    VecCUDAGetArrayRead - Provides read access to the CUDA buffer inside a vector.

2347:    This function is analogous to VecGetArrayRead():  The pointer
2348:    returned by this function points to a consistent view of the vector
2349:    data.  This may involve a copy operation of data from the host to the
2350:    device if the data on the device is out of date.  If the device
2351:    memory hasn't been allocated previously it will be allocated as part
2352:    of this function call.  VecCUDAGetArrayRead() assumes that the
2353:    user will not modify the vector data.  This is analgogous to
2354:    intent(in) in Fortran.

2356:    The CUDA device pointer has to be released by calling
2357:    VecCUDARestoreArrayRead().  If the data on the host side was
2358:    previously up to date it will remain so, i.e. data on both the device
2359:    and the host is up to date.  Accessing data on the host side does not
2360:    incur a device to host data transfer.

2362:    Input Parameter:
2363: .  v - the vector

2365:    Output Parameter:
2366: .  a - the CUDA pointer.

2368:    Fortran note:
2369:    This function is not currently available from Fortran.

2371:    Level: intermediate

2373: .seealso: VecCUDARestoreArrayRead(), VecCUDAGetArray(), VecCUDAGetArrayWrite(), VecGetArray(), VecGetArrayRead()
2374: @*/
2375: PETSC_EXTERN PetscErrorCode VecCUDAGetArrayRead(Vec v,const PetscScalar** a)
2376: {
2379:    VecCUDAGetArray(v,(PetscScalar**)a);
2380:    return(0);
2381: }

2383: /*@C
2384:    VecCUDARestoreArrayRead - Restore a CUDA device pointer previously acquired with VecCUDAGetArrayRead().

2386:    If the data on the host side was previously up to date it will remain
2387:    so, i.e. data on both the device and the host is up to date.
2388:    Accessing data on the host side e.g. with VecGetArray() does not
2389:    incur a device to host data transfer.

2391:    Input Parameter:
2392: +  v - the vector
2393: -  a - the CUDA device pointer.  This pointer is invalid after
2394:        VecCUDARestoreArrayRead() returns.

2396:    Fortran note:
2397:    This function is not currently available from Fortran.

2399:    Level: intermediate

2401: .seealso: VecCUDAGetArrayRead(), VecCUDAGetArrayWrite(), VecCUDAGetArray(), VecGetArray(), VecRestoreArray(), VecGetArrayRead()
2402: @*/
2403: PETSC_EXTERN PetscErrorCode VecCUDARestoreArrayRead(Vec v, const PetscScalar **a)
2404: {
2407:   *a = NULL;
2408:   return(0);
2409: }

2411: /*@C
2412:    VecCUDAGetArrayWrite - Provides write access to the CUDA buffer inside a vector.

2414:    The data pointed to by the device pointer is uninitialized.  The user
2415:    may not read from this data.  Furthermore, the entire array needs to
2416:    be filled by the user to obtain well-defined behaviour.  The device
2417:    memory will be allocated by this function if it hasn't been allocated
2418:    previously.  This is analogous to intent(out) in Fortran.

2420:    The device pointer needs to be released with
2421:    VecCUDARestoreArrayWrite().  When the pointer is released the
2422:    host data of the vector is marked as out of data.  Subsequent access
2423:    of the host data with e.g. VecGetArray() incurs a device to host data
2424:    transfer.


2427:    Input Parameter:
2428: .  v - the vector

2430:    Output Parameter:
2431: .  a - the CUDA pointer

2433:    Fortran note:
2434:    This function is not currently available from Fortran.

2436:    Level: advanced

2438: .seealso: VecCUDARestoreArrayWrite(), VecCUDAGetArray(), VecCUDAGetArrayRead(), VecCUDAGetArrayWrite(), VecGetArray(), VecGetArrayRead()
2439: @*/
2440: PETSC_EXTERN PetscErrorCode VecCUDAGetArrayWrite(Vec v, PetscScalar **a)
2441: {
2444:  #if defined(PETSC_HAVE_CUDA)
2445:   {
2447:     VecCUDAAllocateCheck(v);
2448:     *a   = ((Vec_CUDA*)v->spptr)->GPUarray;
2449:   }
2450:  #endif
2451:   return(0);
2452: }

2454: /*@C
2455:    VecCUDARestoreArrayWrite - Restore a CUDA device pointer previously acquired with VecCUDAGetArrayWrite().

2457:    Data on the host will be marked as out of date.  Subsequent access of
2458:    the data on the host side e.g. with VecGetArray() will incur a device
2459:    to host data transfer.

2461:    Input Parameter:
2462: +  v - the vector
2463: -  a - the CUDA device pointer.  This pointer is invalid after
2464:        VecCUDARestoreArrayWrite() returns.

2466:    Fortran note:
2467:    This function is not currently available from Fortran.

2469:    Level: intermediate

2471: .seealso: VecCUDAGetArrayWrite(), VecCUDAGetArray(), VecCUDAGetArrayRead(), VecCUDAGetArrayWrite(), VecGetArray(), VecRestoreArray(), VecGetArrayRead()
2472: @*/
2473: PETSC_EXTERN PetscErrorCode VecCUDARestoreArrayWrite(Vec v, PetscScalar **a)
2474: {

2479:  #if defined(PETSC_HAVE_CUDA)
2480:   v->offloadmask = PETSC_OFFLOAD_GPU;
2481:   a              = NULL;
2482:  #endif
2483:   PetscObjectStateIncrease((PetscObject)v);
2484:   return(0);
2485: }

2487: /*@C
2488:    VecCUDAPlaceArray - Allows one to replace the GPU array in a vector with a
2489:    GPU array provided by the user. This is useful to avoid copying an
2490:    array into a vector.

2492:    Not Collective

2494:    Input Parameters:
2495: +  vec - the vector
2496: -  array - the GPU array

2498:    Notes:
2499:    You can return to the original GPU array with a call to VecCUDAResetArray()
2500:    It is not possible to use VecCUDAPlaceArray() and VecPlaceArray() at the
2501:    same time on the same vector.

2503:    Level: developer

2505: .seealso: VecPlaceArray(), VecGetArray(), VecRestoreArray(), VecReplaceArray(), VecResetArray(), VecCUDAResetArray(), VecCUDAReplaceArray()

2507: @*/
2508: PetscErrorCode VecCUDAPlaceArray(Vec vin,const PetscScalar a[])
2509: {

2514: #if defined(PETSC_HAVE_CUDA)
2515:   VecCUDACopyToGPU(vin);
2516:   if (((Vec_Seq*)vin->data)->unplacedarray) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"VecCUDAPlaceArray()/VecPlaceArray() was already called on this vector, without a call to VecCUDAResetArray()/VecResetArray()");
2517:   ((Vec_Seq*)vin->data)->unplacedarray  = (PetscScalar *) ((Vec_CUDA*)vin->spptr)->GPUarray; /* save previous GPU array so reset can bring it back */
2518:   ((Vec_CUDA*)vin->spptr)->GPUarray = (PetscScalar*)a;
2519:   vin->offloadmask = PETSC_OFFLOAD_GPU;
2520: #endif
2521:   PetscObjectStateIncrease((PetscObject)vin);
2522:   return(0);
2523: }

2525: /*@C
2526:    VecCUDAReplaceArray - Allows one to replace the GPU array in a vector
2527:    with a GPU array provided by the user. This is useful to avoid copying
2528:    a GPU array into a vector.

2530:    Not Collective

2532:    Input Parameters:
2533: +  vec - the vector
2534: -  array - the GPU array

2536:    Notes:
2537:    This permanently replaces the GPU array and frees the memory associated
2538:    with the old GPU array.

2540:    The memory passed in CANNOT be freed by the user. It will be freed
2541:    when the vector is destroyed.

2543:    Not supported from Fortran

2545:    Level: developer

2547: .seealso: VecGetArray(), VecRestoreArray(), VecPlaceArray(), VecResetArray(), VecCUDAResetArray(), VecCUDAPlaceArray(), VecReplaceArray()

2549: @*/
2550: PetscErrorCode VecCUDAReplaceArray(Vec vin,const PetscScalar a[])
2551: {
2552: #if defined(PETSC_HAVE_CUDA)
2553:   cudaError_t err;
2554: #endif

2559: #if defined(PETSC_HAVE_CUDA)
2560:   if (((Vec_CUDA*)vin->spptr)->GPUarray_allocated) {
2561:     err = cudaFree(((Vec_CUDA*)vin->spptr)->GPUarray_allocated);CHKERRCUDA(err);
2562:   }
2563:   ((Vec_CUDA*)vin->spptr)->GPUarray_allocated = ((Vec_CUDA*)vin->spptr)->GPUarray = (PetscScalar*)a;
2564:   vin->offloadmask = PETSC_OFFLOAD_GPU;
2565: #endif
2566:   PetscObjectStateIncrease((PetscObject)vin);
2567:   return(0);
2568: }

2570: /*@C
2571:    VecCUDAResetArray - Resets a vector to use its default memory. Call this
2572:    after the use of VecCUDAPlaceArray().

