Actual source code: cgne.c

  1: /*
  2:     cgimpl.h defines the simple data structured used to store information
  3:     related to the type of matrix (e.g. complex symmetric) being solved and
  4:     data used during the optional Lanczos process used to compute eigenvalues
  5: */
  6: #include <../src/ksp/ksp/impls/cg/cgimpl.h>
  7: extern PetscErrorCode KSPComputeExtremeSingularValues_CG(KSP, PetscReal *, PetscReal *);
  8: extern PetscErrorCode KSPComputeEigenvalues_CG(KSP, PetscInt, PetscReal *, PetscReal *, PetscInt *);

 10: static PetscErrorCode KSPCGSetType_CGNE(KSP ksp, KSPCGType type)
 11: {
 12:   KSP_CG *cg = (KSP_CG *)ksp->data;

 14:   PetscFunctionBegin;
 15:   cg->type = type;
 16:   PetscFunctionReturn(PETSC_SUCCESS);
 17: }

 19: static PetscErrorCode KSPSetUp_CGNE(KSP ksp)
 20: {
 21:   KSP_CG  *cgP   = (KSP_CG *)ksp->data;
 22:   PetscInt maxit = ksp->max_it;

 24:   PetscFunctionBegin;
 25:   /* get work vectors needed by CGNE */
 26:   PetscCall(KSPSetWorkVecs(ksp, 4));

 28:   /*
 29:      If user requested computations of eigenvalues then allocate work space needed
 30:   */
 31:   if (ksp->calc_sings) {
 32:     /* get space to store tridiagonal matrix for Lanczos */
 33:     PetscCall(PetscMalloc4(maxit, &cgP->e, maxit, &cgP->d, maxit, &cgP->ee, maxit, &cgP->dd));

 35:     ksp->ops->computeextremesingularvalues = KSPComputeExtremeSingularValues_CG;
 36:     ksp->ops->computeeigenvalues           = KSPComputeEigenvalues_CG;
 37:   }
 38:   PetscFunctionReturn(PETSC_SUCCESS);
 39: }

 41: static PetscErrorCode KSPSolve_CGNE(KSP ksp)
 42: {
 43:   PetscInt    i, stored_max_it, eigs;
 44:   PetscScalar dpi, a = 1.0, beta, betaold = 1.0, b = 0, *e = NULL, *d = NULL;
 45:   PetscReal   dp = 0.0;
 46:   Vec         X, B, Z, R, P, T;
 47:   KSP_CG     *cg;
 48:   Mat         Amat, Pmat;
 49:   PetscBool   diagonalscale, transpose_pc;

 51:   PetscFunctionBegin;
 52:   PetscCall(PCGetDiagonalScale(ksp->pc, &diagonalscale));
 53:   PetscCheck(!diagonalscale, PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "Krylov method %s does not support diagonal scaling", ((PetscObject)ksp)->type_name);
 54:   PetscCall(PCApplyTransposeExists(ksp->pc, &transpose_pc));

 56:   cg            = (KSP_CG *)ksp->data;
 57:   eigs          = ksp->calc_sings;
 58:   stored_max_it = ksp->max_it;
 59:   X             = ksp->vec_sol;
 60:   B             = ksp->vec_rhs;
 61:   R             = ksp->work[0];
 62:   Z             = ksp->work[1];
 63:   P             = ksp->work[2];
 64:   T             = ksp->work[3];

 66: #define VecXDot(x, y, a) (cg->type == KSP_CG_HERMITIAN ? VecDot(x, y, a) : VecTDot(x, y, a))

 68:   if (eigs) {
 69:     e    = cg->e;
 70:     d    = cg->d;
 71:     e[0] = 0.0;
 72:   }
 73:   PetscCall(PCGetOperators(ksp->pc, &Amat, &Pmat));

 75:   ksp->its = 0;
 76:   PetscCall(KSP_MatMultTranspose(ksp, Amat, B, T));
 77:   if (!ksp->guess_zero) {
 78:     PetscCall(KSP_MatMult(ksp, Amat, X, P));
 79:     PetscCall(KSP_MatMultTranspose(ksp, Amat, P, R));
 80:     PetscCall(VecAYPX(R, -1.0, T));
 81:   } else {
 82:     PetscCall(VecCopy(T, R)); /*     r <- b (x is 0) */
 83:   }
 84:   if (transpose_pc) {
 85:     PetscCall(KSP_PCApplyTranspose(ksp, R, T));
 86:   } else {
 87:     PetscCall(KSP_PCApply(ksp, R, T));
 88:   }
 89:   PetscCall(KSP_PCApply(ksp, T, Z));

