Actual source code: lsc.c

petsc-master 2019-06-22
Report Typos and Errors

  2:  #include <petsc/private/pcimpl.h>

  4: typedef struct {
  5:   PetscBool allocated;
  6:   PetscBool scalediag;
  7:   KSP       kspL;
  8:   Vec       scale;
  9:   Vec       x0,y0,x1;
 10:   Mat       L;             /* keep a copy to reuse when obtained with L = A10*A01 */
 11: } PC_LSC;

 13: static PetscErrorCode PCLSCAllocate_Private(PC pc)
 14: {
 15:   PC_LSC         *lsc = (PC_LSC*)pc->data;
 16:   Mat            A;

 20:   if (lsc->allocated) return(0);
 21:   KSPCreate(PetscObjectComm((PetscObject)pc),&lsc->kspL);
 22:   KSPSetErrorIfNotConverged(lsc->kspL,pc->erroriffailure);
 23:   PetscObjectIncrementTabLevel((PetscObject)lsc->kspL,(PetscObject)pc,1);
 24:   KSPSetType(lsc->kspL,KSPPREONLY);
 25:   KSPSetOptionsPrefix(lsc->kspL,((PetscObject)pc)->prefix);
 26:   KSPAppendOptionsPrefix(lsc->kspL,"lsc_");
 27:   MatSchurComplementGetSubMatrices(pc->mat,&A,NULL,NULL,NULL,NULL);
 28:   MatCreateVecs(A,&lsc->x0,&lsc->y0);
 29:   MatCreateVecs(pc->pmat,&lsc->x1,NULL);
 30:   if (lsc->scalediag) {
 31:     VecDuplicate(lsc->x0,&lsc->scale);
 32:   }
 33:   lsc->allocated = PETSC_TRUE;
 34:   return(0);
 35: }

 37: static PetscErrorCode PCSetUp_LSC(PC pc)
 38: {
 39:   PC_LSC         *lsc = (PC_LSC*)pc->data;
 40:   Mat            L,Lp,B,C;

 44:   PCLSCAllocate_Private(pc);
 45:   PetscObjectQuery((PetscObject)pc->mat,"LSC_L",(PetscObject*)&L);
 46:   if (!L) {PetscObjectQuery((PetscObject)pc->pmat,"LSC_L",(PetscObject*)&L);}
 47:   PetscObjectQuery((PetscObject)pc->pmat,"LSC_Lp",(PetscObject*)&Lp);
 48:   if (!Lp) {PetscObjectQuery((PetscObject)pc->mat,"LSC_Lp",(PetscObject*)&Lp);}
 49:   if (!L) {
 50:     MatSchurComplementGetSubMatrices(pc->mat,NULL,NULL,&B,&C,NULL);
 51:     if (!lsc->L) {
 52:       MatMatMult(C,B,MAT_INITIAL_MATRIX,PETSC_DEFAULT,&lsc->L);
 53:     } else {
 54:       MatMatMult(C,B,MAT_REUSE_MATRIX,PETSC_DEFAULT,&lsc->L);
 55:     }
 56:     Lp = L = lsc->L;
 57:   }
 58:   if (lsc->scale) {
 59:     Mat Ap;
 60:     MatSchurComplementGetSubMatrices(pc->mat,NULL,&Ap,NULL,NULL,NULL);
 61:     MatGetDiagonal(Ap,lsc->scale); /* Should be the mass matrix, but we don't have plumbing for that yet */
 62:     VecReciprocal(lsc->scale);
 63:   }
 64:   KSPSetOperators(lsc->kspL,L,Lp);
 65:   KSPSetFromOptions(lsc->kspL);
 66:   return(0);
 67: }

 69: static PetscErrorCode PCApply_LSC(PC pc,Vec x,Vec y)
 70: {
 71:   PC_LSC         *lsc = (PC_LSC*)pc->data;
 72:   Mat            A,B,C;

 76:   MatSchurComplementGetSubMatrices(pc->mat,&A,NULL,&B,&C,NULL);
 77:   KSPSolve(lsc->kspL,x,lsc->x1);
 78:   KSPCheckSolve(lsc->kspL,pc,lsc->x1);
 79:   MatMult(B,lsc->x1,lsc->x0);
 80:   if (lsc->scale) {
 81:     VecPointwiseMult(lsc->x0,lsc->x0,lsc->scale);
 82:   }
 83:   MatMult(A,lsc->x0,lsc->y0);
 84:   if (lsc->scale) {
 85:     VecPointwiseMult(lsc->y0,lsc->y0,lsc->scale);
 86:   }
 87:   MatMult(C,lsc->y0,lsc->x1);
 88:   KSPSolve(lsc->kspL,lsc->x1,y);
 89:   KSPCheckSolve(lsc->kspL,pc,y);
 90:   return(0);
 91: }

 93: static PetscErrorCode PCReset_LSC(PC pc)
 94: {
 95:   PC_LSC         *lsc = (PC_LSC*)pc->data;