2574:    Not Collective

2576:    Input Parameters:
2577: .  vec - the vector

2579:    Level: developer

2581: .seealso: VecGetArray(), VecRestoreArray(), VecReplaceArray(), VecPlaceArray(), VecResetArray(), VecCUDAPlaceArray(), VecCUDAReplaceArray()

2583: @*/
2584: PetscErrorCode VecCUDAResetArray(Vec vin)
2585: {

2590: #if defined(PETSC_HAVE_CUDA)
2591:   VecCUDACopyToGPU(vin);
2592:   ((Vec_CUDA*)vin->spptr)->GPUarray = (PetscScalar *) ((Vec_Seq*)vin->data)->unplacedarray;
2593:   ((Vec_Seq*)vin->data)->unplacedarray = 0;
2594:   vin->offloadmask = PETSC_OFFLOAD_GPU;
2595: #endif
2596:   PetscObjectStateIncrease((PetscObject)vin);
2597:   return(0);
2598: }

2600: /*@C
2601:    VecHIPGetArray - Provides access to the HIP buffer inside a vector.

2603:    This function has semantics similar to VecGetArray():  the pointer
2604:    returned by this function points to a consistent view of the vector
2605:    data.  This may involve a copy operation of data from the host to the
2606:    device if the data on the device is out of date.  If the device
2607:    memory hasn't been allocated previously it will be allocated as part
2608:    of this function call.  VecHIPGetArray() assumes that
2609:    the user will modify the vector data.  This is similar to
2610:    intent(inout) in fortran.

2612:    The HIP device pointer has to be released by calling
2613:    VecHIPRestoreArray().  Upon restoring the vector data
2614:    the data on the host will be marked as out of date.  A subsequent
2615:    access of the host data will thus incur a data transfer from the
2616:    device to the host.


2619:    Input Parameter:
2620: .  v - the vector

2622:    Output Parameter:
2623: .  a - the HIP device pointer

2625:    Fortran note:
2626:    This function is not currently available from Fortran.

2628:    Level: intermediate

2630: .seealso: VecHIPRestoreArray(), VecHIPGetArrayRead(), VecHIPGetArrayWrite(), VecGetArray(), VecGetArrayRead()
2631: @*/
2632: PETSC_EXTERN PetscErrorCode VecHIPGetArray(Vec v, PetscScalar **a)
2633: {
2634: #if defined(PETSC_HAVE_HIP)
2636: #endif

2640: #if defined(PETSC_HAVE_HIP)
2641:   *a   = 0;
2642:   VecHIPCopyToGPU(v);
2643:   *a   = ((Vec_HIP*)v->spptr)->GPUarray;
2644: #endif
2645:   return(0);
2646: }

2648: /*@C
2649:    VecHIPRestoreArray - Restore a HIP device pointer previously acquired with VecHIPGetArray().

2651:    This marks the host data as out of date.  Subsequent access to the
2652:    vector data on the host side with for instance VecGetArray() incurs a
2653:    data transfer.

2655:    Input Parameter:
2656: +  v - the vector
2657: -  a - the HIP device pointer.  This pointer is invalid after
2658:        VecHIPRestoreArray() returns.

2660:    Fortran note:
2661:    This function is not currently available from Fortran.

2663:    Level: intermediate

2665: .seealso: VecHIPGetArray(), VecHIPGetArrayRead(), VecHIPGetArrayWrite(), VecGetArray(), VecRestoreArray(), VecGetArrayRead()
2666: @*/
2667: PETSC_EXTERN PetscErrorCode VecHIPRestoreArray(Vec v, PetscScalar **a)
2668: {

2673: #if defined(PETSC_HAVE_HIP)
2674:   v->offloadmask = PETSC_OFFLOAD_GPU;
2675: #endif

2677:   PetscObjectStateIncrease((PetscObject)v);
2678:   return(0);
2679: }

2681: /*@C
2682:    VecHIPGetArrayRead - Provides read access to the HIP buffer inside a vector.

2684:    This function is analogous to VecGetArrayRead():  The pointer
2685:    returned by this function points to a consistent view of the vector
2686:    data.  This may involve a copy operation of data from the host to the
2687:    device if the data on the device is out of date.  If the device
2688:    memory hasn't been allocated previously it will be allocated as part
2689:    of this function call.  VecHIPGetArrayRead() assumes that the
2690:    user will not modify the vector data.  This is analgogous to
2691:    intent(in) in Fortran.

2693:    The HIP device pointer has to be released by calling
2694:    VecHIPRestoreArrayRead().  If the data on the host side was
2695:    previously up to date it will remain so, i.e. data on both the device
2696:    and the host is up to date.  Accessing data on the host side does not
2697:    incur a device to host data transfer.

2699:    Input Parameter:
2700: .  v - the vector

2702:    Output Parameter:
2703: .  a - the HIP pointer.

2705:    Fortran note:
2706:    This function is not currently available from Fortran.

2708:    Level: intermediate

2710: .seealso: VecHIPRestoreArrayRead(), VecHIPGetArray(), VecHIPGetArrayWrite(), VecGetArray(), VecGetArrayRead()
2711: @*/
2712: PETSC_EXTERN PetscErrorCode VecHIPGetArrayRead(Vec v, const PetscScalar **a)
2713: {
2714: #if defined(PETSC_HAVE_HIP)
2716: #endif

2720: #if defined(PETSC_HAVE_HIP)
2721:   *a   = 0;
2722:   VecHIPCopyToGPU(v);
2723:   *a   = ((Vec_HIP*)v->spptr)->GPUarray;
2724: #endif
2725:   return(0);
2726: }

2728: /*@C
2729:    VecHIPRestoreArrayRead - Restore a HIP device pointer previously acquired with VecHIPGetArrayRead().

2731:    If the data on the host side was previously up to date it will remain
2732:    so, i.e. data on both the device and the host is up to date.
2733:    Accessing data on the host side e.g. with VecGetArray() does not
2734:    incur a device to host data transfer.

2736:    Input Parameter:
2737: +  v - the vector
2738: -  a - the HIP device pointer.  This pointer is invalid after
2739:        VecHIPRestoreArrayRead() returns.

2741:    Fortran note:
2742:    This function is not currently available from Fortran.

2744:    Level: intermediate

2746: .seealso: VecHIPGetArrayRead(), VecHIPGetArrayWrite(), VecHIPGetArray(), VecGetArray(), VecRestoreArray(), VecGetArrayRead()
2747: @*/
2748: PETSC_EXTERN PetscErrorCode VecHIPRestoreArrayRead(Vec v, const PetscScalar **a)
2749: {
2752:   *a = NULL;
2753:   return(0);
2754: }

2756: /*@C
2757:    VecHIPGetArrayWrite - Provides write access to the HIP buffer inside a vector.

2759:    The data pointed to by the device pointer is uninitialized.  The user
2760:    may not read from this data.  Furthermore, the entire array needs to
2761:    be filled by the user to obtain well-defined behaviour.  The device
2762:    memory will be allocated by this function if it hasn't been allocated
2763:    previously.  This is analogous to intent(out) in Fortran.

2765:    The device pointer needs to be released with
2766:    VecHIPRestoreArrayWrite().  When the pointer is released the
2767:    host data of the vector is marked as out of data.  Subsequent access
2768:    of the host data with e.g. VecGetArray() incurs a device to host data
2769:    transfer.


2772:    Input Parameter:
2773: .  v - the vector

2775:    Output Parameter:
2776: .  a - the HIP pointer

2778:    Fortran note:
2779:    This function is not currently available from Fortran.

2781:    Level: advanced

2783: .seealso: VecHIPRestoreArrayWrite(), VecHIPGetArray(), VecHIPGetArrayRead(), VecHIPGetArrayWrite(), VecGetArray(), VecGetArrayRead()
2784: @*/
2785: PETSC_EXTERN PetscErrorCode VecHIPGetArrayWrite(Vec v, PetscScalar **a)
2786: {
2787: #if defined(PETSC_HAVE_HIP)
2789: #endif

2793: #if defined(PETSC_HAVE_HIP)
2794:   *a   = 0;
2795:   VecHIPAllocateCheck(v);
2796:   *a   = ((Vec_HIP*)v->spptr)->GPUarray;
2797: #endif
2798:   return(0);
2799: }

2801: /*@C
2802:    VecHIPRestoreArrayWrite - Restore a HIP device pointer previously acquired with VecHIPGetArrayWrite().

2804:    Data on the host will be marked as out of date.  Subsequent access of
2805:    the data on the host side e.g. with VecGetArray() will incur a device
2806:    to host data transfer.