 91:   if (ksp->normtype == KSP_NORM_PRECONDITIONED) {
 92:     PetscCall(VecNorm(Z, NORM_2, &dp)); /*    dp <- z'*z       */
 93:   } else if (ksp->normtype == KSP_NORM_UNPRECONDITIONED) {
 94:     PetscCall(VecNorm(R, NORM_2, &dp)); /*    dp <- r'*r       */
 95:   } else if (ksp->normtype == KSP_NORM_NATURAL) {
 96:     PetscCall(VecXDot(Z, R, &beta));
 97:     KSPCheckDot(ksp, beta);
 98:     dp = PetscSqrtReal(PetscAbsScalar(beta));
 99:   } else dp = 0.0;
100:   PetscCall(KSPLogResidualHistory(ksp, dp));
101:   PetscCall(KSPMonitor(ksp, 0, dp));
102:   ksp->rnorm = dp;
103:   PetscCall((*ksp->converged)(ksp, 0, dp, &ksp->reason, ksp->cnvP)); /* test for convergence */
104:   if (ksp->reason) PetscFunctionReturn(PETSC_SUCCESS);

106:   i = 0;
107:   do {
108:     ksp->its = i + 1;
109:     PetscCall(VecXDot(Z, R, &beta)); /*     beta <- r'z     */
110:     KSPCheckDot(ksp, beta);
111:     if (beta == 0.0) {
112:       ksp->reason = KSP_CONVERGED_ATOL;
113:       PetscCall(PetscInfo(ksp, "converged due to beta = 0\n"));
114:       break;
115: #if !defined(PETSC_USE_COMPLEX)
116:     } else if (beta < 0.0) {
117:       ksp->reason = KSP_DIVERGED_INDEFINITE_PC;
118:       PetscCall(PetscInfo(ksp, "diverging due to indefinite preconditioner\n"));
119:       break;
120: #endif
121:     }
122:     if (!i) {
123:       PetscCall(VecCopy(Z, P)); /*     p <- z          */
124:       b = 0.0;
125:     } else {
126:       b = beta / betaold;
127:       if (eigs) {
128:         PetscCheck(ksp->max_it == stored_max_it, PetscObjectComm((PetscObject)ksp), PETSC_ERR_SUP, "Can not change maxit AND calculate eigenvalues");
129:         e[i] = PetscSqrtReal(PetscAbsScalar(b)) / a;
130:       }
131:       PetscCall(VecAYPX(P, b, Z)); /*     p <- z + b* p   */
132:     }
133:     betaold = beta;
134:     PetscCall(KSP_MatMult(ksp, Amat, P, T));
135:     PetscCall(KSP_MatMultTranspose(ksp, Amat, T, Z));
136:     PetscCall(VecXDot(P, Z, &dpi)); /*     dpi <- z'p      */
137:     KSPCheckDot(ksp, dpi);
138:     a = beta / dpi; /*     a = beta/p'z    */
139:     if (eigs) d[i] = PetscSqrtReal(PetscAbsScalar(b)) * e[i] + 1.0 / a;
140:     PetscCall(VecAXPY(X, a, P));  /*     x <- x + ap     */
141:     PetscCall(VecAXPY(R, -a, Z)); /*     r <- r - az     */
142:     if (ksp->normtype == KSP_NORM_PRECONDITIONED) {
143:       if (transpose_pc) {
144:         PetscCall(KSP_PCApplyTranspose(ksp, R, T));
145:       } else {
146:         PetscCall(KSP_PCApply(ksp, R, T));
147:       }
148:       PetscCall(KSP_PCApply(ksp, T, Z));
149:       PetscCall(VecNorm(Z, NORM_2, &dp)); /*    dp <- z'*z       */
150:     } else if (ksp->normtype == KSP_NORM_UNPRECONDITIONED) {
151:       PetscCall(VecNorm(R, NORM_2, &dp));
152:     } else if (ksp->normtype == KSP_NORM_NATURAL) {
153:       dp = PetscSqrtReal(PetscAbsScalar(beta));
154:     } else dp = 0.0;
155:     ksp->rnorm = dp;
156:     PetscCall(KSPLogResidualHistory(ksp, dp));
157:     PetscCall(KSPMonitor(ksp, i + 1, dp));
158:     PetscCall((*ksp->converged)(ksp, i + 1, dp, &ksp->reason, ksp->cnvP));
159:     if (ksp->reason) break;
160:     if (ksp->normtype != KSP_NORM_PRECONDITIONED) {
161:       if (transpose_pc) {
162:         PetscCall(KSP_PCApplyTranspose(ksp, R, T));
163:       } else {
164:         PetscCall(KSP_PCApply(ksp, R, T));
165:       }
166:       PetscCall(KSP_PCApply(ksp, T, Z));
167:     }
168:     i++;
169:   } while (i < ksp->max_it);
170:   if (i >= ksp->max_it) ksp->reason = KSP_DIVERGED_ITS;
171:   PetscFunctionReturn(PETSC_SUCCESS);
172: }

