Actual source code: ex12.c

petsc-master 2018-10-16
Report Typos and Errors
  1: static char help[] = "Poisson Problem in 2d and 3d with simplicial finite elements.\n\
  2: We solve the Poisson problem in a rectangular\n\
  3: domain, using a parallel unstructured mesh (DMPLEX) to discretize it.\n\
  4: This example supports discretized auxiliary fields (conductivity) as well as\n\
  5: multilevel nonlinear solvers.\n\n\n";

  7: /*
  8: A visualization of the adaptation can be accomplished using:

 10:   -dm_adapt_view hdf5:$PWD/adapt.h5 -sol_adapt_view hdf5:$PWD/adapt.h5::append -dm_adapt_pre_view hdf5:$PWD/orig.h5 -sol_adapt_pre_view hdf5:$PWD/orig.h5::append

 12: Information on refinement:

 14:    -info -info_exclude null,sys,vec,is,mat,ksp,snes,ts
 15: */

 17:  #include <petscdmplex.h>
 18:  #include <petscdmadaptor.h>
 19:  #include <petscsnes.h>
 20:  #include <petscds.h>
 21: #include <petscviewerhdf5.h>

 23: typedef enum {NEUMANN, DIRICHLET, NONE} BCType;
 24: typedef enum {RUN_FULL, RUN_EXACT, RUN_TEST, RUN_PERF} RunType;
 25: typedef enum {COEFF_NONE, COEFF_ANALYTIC, COEFF_FIELD, COEFF_NONLINEAR, COEFF_CIRCLE, COEFF_CROSS} CoeffType;

 27: typedef struct {
 28:   PetscInt       debug;             /* The debugging level */
 29:   RunType        runType;           /* Whether to run tests, or solve the full problem */
 30:   PetscBool      jacobianMF;        /* Whether to calculate the Jacobian action on the fly */
 31:   PetscLogEvent  createMeshEvent;
 32:   PetscBool      showInitial, showSolution, restart, check, quiet, nonzInit;
 33:   /* Domain and mesh definition */
 34:   PetscInt       dim;               /* The topological mesh dimension */
 35:   DMBoundaryType periodicity[3];    /* The domain periodicity */
 36:   PetscInt       cells[3];          /* The initial domain division */
 37:   char           filename[2048];    /* The optional mesh file */
 38:   PetscBool      interpolate;       /* Generate intermediate mesh elements */
 39:   PetscReal      refinementLimit;   /* The largest allowable cell volume */
 40:   PetscBool      viewHierarchy;     /* Whether to view the hierarchy */
 41:   PetscBool      simplex;           /* Simplicial mesh */
 42:   /* Problem definition */
 43:   BCType         bcType;
 44:   CoeffType      variableCoefficient;
 45:   PetscErrorCode (**exactFuncs)(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx);
 46:   PetscBool      fieldBC;
 47:   void           (**exactFields)(PetscInt, PetscInt, PetscInt,
 48:                                  const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
 49:                                  const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
 50:                                  PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]);
 51:   PetscBool      bdIntegral;       /* Compute the integral of the solution on the boundary */
 52:   /* Solver */
 53:   PC             pcmg;              /* This is needed for error monitoring */
 54: } AppCtx;

 56: static PetscErrorCode zero(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
 57: {
 58:   u[0] = 0.0;
 59:   return 0;
 60: }

 62: static PetscErrorCode ecks(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
 63: {
 64:   u[0] = x[0];
 65:   return 0;
 66: }

 68: /*
 69:   In 2D for Dirichlet conditions, we use exact solution:

 71:     u = x^2 + y^2
 72:     f = 4

 74:   so that

 76:     -\Delta u + f = -4 + 4 = 0

 78:   For Neumann conditions, we have

 80:     -\nabla u \cdot -\hat y |_{y=0} =  (2y)|_{y=0} =  0 (bottom)
 81:     -\nabla u \cdot  \hat y |_{y=1} = -(2y)|_{y=1} = -2 (top)
 82:     -\nabla u \cdot -\hat x |_{x=0} =  (2x)|_{x=0} =  0 (left)
 83:     -\nabla u \cdot  \hat x |_{x=1} = -(2x)|_{x=1} = -2 (right)

 85:   Which we can express as

 87:     \nabla u \cdot  \hat n|_\Gamma = {2 x, 2 y} \cdot \hat n = 2 (x + y)

 89:   The boundary integral of this solution is (assuming we are not orienting the edges)