2808:    Input Parameter:
2809: +  v - the vector
2810: -  a - the HIP device pointer.  This pointer is invalid after
2811:        VecHIPRestoreArrayWrite() returns.

2813:    Fortran note:
2814:    This function is not currently available from Fortran.

2816:    Level: intermediate

2818: .seealso: VecHIPGetArrayWrite(), VecHIPGetArray(), VecHIPGetArrayRead(), VecHIPGetArrayWrite(), VecGetArray(), VecRestoreArray(), VecGetArrayRead()
2819: @*/
2820: PETSC_EXTERN PetscErrorCode VecHIPRestoreArrayWrite(Vec v, PetscScalar **a)
2821: {

2826: #if defined(PETSC_HAVE_HIP)
2827:   v->offloadmask = PETSC_OFFLOAD_GPU;
2828: #endif

2830:   PetscObjectStateIncrease((PetscObject)v);
2831:   return(0);
2832: }

2834: /*@C
2835:    VecHIPPlaceArray - Allows one to replace the GPU array in a vector with a
2836:    GPU array provided by the user. This is useful to avoid copying an
2837:    array into a vector.

2839:    Not Collective

2841:    Input Parameters:
2842: +  vec - the vector
2843: -  array - the GPU array

2845:    Notes:
2846:    You can return to the original GPU array with a call to VecHIPResetArray()
2847:    It is not possible to use VecHIPPlaceArray() and VecPlaceArray() at the
2848:    same time on the same vector.

2850:    Level: developer

2852: .seealso: VecPlaceArray(), VecGetArray(), VecRestoreArray(), VecReplaceArray(), VecResetArray(), VecHIPResetArray(), VecHIPReplaceArray()

2854: @*/
2855: PetscErrorCode VecHIPPlaceArray(Vec vin,const PetscScalar a[])
2856: {

2861: #if defined(PETSC_HAVE_HIP)
2862:   VecHIPCopyToGPU(vin);
2863:   if (((Vec_Seq*)vin->data)->unplacedarray) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"VecHIPPlaceArray()/VecPlaceArray() was already called on this vector, without a call to VecHIPResetArray()/VecResetArray()");
2864:   ((Vec_Seq*)vin->data)->unplacedarray  = (PetscScalar *) ((Vec_HIP*)vin->spptr)->GPUarray; /* save previous GPU array so reset can bring it back */
2865:   ((Vec_HIP*)vin->spptr)->GPUarray = (PetscScalar*)a;
2866:   vin->offloadmask = PETSC_OFFLOAD_GPU;
2867: #endif
2868:   PetscObjectStateIncrease((PetscObject)vin);
2869:   return(0);
2870: }

2872: /*@C
2873:    VecHIPReplaceArray - Allows one to replace the GPU array in a vector
2874:    with a GPU array provided by the user. This is useful to avoid copying
2875:    a GPU array into a vector.

2877:    Not Collective

2879:    Input Parameters:
2880: +  vec - the vector
2881: -  array - the GPU array

2883:    Notes:
2884:    This permanently replaces the GPU array and frees the memory associated
2885:    with the old GPU array.

2887:    The memory passed in CANNOT be freed by the user. It will be freed
2888:    when the vector is destroyed.

2890:    Not supported from Fortran

2892:    Level: developer

2894: .seealso: VecGetArray(), VecRestoreArray(), VecPlaceArray(), VecResetArray(), VecHIPResetArray(), VecHIPPlaceArray(), VecReplaceArray()

2896: @*/
2897: PetscErrorCode VecHIPReplaceArray(Vec vin,const PetscScalar a[])
2898: {
2899: #if defined(PETSC_HAVE_HIP)
2900:   hipError_t err;
2901: #endif

2906: #if defined(PETSC_HAVE_HIP)
2907:   err = hipFree(((Vec_HIP*)vin->spptr)->GPUarray);CHKERRHIP(err);
2908:   ((Vec_HIP*)vin->spptr)->GPUarray = (PetscScalar*)a;
2909:   vin->offloadmask = PETSC_OFFLOAD_GPU;
2910: #endif
2911:   PetscObjectStateIncrease((PetscObject)vin);
2912:   return(0);
2913: }

2915: /*@C
2916:    VecHIPResetArray - Resets a vector to use its default memory. Call this
2917:    after the use of VecHIPPlaceArray().

2919:    Not Collective

2921:    Input Parameters:
2922: .  vec - the vector

2924:    Level: developer

2926: .seealso: VecGetArray(), VecRestoreArray(), VecReplaceArray(), VecPlaceArray(), VecResetArray(), VecHIPPlaceArray(), VecHIPReplaceArray()

2928: @*/
2929: PetscErrorCode VecHIPResetArray(Vec vin)
2930: {

2935: #if defined(PETSC_HAVE_HIP)
2936:   VecHIPCopyToGPU(vin);
2937:   ((Vec_HIP*)vin->spptr)->GPUarray = (PetscScalar *) ((Vec_Seq*)vin->data)->unplacedarray;
2938:   ((Vec_Seq*)vin->data)->unplacedarray = 0;
2939:   vin->offloadmask = PETSC_OFFLOAD_GPU;
2940: #endif
2941:   PetscObjectStateIncrease((PetscObject)vin);
2942:   return(0);
2943: }

2945: /*MC
2946:     VecDuplicateVecsF90 - Creates several vectors of the same type as an existing vector
2947:     and makes them accessible via a Fortran90 pointer.

2949:     Synopsis:
2950:     VecDuplicateVecsF90(Vec x,PetscInt n,{Vec, pointer :: y(:)},integer ierr)

2952:     Collective on Vec

2954:     Input Parameters:
2955: +   x - a vector to mimic
2956: -   n - the number of vectors to obtain

2958:     Output Parameters:
2959: +   y - Fortran90 pointer to the array of vectors
2960: -   ierr - error code

2962:     Example of Usage:
2963: .vb
2964: #include <petsc/finclude/petscvec.h>
2965:     use petscvec

2967:     Vec x
2968:     Vec, pointer :: y(:)
2969:     ....
2970:     call VecDuplicateVecsF90(x,2,y,ierr)
2971:     call VecSet(y(2),alpha,ierr)
2972:     call VecSet(y(2),alpha,ierr)
2973:     ....
2974:     call VecDestroyVecsF90(2,y,ierr)
2975: .ve

2977:     Notes:
2978:     Not yet supported for all F90 compilers

2980:     Use VecDestroyVecsF90() to free the space.

2982:     Level: beginner

2984: .seealso:  VecDestroyVecsF90(), VecDuplicateVecs()

2986: M*/

2988: /*MC
2989:     VecRestoreArrayF90 - Restores a vector to a usable state after a call to
2990:     VecGetArrayF90().

2992:     Synopsis:
2993:     VecRestoreArrayF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

2995:     Logically Collective on Vec

2997:     Input Parameters:
2998: +   x - vector
2999: -   xx_v - the Fortran90 pointer to the array

3001:     Output Parameter:
3002: .   ierr - error code

3004:     Example of Usage:
3005: .vb
3006: #include <petsc/finclude/petscvec.h>
3007:     use petscvec

3009:     PetscScalar, pointer :: xx_v(:)
3010:     ....
3011:     call VecGetArrayF90(x,xx_v,ierr)
3012:     xx_v(3) = a
3013:     call VecRestoreArrayF90(x,xx_v,ierr)
3014: .ve

3016:     Level: beginner

3018: .seealso:  VecGetArrayF90(), VecGetArray(), VecRestoreArray(), UsingFortran, VecRestoreArrayReadF90()

3020: M*/

3022: /*MC
3023:     VecDestroyVecsF90 - Frees a block of vectors obtained with VecDuplicateVecsF90().

3025:     Synopsis:
3026:     VecDestroyVecsF90(PetscInt n,{Vec, pointer :: x(:)},PetscErrorCode ierr)

3028:     Collective on Vec

3030:     Input Parameters:
3031: +   n - the number of vectors previously obtained
3032: -   x - pointer to array of vector pointers

3034:     Output Parameter:
3035: .   ierr - error code

3037:     Notes:
3038:     Not yet supported for all F90 compilers

3040:     Level: beginner

3042: .seealso:  VecDestroyVecs(), VecDuplicateVecsF90()

3044: M*/

3046: /*MC
3047:     VecGetArrayF90 - Accesses a vector array from Fortran90. For default PETSc
3048:     vectors, VecGetArrayF90() returns a pointer to the local data array. Otherwise,
3049:     this routine is implementation dependent. You MUST call VecRestoreArrayF90()
3050:     when you no longer need access to the array.