 99:   VecDestroy(&lsc->x0);
100:   VecDestroy(&lsc->y0);
101:   VecDestroy(&lsc->x1);
102:   VecDestroy(&lsc->scale);
103:   KSPDestroy(&lsc->kspL);
104:   MatDestroy(&lsc->L);
105:   return(0);
106: }

108: static PetscErrorCode PCDestroy_LSC(PC pc)
109: {

113:   PCReset_LSC(pc);
114:   PetscFree(pc->data);
115:   return(0);
116: }

118: static PetscErrorCode PCSetFromOptions_LSC(PetscOptionItems *PetscOptionsObject,PC pc)
119: {
120:   PC_LSC         *lsc = (PC_LSC*)pc->data;

124:   PetscOptionsHead(PetscOptionsObject,"LSC options");
125:   {
126:     PetscOptionsBool("-pc_lsc_scale_diag","Use diagonal of velocity block (A) for scaling","None",lsc->scalediag,&lsc->scalediag,NULL);
127:   }
128:   PetscOptionsTail();
129:   return(0);
130: }

132: static PetscErrorCode PCView_LSC(PC pc,PetscViewer viewer)
133: {
134:   PC_LSC         *jac = (PC_LSC*)pc->data;
136:   PetscBool      iascii;

139:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
140:   if (iascii) {
141:     PetscViewerASCIIPushTab(viewer);
142:     KSPView(jac->kspL,viewer);
143:     PetscViewerASCIIPopTab(viewer);
144:   }
145:   return(0);
146: }

148: /*MC
149:      PCLSC - Preconditioning for Schur complements, based on Least Squares Commutators

151:    Options Database Key:
152: .    -pc_lsc_scale_diag - Use the diagonal of A for scaling

154:    Level: intermediate

156:    Notes:
157:    This preconditioner will normally be used with PCFieldSplit to precondition the Schur complement, but
158:    it can be used for any Schur complement system.  Consider the Schur complement

160: .vb
161:    S = A11 - A10 inv(A00) A01
162: .ve

164:    PCLSC currently doesn't do anything with A11, so let's assume it is 0.  The idea is that a good approximation to
165:    inv(S) is given by

167: .vb
168:    inv(A10 A01) A10 A00 A01 inv(A10 A01)
169: .ve

171:    The product A10 A01 can be computed for you, but you can provide it (this is
172:    usually more efficient anyway).  In the case of incompressible flow, A10 A10 is a Laplacian, call it L.  The current
173:    interface is to hang L and a preconditioning matrix Lp on the preconditioning matrix.

175:    If you had called KSPSetOperators(ksp,S,Sp), S should have type MATSCHURCOMPLEMENT and Sp can be any type you
176:    like (PCLSC doesn't use it directly) but should have matrices composed with it, under the names "LSC_L" and "LSC_Lp".
177:    For example, you might have setup code like this

179: .vb
180:    PetscObjectCompose((PetscObject)Sp,"LSC_L",(PetscObject)L);
181:    PetscObjectCompose((PetscObject)Sp,"LSC_Lp",(PetscObject)Lp);
182: .ve

184:    And then your Jacobian assembly would look like

186: .vb
187:    PetscObjectQuery((PetscObject)Sp,"LSC_L",(PetscObject*)&L);
188:    PetscObjectQuery((PetscObject)Sp,"LSC_Lp",(PetscObject*)&Lp);
189:    if (L) { assembly L }
190:    if (Lp) { assemble Lp }
191: .ve

193:    With this, you should be able to choose LSC preconditioning, using e.g. ML's algebraic multigrid to solve with L

195: .vb
196:    -fieldsplit_1_pc_type lsc -fieldsplit_1_lsc_pc_type ml
197: .ve

199:    Since we do not use the values in Sp, you can still put an assembled matrix there to use normal preconditioners.

201:    References:
202: +  1. - Elman, Howle, Shadid, Shuttleworth, and Tuminaro, Block preconditioners based on approximate commutators, 2006.
203: -  2. - Silvester, Elman, Kay, Wathen, Efficient preconditioning of the linearized Navier Stokes equations for incompressible flow, 2001.

205: .seealso:  PCCreate(), PCSetType(), PCType (for list of available types), PC, Block_Preconditioners, PCFIELDSPLIT,
206:            PCFieldSplitGetSubKSP(), PCFieldSplitSetFields(), PCFieldSplitSetType(), PCFieldSplitSetIS(), PCFieldSplitSetSchurPre(),
207:            MatCreateSchurComplement()
208: M*/

210: PETSC_EXTERN PetscErrorCode PCCreate_LSC(PC pc)
211: {
212:   PC_LSC         *lsc;

216:   PetscNewLog(pc,&lsc);
217:   pc->data = (void*)lsc;

219:   pc->ops->apply           = PCApply_LSC;
220:   pc->ops->applytranspose  = 0;
221:   pc->ops->setup           = PCSetUp_LSC;
222:   pc->ops->reset           = PCReset_LSC;
223:   pc->ops->destroy         = PCDestroy_LSC;
224:   pc->ops->setfromoptions  = PCSetFromOptions_LSC;
225:   pc->ops->view            = PCView_LSC;
226:   pc->ops->applyrichardson = 0;
227:   return(0);
228: }