 91:     \int^1_0 x^2 dx + \int^1_0 (1 + y^2) dy + \int^1_0 (x^2 + 1) dx + \int^1_0 y^2 dy = 1/3 + 4/3 + 4/3 + 1/3 = 3 1/3
 92: */
 93: static PetscErrorCode quadratic_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
 94: {
 95:   *u = x[0]*x[0] + x[1]*x[1];
 96:   return 0;
 97: }

 99: static void quadratic_u_field_2d(PetscInt dim, PetscInt Nf, PetscInt NfAux,
100:                                  const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
101:                                  const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
102:                                  PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar uexact[])
103: {
104:   uexact[0] = a[0];
105: }

107: static PetscErrorCode circle_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
108: {
109:   const PetscReal alpha   = 500.;
110:   const PetscReal radius2 = PetscSqr(0.15);
111:   const PetscReal r2      = PetscSqr(x[0] - 0.5) + PetscSqr(x[1] - 0.5);
112:   const PetscReal xi      = alpha*(radius2 - r2);

114:   *u = PetscTanhScalar(xi) + 1.0;
115:   return 0;
116: }

118: static PetscErrorCode cross_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
119: {
120:   const PetscReal alpha = 50*4;
121:   const PetscReal xy    = (x[0]-0.5)*(x[1]-0.5);

123:   *u = PetscSinScalar(alpha*xy) * (alpha*PetscAbsScalar(xy) < 2*PETSC_PI ? 1 : 0.01);
124:   return 0;
125: }

127: static void f0_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
128:                  const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
129:                  const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
130:                  PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
131: {
132:   f0[0] = 4.0;
133: }

135: static void f0_circle_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
136:                         const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
137:                         const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
138:                         PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
139: {
140:   const PetscReal alpha   = 500.;
141:   const PetscReal radius2 = PetscSqr(0.15);
142:   const PetscReal r2      = PetscSqr(x[0] - 0.5) + PetscSqr(x[1] - 0.5);
143:   const PetscReal xi      = alpha*(radius2 - r2);

145:   f0[0] = (-4.0*alpha - 8.0*PetscSqr(alpha)*r2*PetscTanhReal(xi)) * PetscSqr(1.0/PetscCoshReal(xi));
146: }

148: static void f0_cross_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
149:                        const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
150:                        const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
151:                        PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
152: {
153:   const PetscReal alpha = 50*4;
154:   const PetscReal xy    = (x[0]-0.5)*(x[1]-0.5);

156:   f0[0] = PetscSinScalar(alpha*xy) * (alpha*PetscAbsScalar(xy) < 2*PETSC_PI ? 1 : 0.01);
157: }

159: static void f0_bd_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
160:                     const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
161:                     const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
162:                     PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
163: {
164:   PetscInt d;
165:   for (d = 0, f0[0] = 0.0; d < dim; ++d) f0[0] += -n[d]*2.0*x[d];
166: }

168: static void f1_bd_zero(PetscInt dim, PetscInt Nf, PetscInt NfAux,
169:                        const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
170:                        const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
171:                        PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
172: {
173:   PetscInt comp;
174:   for (comp = 0; comp < dim; ++comp) f1[comp] = 0.0;
175: }

177: /* gradU[comp*dim+d] = {u_x, u_y} or {u_x, u_y, u_z} */
178: static void f1_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
179:                  const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
180:                  const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
181:                  PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
182: {
183:   PetscInt d;
184:   for (d = 0; d < dim; ++d) f1[d] = u_x[d];
185: }

187: /* < \nabla v, \nabla u + {\nabla u}^T >
188:    This just gives \nabla u, give the perdiagonal for the transpose */
189: static void g3_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux,
190:                   const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
191:                   const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
192:                   PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
193: {
194:   PetscInt d;
195:   for (d = 0; d < dim; ++d) g3[d*dim+d] = 1.0;
196: }

198: /*
199:   In 2D for x periodicity and y Dirichlet conditions, we use exact solution:

201:     u = sin(2 pi x)
202:     f = -4 pi^2 sin(2 pi x)

204:   so that

206:     -\Delta u + f = 4 pi^2 sin(2 pi x) - 4 pi^2 sin(2 pi x) = 0
207: */
208: static PetscErrorCode xtrig_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
209: {
210:   *u = PetscSinReal(2.0*PETSC_PI*x[0]);
211:   return 0;
212: }