3052:     Synopsis:
3053:     VecGetArrayF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

3055:     Logically Collective on Vec

3057:     Input Parameter:
3058: .   x - vector

3060:     Output Parameters:
3061: +   xx_v - the Fortran90 pointer to the array
3062: -   ierr - error code

3064:     Example of Usage:
3065: .vb
3066: #include <petsc/finclude/petscvec.h>
3067:     use petscvec

3069:     PetscScalar, pointer :: xx_v(:)
3070:     ....
3071:     call VecGetArrayF90(x,xx_v,ierr)
3072:     xx_v(3) = a
3073:     call VecRestoreArrayF90(x,xx_v,ierr)
3074: .ve

3076:     If you ONLY intend to read entries from the array and not change any entries you should use VecGetArrayReadF90().

3078:     Level: beginner

3080: .seealso:  VecRestoreArrayF90(), VecGetArray(), VecRestoreArray(), VecGetArrayReadF90(), UsingFortran

3082: M*/

3084:  /*MC
3085:     VecGetArrayReadF90 - Accesses a read only array from Fortran90. For default PETSc
3086:     vectors, VecGetArrayF90() returns a pointer to the local data array. Otherwise,
3087:     this routine is implementation dependent. You MUST call VecRestoreArrayReadF90()
3088:     when you no longer need access to the array.

3090:     Synopsis:
3091:     VecGetArrayReadF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

3093:     Logically Collective on Vec

3095:     Input Parameter:
3096: .   x - vector

3098:     Output Parameters:
3099: +   xx_v - the Fortran90 pointer to the array
3100: -   ierr - error code

3102:     Example of Usage:
3103: .vb
3104: #include <petsc/finclude/petscvec.h>
3105:     use petscvec

3107:     PetscScalar, pointer :: xx_v(:)
3108:     ....
3109:     call VecGetArrayReadF90(x,xx_v,ierr)
3110:     a = xx_v(3)
3111:     call VecRestoreArrayReadF90(x,xx_v,ierr)
3112: .ve

3114:     If you intend to write entries into the array you must use VecGetArrayF90().

3116:     Level: beginner

3118: .seealso:  VecRestoreArrayReadF90(), VecGetArray(), VecRestoreArray(), VecGetArrayRead(), VecRestoreArrayRead(), VecGetArrayF90(), UsingFortran

3120: M*/

3122: /*MC
3123:     VecRestoreArrayReadF90 - Restores a readonly vector to a usable state after a call to
3124:     VecGetArrayReadF90().

3126:     Synopsis:
3127:     VecRestoreArrayReadF90(Vec x,{Scalar, pointer :: xx_v(:)},integer ierr)

3129:     Logically Collective on Vec

3131:     Input Parameters:
3132: +   x - vector
3133: -   xx_v - the Fortran90 pointer to the array

3135:     Output Parameter:
3136: .   ierr - error code

3138:     Example of Usage:
3139: .vb
3140: #include <petsc/finclude/petscvec.h>
3141:     use petscvec

3143:     PetscScalar, pointer :: xx_v(:)
3144:     ....
3145:     call VecGetArrayReadF90(x,xx_v,ierr)
3146:     a = xx_v(3)
3147:     call VecRestoreArrayReadF90(x,xx_v,ierr)
3148: .ve

3150:     Level: beginner

3152: .seealso:  VecGetArrayReadF90(), VecGetArray(), VecRestoreArray(), VecGetArrayRead(), VecRestoreArrayRead(),UsingFortran, VecRestoreArrayF90()

3154: M*/

3156: /*@C
3157:    VecGetArray2d - Returns a pointer to a 2d contiguous array that contains this
3158:    processor's portion of the vector data.  You MUST call VecRestoreArray2d()
3159:    when you no longer need access to the array.

3161:    Logically Collective

3163:    Input Parameter:
3164: +  x - the vector
3165: .  m - first dimension of two dimensional array
3166: .  n - second dimension of two dimensional array
3167: .  mstart - first index you will use in first coordinate direction (often 0)
3168: -  nstart - first index in the second coordinate direction (often 0)

3170:    Output Parameter:
3171: .  a - location to put pointer to the array

3173:    Level: developer

3175:   Notes:
3176:    For a vector obtained from DMCreateLocalVector() mstart and nstart are likely
3177:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3178:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3179:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray2d().

3181:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3183: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
3184:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
3185:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3186: @*/
3187: PetscErrorCode  VecGetArray2d(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
3188: {
3190:   PetscInt       i,N;
3191:   PetscScalar    *aa;

3197:   VecGetLocalSize(x,&N);
3198:   if (m*n != N) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 2d array dimensions %D by %D",N,m,n);
3199:   VecGetArray(x,&aa);

3201:   PetscMalloc1(m,a);
3202:   for (i=0; i<m; i++) (*a)[i] = aa + i*n - nstart;
3203:   *a -= mstart;
3204:   return(0);
3205: }

3207: /*@C
3208:    VecGetArray2dWrite - Returns a pointer to a 2d contiguous array that will contain this
3209:    processor's portion of the vector data.  You MUST call VecRestoreArray2dWrite()
3210:    when you no longer need access to the array.

3212:    Logically Collective

3214:    Input Parameter:
3215: +  x - the vector
3216: .  m - first dimension of two dimensional array
3217: .  n - second dimension of two dimensional array
3218: .  mstart - first index you will use in first coordinate direction (often 0)
3219: -  nstart - first index in the second coordinate direction (often 0)

3221:    Output Parameter:
3222: .  a - location to put pointer to the array

3224:    Level: developer

3226:   Notes:
3227:    For a vector obtained from DMCreateLocalVector() mstart and nstart are likely
3228:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3229:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3230:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray2d().

3232:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3234:    Concepts: vector^accessing local values as 2d array

3236: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
3237:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
3238:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3239: @*/
3240: PetscErrorCode  VecGetArray2dWrite(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
3241: {
3243:   PetscInt       i,N;
3244:   PetscScalar    *aa;

3250:   VecGetLocalSize(x,&N);
3251:   if (m*n != N) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 2d array dimensions %D by %D",N,m,n);
3252:   VecGetArrayWrite(x,&aa);

3254:   PetscMalloc1(m,a);
3255:   for (i=0; i<m; i++) (*a)[i] = aa + i*n - nstart;
3256:   *a -= mstart;
3257:   return(0);
3258: }

3260: /*@C
3261:    VecRestoreArray2d - Restores a vector after VecGetArray2d() has been called.

3263:    Logically Collective

3265:    Input Parameters:
3266: +  x - the vector
3267: .  m - first dimension of two dimensional array
3268: .  n - second dimension of the two dimensional array
3269: .  mstart - first index you will use in first coordinate direction (often 0)
3270: .  nstart - first index in the second coordinate direction (often 0)
3271: -  a - location of pointer to array obtained from VecGetArray2d()

3273:    Level: developer

3275:    Notes:
3276:    For regular PETSc vectors this routine does not involve any copies. For
3277:    any special vectors that do not store local vector data in a contiguous
3278:    array, this routine will copy the data back into the underlying
3279:    vector data structure from the array obtained with VecGetArray().

3281:    This routine actually zeros out the a pointer.

3283: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
3284:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
3285:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3286: @*/
3287: PetscErrorCode  VecRestoreArray2d(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
3288: {
3290:   void           *dummy;

3296:   dummy = (void*)(*a + mstart);
3297:   PetscFree(dummy);
3298:   VecRestoreArray(x,NULL);
3299:   return(0);
3300: }

3302: /*@C
3303:    VecRestoreArray2dWrite - Restores a vector after VecGetArray2dWrite() has been called.

3305:    Logically Collective

3307:    Input Parameters:
3308: +  x - the vector
3309: .  m - first dimension of two dimensional array
3310: .  n - second dimension of the two dimensional array
3311: .  mstart - first index you will use in first coordinate direction (often 0)
3312: .  nstart - first index in the second coordinate direction (often 0)
3313: -  a - location of pointer to array obtained from VecGetArray2d()

3315:    Level: developer

3317:    Notes:
3318:    For regular PETSc vectors this routine does not involve any copies. For
3319:    any special vectors that do not store local vector data in a contiguous
3320:    array, this routine will copy the data back into the underlying
3321:    vector data structure from the array obtained with VecGetArray().

3323:    This routine actually zeros out the a pointer.

3325: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
3326:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
3327:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3328: @*/
3329: PetscErrorCode  VecRestoreArray2dWrite(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
3330: {
3332:   void           *dummy;

3338:   dummy = (void*)(*a + mstart);
3339:   PetscFree(dummy);
3340:   VecRestoreArrayWrite(x,NULL);
3341:   return(0);
3342: }

3344: /*@C
3345:    VecGetArray1d - Returns a pointer to a 1d contiguous array that contains this
3346:    processor's portion of the vector data.  You MUST call VecRestoreArray1d()
3347:    when you no longer need access to the array.

3349:    Logically Collective

3351:    Input Parameter:
3352: +  x - the vector
3353: .  m - first dimension of two dimensional array
3354: -  mstart - first index you will use in first coordinate direction (often 0)

3356:    Output Parameter:
3357: .  a - location to put pointer to the array

3359:    Level: developer

3361:   Notes:
3362:    For a vector obtained from DMCreateLocalVector() mstart are likely
3363:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3364:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners().