174: /*
175:     KSPCreate_CGNE - Creates the data structure for the Krylov method CGNE and sets the
176:        function pointers for all the routines it needs to call (KSPSolve_CGNE() etc)

178:     It must be labeled as PETSC_EXTERN to be dynamically linkable in C++
179: */

181: /*MC
182:    KSPCGNE - Applies the preconditioned conjugate gradient method to the normal equations
183:           without explicitly forming $A^T*A$

185:    Options Database Key:
186: .   -ksp_cg_type <Hermitian or symmetric - (for complex matrices only) indicates the matrix is Hermitian or symmetric

188:    Level: beginner

190:    Notes:
191:    Eigenvalue computation routines including `KSPSetComputeEigenvalues()` and `KSPComputeEigenvalues()` will return information about the
192:    spectrum of $A^T*A$, rather than $A$.

194:    `KSPCGNE` is a general-purpose non-symmetric method. It works well when the singular values are much better behaved than
195:    eigenvalues. A unitary matrix is a classic example where `KSPCGNE` converges in one iteration, but `KSPGMRES` and `KSPCGS` need N
196:    iterations, see {cite}`nachtigal90`. If you intend to solve least squares problems, use `KSPLSQR`.

198:    This is NOT a different algorithm than used with `KSPCG`, it merely uses that algorithm with the
199:    matrix defined by $A^T*A$ and preconditioner defined by $B^T*B$ where $B$ is the preconditioner for $A$.

201:    This method requires that one be able to apply the transpose of the preconditioner and operator
202:    as well as the operator and preconditioner. If the transpose of the preconditioner is not available then
203:    the preconditioner is used in its place so one ends up preconditioning $A^T*A$ with $B*B$. Seems odd?

205:    This only supports left preconditioning.

207:    Developer Note:
208:    This object is subclassed off of `KSPCG`, see the source code in src/ksp/ksp/impls/cg for comments on the structure of the code

210: .seealso: [](ch_ksp), `KSPCreate()`, `KSPSetType()`, `KSPType`, `KSP`, `KSPCG`, `KSPLSQR`, `KSPCGLS`,
211:           `KSPCGSetType()`, `KSPBICG`, `KSPSetComputeEigenvalues()`, `KSPComputeEigenvalues()`
212: M*/

214: PETSC_EXTERN PetscErrorCode KSPCreate_CGNE(KSP ksp)
215: {
216:   KSP_CG *cg;

218:   PetscFunctionBegin;
219:   PetscCall(PetscNew(&cg));
220: #if !defined(PETSC_USE_COMPLEX)
221:   cg->type = KSP_CG_SYMMETRIC;
222: #else
223:   cg->type = KSP_CG_HERMITIAN;
224: #endif
225:   ksp->data = (void *)cg;
226:   PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_PRECONDITIONED, PC_LEFT, 3));
227:   PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_UNPRECONDITIONED, PC_LEFT, 2));
228:   PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_NATURAL, PC_LEFT, 2));
229:   PetscCall(KSPSetSupportedNorm(ksp, KSP_NORM_NONE, PC_LEFT, 1));

231:   /*
232:        Sets the functions that are associated with this data structure
233:        (in C++ this is the same as defining virtual functions)
234:   */
235:   ksp->ops->setup          = KSPSetUp_CGNE;
236:   ksp->ops->solve          = KSPSolve_CGNE;
237:   ksp->ops->destroy        = KSPDestroy_CG;
238:   ksp->ops->view           = KSPView_CG;
239:   ksp->ops->setfromoptions = KSPSetFromOptions_CG;
240:   ksp->ops->buildsolution  = KSPBuildSolutionDefault;
241:   ksp->ops->buildresidual  = KSPBuildResidualDefault;

243:   /*
244:       Attach the function KSPCGSetType_CGNE() to this object. The routine
245:       KSPCGSetType() checks for this attached function and calls it if it finds
246:       it. (Sort of like a dynamic member function that can be added at run time
247:   */
248:   PetscCall(PetscObjectComposeFunction((PetscObject)ksp, "KSPCGSetType_C", KSPCGSetType_CGNE));
249:   PetscFunctionReturn(PETSC_SUCCESS);
250: }