3366:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3368: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
3369:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
3370:           VecGetArray2d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3371: @*/
3372: PetscErrorCode  VecGetArray1d(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
3373: {
3375:   PetscInt       N;

3381:   VecGetLocalSize(x,&N);
3382:   if (m != N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local array size %D does not match 1d array dimensions %D",N,m);
3383:   VecGetArray(x,a);
3384:   *a  -= mstart;
3385:   return(0);
3386: }

3388:  /*@C
3389:    VecGetArray1dWrite - Returns a pointer to a 1d contiguous array that will contain this
3390:    processor's portion of the vector data.  You MUST call VecRestoreArray1dWrite()
3391:    when you no longer need access to the array.

3393:    Logically Collective

3395:    Input Parameter:
3396: +  x - the vector
3397: .  m - first dimension of two dimensional array
3398: -  mstart - first index you will use in first coordinate direction (often 0)

3400:    Output Parameter:
3401: .  a - location to put pointer to the array

3403:    Level: developer

3405:   Notes:
3406:    For a vector obtained from DMCreateLocalVector() mstart are likely
3407:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3408:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners().

3410:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3412: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
3413:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
3414:           VecGetArray2d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3415: @*/
3416: PetscErrorCode  VecGetArray1dWrite(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
3417: {
3419:   PetscInt       N;

3425:   VecGetLocalSize(x,&N);
3426:   if (m != N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local array size %D does not match 1d array dimensions %D",N,m);
3427:   VecGetArrayWrite(x,a);
3428:   *a  -= mstart;
3429:   return(0);
3430: }

3432: /*@C
3433:    VecRestoreArray1d - Restores a vector after VecGetArray1d() has been called.

3435:    Logically Collective

3437:    Input Parameters:
3438: +  x - the vector
3439: .  m - first dimension of two dimensional array
3440: .  mstart - first index you will use in first coordinate direction (often 0)
3441: -  a - location of pointer to array obtained from VecGetArray21()

3443:    Level: developer

3445:    Notes:
3446:    For regular PETSc vectors this routine does not involve any copies. For
3447:    any special vectors that do not store local vector data in a contiguous
3448:    array, this routine will copy the data back into the underlying
3449:    vector data structure from the array obtained with VecGetArray1d().

3451:    This routine actually zeros out the a pointer.

3453: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
3454:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
3455:           VecGetArray1d(), VecRestoreArray2d(), VecGetArray4d(), VecRestoreArray4d()
3456: @*/
3457: PetscErrorCode  VecRestoreArray1d(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
3458: {

3464:   VecRestoreArray(x,NULL);
3465:   return(0);
3466: }

3468: /*@C
3469:    VecRestoreArray1dWrite - Restores a vector after VecGetArray1dWrite() has been called.

3471:    Logically Collective

3473:    Input Parameters:
3474: +  x - the vector
3475: .  m - first dimension of two dimensional array
3476: .  mstart - first index you will use in first coordinate direction (often 0)
3477: -  a - location of pointer to array obtained from VecGetArray21()

3479:    Level: developer

3481:    Notes:
3482:    For regular PETSc vectors this routine does not involve any copies. For
3483:    any special vectors that do not store local vector data in a contiguous
3484:    array, this routine will copy the data back into the underlying
3485:    vector data structure from the array obtained with VecGetArray1d().

3487:    This routine actually zeros out the a pointer.

3489:    Concepts: vector^accessing local values as 1d array

3491: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
3492:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
3493:           VecGetArray1d(), VecRestoreArray2d(), VecGetArray4d(), VecRestoreArray4d()
3494: @*/
3495: PetscErrorCode  VecRestoreArray1dWrite(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
3496: {

3502:   VecRestoreArrayWrite(x,NULL);
3503:   return(0);
3504: }

3506: /*@C
3507:    VecGetArray3d - Returns a pointer to a 3d contiguous array that contains this
3508:    processor's portion of the vector data.  You MUST call VecRestoreArray3d()
3509:    when you no longer need access to the array.

3511:    Logically Collective

3513:    Input Parameter:
3514: +  x - the vector
3515: .  m - first dimension of three dimensional array
3516: .  n - second dimension of three dimensional array
3517: .  p - third dimension of three dimensional array
3518: .  mstart - first index you will use in first coordinate direction (often 0)
3519: .  nstart - first index in the second coordinate direction (often 0)
3520: -  pstart - first index in the third coordinate direction (often 0)

3522:    Output Parameter:
3523: .  a - location to put pointer to the array

3525:    Level: developer

3527:   Notes:
3528:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
3529:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3530:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3531:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().

3533:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3535: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
3536:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
3537:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3538: @*/
3539: PetscErrorCode  VecGetArray3d(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
3540: {
3542:   PetscInt       i,N,j;
3543:   PetscScalar    *aa,**b;

3549:   VecGetLocalSize(x,&N);
3550:   if (m*n*p != N) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 3d array dimensions %D by %D by %D",N,m,n,p);
3551:   VecGetArray(x,&aa);

3553:   PetscMalloc1(m*sizeof(PetscScalar**)+m*n,a);
3554:   b    = (PetscScalar**)((*a) + m);
3555:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
3556:   for (i=0; i<m; i++)
3557:     for (j=0; j<n; j++)
3558:       b[i*n+j] = aa + i*n*p + j*p - pstart;

3560:   *a -= mstart;
3561:   return(0);
3562: }

3564: /*@C
3565:    VecGetArray3dWrite - Returns a pointer to a 3d contiguous array that will contain this
3566:    processor's portion of the vector data.  You MUST call VecRestoreArray3dWrite()
3567:    when you no longer need access to the array.

3569:    Logically Collective

3571:    Input Parameter:
3572: +  x - the vector
3573: .  m - first dimension of three dimensional array
3574: .  n - second dimension of three dimensional array
3575: .  p - third dimension of three dimensional array
3576: .  mstart - first index you will use in first coordinate direction (often 0)
3577: .  nstart - first index in the second coordinate direction (often 0)
3578: -  pstart - first index in the third coordinate direction (often 0)

3580:    Output Parameter:
3581: .  a - location to put pointer to the array

3583:    Level: developer

3585:   Notes:
3586:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
3587:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3588:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3589:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().

3591:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3593:    Concepts: vector^accessing local values as 3d array

3595: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
3596:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
3597:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3598: @*/
3599: PetscErrorCode  VecGetArray3dWrite(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
3600: {
3602:   PetscInt       i,N,j;
3603:   PetscScalar    *aa,**b;

3609:   VecGetLocalSize(x,&N);
3610:   if (m*n*p != N) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 3d array dimensions %D by %D by %D",N,m,n,p);
3611:   VecGetArrayWrite(x,&aa);

3613:   PetscMalloc1(m*sizeof(PetscScalar**)+m*n,a);
3614:   b    = (PetscScalar**)((*a) + m);
3615:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
3616:   for (i=0; i<m; i++)
3617:     for (j=0; j<n; j++)
3618:       b[i*n+j] = aa + i*n*p + j*p - pstart;

3620:   *a -= mstart;
3621:   return(0);
3622: }

3624: /*@C
3625:    VecRestoreArray3d - Restores a vector after VecGetArray3d() has been called.

3627:    Logically Collective

3629:    Input Parameters:
3630: +  x - the vector
3631: .  m - first dimension of three dimensional array
3632: .  n - second dimension of the three dimensional array
3633: .  p - third dimension of the three dimensional array
3634: .  mstart - first index you will use in first coordinate direction (often 0)
3635: .  nstart - first index in the second coordinate direction (often 0)
3636: .  pstart - first index in the third coordinate direction (often 0)
3637: -  a - location of pointer to array obtained from VecGetArray3d()

3639:    Level: developer

3641:    Notes:
3642:    For regular PETSc vectors this routine does not involve any copies. For
3643:    any special vectors that do not store local vector data in a contiguous
3644:    array, this routine will copy the data back into the underlying
3645:    vector data structure from the array obtained with VecGetArray().

3647:    This routine actually zeros out the a pointer.

3649: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
3650:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
3651:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
3652: @*/
3653: PetscErrorCode  VecRestoreArray3d(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
3654: {
3656:   void           *dummy;

3662:   dummy = (void*)(*a + mstart);
3663:   PetscFree(dummy);
3664:   VecRestoreArray(x,NULL);
3665:   return(0);
3666: }

3668: /*@C
3669:    VecRestoreArray3dWrite - Restores a vector after VecGetArray3dWrite() has been called.

3671:    Logically Collective

3673:    Input Parameters:
3674: +  x - the vector
3675: .  m - first dimension of three dimensional array
3676: .  n - second dimension of the three dimensional array
3677: .  p - third dimension of the three dimensional array
3678: .  mstart - first index you will use in first coordinate direction (often 0)
3679: .  nstart - first index in the second coordinate direction (often 0)
3680: .  pstart - first index in the third coordinate direction (often 0)
3681: -  a - location of pointer to array obtained from VecGetArray3d()

3683:    Level: developer

3685:    Notes:
3686:    For regular PETSc vectors this routine does not involve any copies. For
3687:    any special vectors that do not store local vector data in a contiguous
3688:    array, this routine will copy the data back into the underlying
3689:    vector data structure from the array obtained with VecGetArray().

3691:    This routine actually zeros out the a pointer.

3693: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
3694:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
3695:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
3696: @*/
3697: PetscErrorCode  VecRestoreArray3dWrite(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
3698: {
3700:   void           *dummy;

3706:   dummy = (void*)(*a + mstart);
3707:   PetscFree(dummy);
3708:   VecRestoreArrayWrite(x,NULL);
3709:   return(0);
3710: }

3712: /*@C
3713:    VecGetArray4d - Returns a pointer to a 4d contiguous array that contains this
3714:    processor's portion of the vector data.  You MUST call VecRestoreArray4d()
3715:    when you no longer need access to the array.

3717:    Logically Collective

3719:    Input Parameter:
3720: +  x - the vector
3721: .  m - first dimension of four dimensional array
3722: .  n - second dimension of four dimensional array
3723: .  p - third dimension of four dimensional array
3724: .  q - fourth dimension of four dimensional array
3725: .  mstart - first index you will use in first coordinate direction (often 0)
3726: .  nstart - first index in the second coordinate direction (often 0)
3727: .  pstart - first index in the third coordinate direction (often 0)
3728: -  qstart - first index in the fourth coordinate direction (often 0)

3730:    Output Parameter:
3731: .  a - location to put pointer to the array

3733:    Level: beginner

3735:   Notes:
3736:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
3737:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3738:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3739:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().

3741:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3743: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
3744:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
3745:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3746: @*/
3747: PetscErrorCode  VecGetArray4d(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
3748: {
3750:   PetscInt       i,N,j,k;
3751:   PetscScalar    *aa,***b,**c;

3757:   VecGetLocalSize(x,&N);
3758:   if (m*n*p*q != N) SETERRQ5(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 4d array dimensions %D by %D by %D by %D",N,m,n,p,q);
3759:   VecGetArray(x,&aa);

3761:   PetscMalloc1(m*sizeof(PetscScalar***)+m*n*sizeof(PetscScalar**)+m*n*p,a);
3762:   b    = (PetscScalar***)((*a) + m);
3763:   c    = (PetscScalar**)(b + m*n);
3764:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
3765:   for (i=0; i<m; i++)
3766:     for (j=0; j<n; j++)
3767:       b[i*n+j] = c + i*n*p + j*p - pstart;
3768:   for (i=0; i<m; i++)
3769:     for (j=0; j<n; j++)
3770:       for (k=0; k<p; k++)
3771:         c[i*n*p+j*p+k] = aa + i*n*p*q + j*p*q + k*q - qstart;
3772:   *a -= mstart;
3773:   return(0);
3774: }

3776: /*@C
3777:    VecGetArray4dWrite - Returns a pointer to a 4d contiguous array that will contain this
3778:    processor's portion of the vector data.  You MUST call VecRestoreArray4dWrite()
3779:    when you no longer need access to the array.

3781:    Logically Collective

3783:    Input Parameter:
3784: +  x - the vector
3785: .  m - first dimension of four dimensional array
3786: .  n - second dimension of four dimensional array
3787: .  p - third dimension of four dimensional array
3788: .  q - fourth dimension of four dimensional array
3789: .  mstart - first index you will use in first coordinate direction (often 0)
3790: .  nstart - first index in the second coordinate direction (often 0)
3791: .  pstart - first index in the third coordinate direction (often 0)
3792: -  qstart - first index in the fourth coordinate direction (often 0)

3794:    Output Parameter:
3795: .  a - location to put pointer to the array

3797:    Level: beginner

3799:   Notes:
3800:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
3801:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3802:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3803:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().

3805:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3807:    Concepts: vector^accessing local values as 3d array

3809: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
3810:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
3811:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3812: @*/
3813: PetscErrorCode  VecGetArray4dWrite(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
3814: {
3816:   PetscInt       i,N,j,k;
3817:   PetscScalar    *aa,***b,**c;

3823:   VecGetLocalSize(x,&N);
3824:   if (m*n*p*q != N) SETERRQ5(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 4d array dimensions %D by %D by %D by %D",N,m,n,p,q);
3825:   VecGetArrayWrite(x,&aa);

3827:   PetscMalloc1(m*sizeof(PetscScalar***)+m*n*sizeof(PetscScalar**)+m*n*p,a);
3828:   b    = (PetscScalar***)((*a) + m);
3829:   c    = (PetscScalar**)(b + m*n);
3830:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
3831:   for (i=0; i<m; i++)
3832:     for (j=0; j<n; j++)
3833:       b[i*n+j] = c + i*n*p + j*p - pstart;
3834:   for (i=0; i<m; i++)
3835:     for (j=0; j<n; j++)
3836:       for (k=0; k<p; k++)
3837:         c[i*n*p+j*p+k] = aa + i*n*p*q + j*p*q + k*q - qstart;
3838:   *a -= mstart;
3839:   return(0);
3840: }

3842: /*@C
3843:    VecRestoreArray4d - Restores a vector after VecGetArray3d() has been called.

3845:    Logically Collective

3847:    Input Parameters:
3848: +  x - the vector
3849: .  m - first dimension of four dimensional array
3850: .  n - second dimension of the four dimensional array
3851: .  p - third dimension of the four dimensional array
3852: .  q - fourth dimension of the four dimensional array
3853: .  mstart - first index you will use in first coordinate direction (often 0)
3854: .  nstart - first index in the second coordinate direction (often 0)
3855: .  pstart - first index in the third coordinate direction (often 0)
3856: .  qstart - first index in the fourth coordinate direction (often 0)
3857: -  a - location of pointer to array obtained from VecGetArray4d()

3859:    Level: beginner

3861:    Notes:
3862:    For regular PETSc vectors this routine does not involve any copies. For
3863:    any special vectors that do not store local vector data in a contiguous
3864:    array, this routine will copy the data back into the underlying
3865:    vector data structure from the array obtained with VecGetArray().

3867:    This routine actually zeros out the a pointer.

3869: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
3870:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
3871:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
3872: @*/
3873: PetscErrorCode  VecRestoreArray4d(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
3874: {
3876:   void           *dummy;

3882:   dummy = (void*)(*a + mstart);
3883:   PetscFree(dummy);
3884:   VecRestoreArray(x,NULL);
3885:   return(0);
3886: }

3888: /*@C
3889:    VecRestoreArray4dWrite - Restores a vector after VecGetArray3dWrite() has been called.

3891:    Logically Collective

3893:    Input Parameters:
3894: +  x - the vector
3895: .  m - first dimension of four dimensional array
3896: .  n - second dimension of the four dimensional array
3897: .  p - third dimension of the four dimensional array
3898: .  q - fourth dimension of the four dimensional array
3899: .  mstart - first index you will use in first coordinate direction (often 0)
3900: .  nstart - first index in the second coordinate direction (often 0)
3901: .  pstart - first index in the third coordinate direction (often 0)
3902: .  qstart - first index in the fourth coordinate direction (often 0)
3903: -  a - location of pointer to array obtained from VecGetArray4d()

3905:    Level: beginner

3907:    Notes:
3908:    For regular PETSc vectors this routine does not involve any copies. For
3909:    any special vectors that do not store local vector data in a contiguous
3910:    array, this routine will copy the data back into the underlying
3911:    vector data structure from the array obtained with VecGetArray().

3913:    This routine actually zeros out the a pointer.

3915: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
3916:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
3917:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
3918: @*/
3919: PetscErrorCode  VecRestoreArray4dWrite(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
3920: {
3922:   void           *dummy;

3928:   dummy = (void*)(*a + mstart);
3929:   PetscFree(dummy);
3930:   VecRestoreArrayWrite(x,NULL);
3931:   return(0);
3932: }

3934: /*@C
3935:    VecGetArray2dRead - Returns a pointer to a 2d contiguous array that contains this
3936:    processor's portion of the vector data.  You MUST call VecRestoreArray2dRead()
3937:    when you no longer need access to the array.

3939:    Logically Collective

3941:    Input Parameter:
3942: +  x - the vector
3943: .  m - first dimension of two dimensional array
3944: .  n - second dimension of two dimensional array
3945: .  mstart - first index you will use in first coordinate direction (often 0)
3946: -  nstart - first index in the second coordinate direction (often 0)

3948:    Output Parameter:
3949: .  a - location to put pointer to the array

3951:    Level: developer

3953:   Notes:
3954:    For a vector obtained from DMCreateLocalVector() mstart and nstart are likely
3955:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
3956:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
3957:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray2d().

3959:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

3961: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
3962:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
3963:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
3964: @*/
3965: PetscErrorCode  VecGetArray2dRead(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
3966: {
3967:   PetscErrorCode    ierr;
3968:   PetscInt          i,N;
3969:   const PetscScalar *aa;

3975:   VecGetLocalSize(x,&N);
3976:   if (m*n != N) SETERRQ3(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 2d array dimensions %D by %D",N,m,n);
3977:   VecGetArrayRead(x,&aa);

3979:   PetscMalloc1(m,a);
3980:   for (i=0; i<m; i++) (*a)[i] = (PetscScalar*) aa + i*n - nstart;
3981:   *a -= mstart;
3982:   return(0);
3983: }

3985: /*@C
3986:    VecRestoreArray2dRead - Restores a vector after VecGetArray2dRead() has been called.

3988:    Logically Collective

3990:    Input Parameters:
3991: +  x - the vector
3992: .  m - first dimension of two dimensional array
3993: .  n - second dimension of the two dimensional array
3994: .  mstart - first index you will use in first coordinate direction (often 0)
3995: .  nstart - first index in the second coordinate direction (often 0)
3996: -  a - location of pointer to array obtained from VecGetArray2d()

3998:    Level: developer

4000:    Notes:
4001:    For regular PETSc vectors this routine does not involve any copies. For
4002:    any special vectors that do not store local vector data in a contiguous
4003:    array, this routine will copy the data back into the underlying
4004:    vector data structure from the array obtained with VecGetArray().

4006:    This routine actually zeros out the a pointer.

4008: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
4009:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
4010:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
4011: @*/
4012: PetscErrorCode  VecRestoreArray2dRead(Vec x,PetscInt m,PetscInt n,PetscInt mstart,PetscInt nstart,PetscScalar **a[])
4013: {
4015:   void           *dummy;

4021:   dummy = (void*)(*a + mstart);
4022:   PetscFree(dummy);
4023:   VecRestoreArrayRead(x,NULL);
4024:   return(0);
4025: }

4027: /*@C
4028:    VecGetArray1dRead - Returns a pointer to a 1d contiguous array that contains this
4029:    processor's portion of the vector data.  You MUST call VecRestoreArray1dRead()
4030:    when you no longer need access to the array.

4032:    Logically Collective

4034:    Input Parameter:
4035: +  x - the vector
4036: .  m - first dimension of two dimensional array
4037: -  mstart - first index you will use in first coordinate direction (often 0)

4039:    Output Parameter:
4040: .  a - location to put pointer to the array

4042:    Level: developer

4044:   Notes:
4045:    For a vector obtained from DMCreateLocalVector() mstart are likely
4046:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
4047:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners().

4049:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

4051: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
4052:           VecRestoreArray2d(), DMDAVecGetArray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
4053:           VecGetArray2d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
4054: @*/
4055: PetscErrorCode  VecGetArray1dRead(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
4056: {
4058:   PetscInt       N;

4064:   VecGetLocalSize(x,&N);
4065:   if (m != N) SETERRQ2(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Local array size %D does not match 1d array dimensions %D",N,m);
4066:   VecGetArrayRead(x,(const PetscScalar**)a);
4067:   *a  -= mstart;
4068:   return(0);
4069: }

4071: /*@C
4072:    VecRestoreArray1dRead - Restores a vector after VecGetArray1dRead() has been called.

4074:    Logically Collective

4076:    Input Parameters:
4077: +  x - the vector
4078: .  m - first dimension of two dimensional array
4079: .  mstart - first index you will use in first coordinate direction (often 0)
4080: -  a - location of pointer to array obtained from VecGetArray21()

4082:    Level: developer

4084:    Notes:
4085:    For regular PETSc vectors this routine does not involve any copies. For
4086:    any special vectors that do not store local vector data in a contiguous
4087:    array, this routine will copy the data back into the underlying
4088:    vector data structure from the array obtained with VecGetArray1dRead().

4090:    This routine actually zeros out the a pointer.

4092: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
4093:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
4094:           VecGetArray1d(), VecRestoreArray2d(), VecGetArray4d(), VecRestoreArray4d()
4095: @*/
4096: PetscErrorCode  VecRestoreArray1dRead(Vec x,PetscInt m,PetscInt mstart,PetscScalar *a[])
4097: {

4103:   VecRestoreArrayRead(x,NULL);
4104:   return(0);
4105: }


4108: /*@C
4109:    VecGetArray3dRead - Returns a pointer to a 3d contiguous array that contains this
4110:    processor's portion of the vector data.  You MUST call VecRestoreArray3dRead()
4111:    when you no longer need access to the array.

4113:    Logically Collective

4115:    Input Parameter:
4116: +  x - the vector
4117: .  m - first dimension of three dimensional array
4118: .  n - second dimension of three dimensional array
4119: .  p - third dimension of three dimensional array
4120: .  mstart - first index you will use in first coordinate direction (often 0)
4121: .  nstart - first index in the second coordinate direction (often 0)
4122: -  pstart - first index in the third coordinate direction (often 0)

4124:    Output Parameter:
4125: .  a - location to put pointer to the array

4127:    Level: developer

4129:   Notes:
4130:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
4131:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
4132:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
4133:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3dRead().

4135:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

4137: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
4138:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
4139:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
4140: @*/
4141: PetscErrorCode  VecGetArray3dRead(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
4142: {
4143:   PetscErrorCode    ierr;
4144:   PetscInt          i,N,j;
4145:   const PetscScalar *aa;
4146:   PetscScalar       **b;

4152:   VecGetLocalSize(x,&N);
4153:   if (m*n*p != N) SETERRQ4(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 3d array dimensions %D by %D by %D",N,m,n,p);
4154:   VecGetArrayRead(x,&aa);

4156:   PetscMalloc1(m*sizeof(PetscScalar**)+m*n,a);
4157:   b    = (PetscScalar**)((*a) + m);
4158:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
4159:   for (i=0; i<m; i++)
4160:     for (j=0; j<n; j++)
4161:       b[i*n+j] = (PetscScalar *)aa + i*n*p + j*p - pstart;

4163:   *a -= mstart;
4164:   return(0);
4165: }

4167: /*@C
4168:    VecRestoreArray3dRead - Restores a vector after VecGetArray3dRead() has been called.

4170:    Logically Collective

4172:    Input Parameters:
4173: +  x - the vector
4174: .  m - first dimension of three dimensional array
4175: .  n - second dimension of the three dimensional array
4176: .  p - third dimension of the three dimensional array
4177: .  mstart - first index you will use in first coordinate direction (often 0)
4178: .  nstart - first index in the second coordinate direction (often 0)
4179: .  pstart - first index in the third coordinate direction (often 0)
4180: -  a - location of pointer to array obtained from VecGetArray3dRead()

4182:    Level: developer

4184:    Notes:
4185:    For regular PETSc vectors this routine does not involve any copies. For
4186:    any special vectors that do not store local vector data in a contiguous
4187:    array, this routine will copy the data back into the underlying
4188:    vector data structure from the array obtained with VecGetArray().

4190:    This routine actually zeros out the a pointer.

4192: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
4193:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
4194:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
4195: @*/
4196: PetscErrorCode  VecRestoreArray3dRead(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscScalar ***a[])
4197: {
4199:   void           *dummy;

4205:   dummy = (void*)(*a + mstart);
4206:   PetscFree(dummy);
4207:   VecRestoreArrayRead(x,NULL);
4208:   return(0);
4209: }

4211: /*@C
4212:    VecGetArray4dRead - Returns a pointer to a 4d contiguous array that contains this
4213:    processor's portion of the vector data.  You MUST call VecRestoreArray4dRead()
4214:    when you no longer need access to the array.

4216:    Logically Collective

4218:    Input Parameter:
4219: +  x - the vector
4220: .  m - first dimension of four dimensional array
4221: .  n - second dimension of four dimensional array
4222: .  p - third dimension of four dimensional array
4223: .  q - fourth dimension of four dimensional array
4224: .  mstart - first index you will use in first coordinate direction (often 0)
4225: .  nstart - first index in the second coordinate direction (often 0)
4226: .  pstart - first index in the third coordinate direction (often 0)
4227: -  qstart - first index in the fourth coordinate direction (often 0)

4229:    Output Parameter:
4230: .  a - location to put pointer to the array

4232:    Level: beginner

4234:   Notes:
4235:    For a vector obtained from DMCreateLocalVector() mstart, nstart, and pstart are likely
4236:    obtained from the corner indices obtained from DMDAGetGhostCorners() while for
4237:    DMCreateGlobalVector() they are the corner indices from DMDAGetCorners(). In both cases
4238:    the arguments from DMDAGet[Ghost]Corners() are reversed in the call to VecGetArray3d().

4240:    For standard PETSc vectors this is an inexpensive call; it does not copy the vector values.

4242: .seealso: VecGetArray(), VecRestoreArray(), VecGetArrays(), VecGetArrayF90(), VecPlaceArray(),
4243:           VecRestoreArray2d(), DMDAVecGetarray(), DMDAVecRestoreArray(), VecGetArray3d(), VecRestoreArray3d(),
4244:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d()
4245: @*/
4246: PetscErrorCode  VecGetArray4dRead(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
4247: {
4248:   PetscErrorCode    ierr;
4249:   PetscInt          i,N,j,k;
4250:   const PetscScalar *aa;
4251:   PetscScalar       ***b,**c;

4257:   VecGetLocalSize(x,&N);
4258:   if (m*n*p*q != N) SETERRQ5(PETSC_COMM_SELF,PETSC_ERR_ARG_INCOMP,"Local array size %D does not match 4d array dimensions %D by %D by %D by %D",N,m,n,p,q);
4259:   VecGetArrayRead(x,&aa);

4261:   PetscMalloc1(m*sizeof(PetscScalar***)+m*n*sizeof(PetscScalar**)+m*n*p,a);
4262:   b    = (PetscScalar***)((*a) + m);
4263:   c    = (PetscScalar**)(b + m*n);
4264:   for (i=0; i<m; i++) (*a)[i] = b + i*n - nstart;
4265:   for (i=0; i<m; i++)
4266:     for (j=0; j<n; j++)
4267:       b[i*n+j] = c + i*n*p + j*p - pstart;
4268:   for (i=0; i<m; i++)
4269:     for (j=0; j<n; j++)
4270:       for (k=0; k<p; k++)
4271:         c[i*n*p+j*p+k] = (PetscScalar*) aa + i*n*p*q + j*p*q + k*q - qstart;
4272:   *a -= mstart;
4273:   return(0);
4274: }

4276: /*@C
4277:    VecRestoreArray4dRead - Restores a vector after VecGetArray3d() has been called.

4279:    Logically Collective

4281:    Input Parameters:
4282: +  x - the vector
4283: .  m - first dimension of four dimensional array
4284: .  n - second dimension of the four dimensional array
4285: .  p - third dimension of the four dimensional array
4286: .  q - fourth dimension of the four dimensional array
4287: .  mstart - first index you will use in first coordinate direction (often 0)
4288: .  nstart - first index in the second coordinate direction (often 0)
4289: .  pstart - first index in the third coordinate direction (often 0)
4290: .  qstart - first index in the fourth coordinate direction (often 0)
4291: -  a - location of pointer to array obtained from VecGetArray4dRead()

4293:    Level: beginner

4295:    Notes:
4296:    For regular PETSc vectors this routine does not involve any copies. For
4297:    any special vectors that do not store local vector data in a contiguous
4298:    array, this routine will copy the data back into the underlying
4299:    vector data structure from the array obtained with VecGetArray().

4301:    This routine actually zeros out the a pointer.

4303: .seealso: VecGetArray(), VecRestoreArray(), VecRestoreArrays(), VecRestoreArrayF90(), VecPlaceArray(),
4304:           VecGetArray2d(), VecGetArray3d(), VecRestoreArray3d(), DMDAVecGetArray(), DMDAVecRestoreArray()
4305:           VecGetArray1d(), VecRestoreArray1d(), VecGetArray4d(), VecRestoreArray4d(), VecGet
4306: @*/
4307: PetscErrorCode  VecRestoreArray4dRead(Vec x,PetscInt m,PetscInt n,PetscInt p,PetscInt q,PetscInt mstart,PetscInt nstart,PetscInt pstart,PetscInt qstart,PetscScalar ****a[])
4308: {
4310:   void           *dummy;

4316:   dummy = (void*)(*a + mstart);
4317:   PetscFree(dummy);
4318:   VecRestoreArrayRead(x,NULL);
4319:   return(0);
4320: }

4322: #if defined(PETSC_USE_DEBUG)

4324: /*@
4325:    VecLockGet  - Gets the current lock status of a vector

4327:    Logically Collective on Vec

4329:    Input Parameter:
4330: .  x - the vector

4332:    Output Parameter:
4333: .  state - greater than zero indicates the vector is locked for read; less then zero indicates the vector is
4334:            locked for write; equal to zero means the vector is unlocked, that is, it is free to read or write.

4336:    Level: beginner

4338: .seealso: VecRestoreArray(), VecGetArrayRead(), VecLockReadPush(), VecLockReadPop()
4339: @*/
4340: PetscErrorCode VecLockGet(Vec x,PetscInt *state)
4341: {
4344:   *state = x->lock;
4345:   return(0);
4346: }

4348: /*@
4349:    VecLockReadPush  - Pushes a read-only lock on a vector to prevent it from writing

4351:    Logically Collective on Vec

4353:    Input Parameter:
4354: .  x - the vector

4356:    Notes:
4357:     If this is set then calls to VecGetArray() or VecSetValues() or any other routines that change the vectors values will fail.

4359:     The call can be nested, i.e., called multiple times on the same vector, but each VecLockReadPush(x) has to have one matching
4360:     VecLockReadPop(x), which removes the latest read-only lock.

4362:    Level: beginner

4364: .seealso: VecRestoreArray(), VecGetArrayRead(), VecLockReadPop(), VecLockGet()
4365: @*/
4366: PetscErrorCode VecLockReadPush(Vec x)
4367: {
4370:   if (x->lock < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Vector is already locked for exclusive write access but you want to read it");
4371:   x->lock++;
4372:   return(0);
4373: }

4375: /*@
4376:    VecLockReadPop  - Pops a read-only lock from a vector

4378:    Logically Collective on Vec

4380:    Input Parameter:
4381: .  x - the vector

4383:    Level: beginner

4385: .seealso: VecRestoreArray(), VecGetArrayRead(), VecLockReadPush(), VecLockGet()
4386: @*/
4387: PetscErrorCode VecLockReadPop(Vec x)
4388: {
4391:   x->lock--;
4392:   if (x->lock < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Vector has been unlocked from read-only access too many times");
4393:   return(0);
4394: }

4396: /*@C
4397:    VecLockWriteSet_Private  - Lock or unlock a vector for exclusive read/write access

4399:    Logically Collective on Vec

4401:    Input Parameter:
4402: +  x   - the vector
4403: -  flg - PETSC_TRUE to lock the vector for writing; PETSC_FALSE to unlock it.

4405:    Notes:
4406:     The function is usefull in split-phase computations, which usually have a begin phase and an end phase.
4407:     One can call VecLockWriteSet_Private(x,PETSC_TRUE) in the begin phase to lock a vector for exclusive
4408:     access, and call VecLockWriteSet_Private(x,PETSC_FALSE) in the end phase to unlock the vector from exclusive
4409:     access. In this way, one is ensured no other operations can access the vector in between. The code may like


4412:        VecGetArray(x,&xdata); // begin phase
4413:        VecLockWriteSet_Private(v,PETSC_TRUE);

4415:        Other operations, which can not acceess x anymore (they can access xdata, of course)

4417:        VecRestoreArray(x,&vdata); // end phase
4418:        VecLockWriteSet_Private(v,PETSC_FALSE);

4420:     The call can not be nested on the same vector, in other words, one can not call VecLockWriteSet_Private(x,PETSC_TRUE)
4421:     again before calling VecLockWriteSet_Private(v,PETSC_FALSE).

4423:    Level: beginner

4425: .seealso: VecRestoreArray(), VecGetArrayRead(), VecLockReadPush(), VecLockReadPop(), VecLockGet()
4426: @*/
4427: PetscErrorCode VecLockWriteSet_Private(Vec x,PetscBool flg)
4428: {
4431:   if (flg) {
4432:     if (x->lock > 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Vector is already locked for read-only access but you want to write it");
4433:     else if (x->lock < 0) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Vector is already locked for exclusive write access but you want to write it");
4434:     else x->lock = -1;
4435:   } else {
4436:     if (x->lock != -1) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Vector is not locked for exclusive write access but you want to unlock it from that");
4437:     x->lock = 0;
4438:   }
4439:   return(0);
4440: }

4442: /*@
4443:    VecLockPush  - Pushes a read-only lock on a vector to prevent it from writing

4445:    Level: deprecated

4447: .seealso: VecLockReadPush()
4448: @*/
4449: PetscErrorCode VecLockPush(Vec x)
4450: {
4453:   VecLockReadPush(x);
4454:   return(0);
4455: }

4457: /*@
4458:    VecLockPop  - Pops a read-only lock from a vector

4460:    Level: deprecated

4462: .seealso: VecLockReadPop()
4463: @*/
4464: PetscErrorCode VecLockPop(Vec x)
4465: {
4468:   VecLockReadPop(x);
4469:   return(0);
4470: }

4472: #endif