214: static void f0_xtrig_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
215:                        const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
216:                        const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
217:                        PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
218: {
219:   f0[0] = -4.0*PetscSqr(PETSC_PI)*PetscSinReal(2.0*PETSC_PI*x[0]);
220: }

222: /*
223:   In 2D for x-y periodicity, we use exact solution:

225:     u = sin(2 pi x) sin(2 pi y)
226:     f = -8 pi^2 sin(2 pi x)

228:   so that

230:     -\Delta u + f = 4 pi^2 sin(2 pi x) sin(2 pi y) + 4 pi^2 sin(2 pi x) sin(2 pi y) - 8 pi^2 sin(2 pi x) = 0
231: */
232: static PetscErrorCode xytrig_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
233: {
234:   *u = PetscSinReal(2.0*PETSC_PI*x[0])*PetscSinReal(2.0*PETSC_PI*x[1]);
235:   return 0;
236: }

238: static void f0_xytrig_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
239:                         const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
240:                         const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
241:                         PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
242: {
243:   f0[0] = -8.0*PetscSqr(PETSC_PI)*PetscSinReal(2.0*PETSC_PI*x[0]);
244: }

246: /*
247:   In 2D for Dirichlet conditions with a variable coefficient, we use exact solution:

249:     u  = x^2 + y^2
250:     f  = 6 (x + y)
251:     nu = (x + y)

253:   so that

255:     -\div \nu \grad u + f = -6 (x + y) + 6 (x + y) = 0
256: */
257: static PetscErrorCode nu_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
258: {
259:   *u = x[0] + x[1];
260:   return 0;
261: }

263: void f0_analytic_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
264:                    const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
265:                    const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
266:                    PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
267: {
268:   f0[0] = 6.0*(x[0] + x[1]);
269: }

271: /* gradU[comp*dim+d] = {u_x, u_y} or {u_x, u_y, u_z} */
272: void f1_analytic_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
273:                    const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
274:                    const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
275:                    PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
276: {
277:   PetscInt d;
278:   for (d = 0; d < dim; ++d) f1[d] = (x[0] + x[1])*u_x[d];
279: }

281: void f1_field_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
282:                 const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
283:                 const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
284:                 PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
285: {
286:   PetscInt d;
287:   for (d = 0; d < dim; ++d) f1[d] = a[0]*u_x[d];
288: }

290: /* < \nabla v, \nabla u + {\nabla u}^T >
291:    This just gives \nabla u, give the perdiagonal for the transpose */
292: void g3_analytic_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux,
293:                     const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
294:                     const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
295:                     PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
296: {
297:   PetscInt d;
298:   for (d = 0; d < dim; ++d) g3[d*dim+d] = x[0] + x[1];
299: }

301: void g3_field_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux,
302:                  const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
303:                  const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
304:                  PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
305: {
306:   PetscInt d;
307:   for (d = 0; d < dim; ++d) g3[d*dim+d] = a[0];
308: }

310: /*
311:   In 2D for Dirichlet conditions with a nonlinear coefficient (p-Laplacian with p = 4), we use exact solution:

313:     u  = x^2 + y^2
314:     f  = 16 (x^2 + y^2)
315:     nu = 1/2 |grad u|^2

317:   so that

319:     -\div \nu \grad u + f = -16 (x^2 + y^2) + 16 (x^2 + y^2) = 0
320: */
321: void f0_analytic_nonlinear_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
322:                              const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
323:                              const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
324:                              PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
325: {
326:   f0[0] = 16.0*(x[0]*x[0] + x[1]*x[1]);
327: }

329: /* gradU[comp*dim+d] = {u_x, u_y} or {u_x, u_y, u_z} */
330: void f1_analytic_nonlinear_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
331:                              const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
332:                              const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
333:                              PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
334: {
335:   PetscScalar nu = 0.0;
336:   PetscInt    d;
337:   for (d = 0; d < dim; ++d) nu += u_x[d]*u_x[d];
338:   for (d = 0; d < dim; ++d) f1[d] = 0.5*nu*u_x[d];
339: }

341: /*
342:   grad (u + eps w) - grad u = eps grad w

344:   1/2 |grad (u + eps w)|^2 grad (u + eps w) - 1/2 |grad u|^2 grad u
345: = 1/2 (|grad u|^2 + 2 eps <grad u,grad w>) (grad u + eps grad w) - 1/2 |grad u|^2 grad u
346: = 1/2 (eps |grad u|^2 grad w + 2 eps <grad u,grad w> grad u)
347: = eps (1/2 |grad u|^2 grad w + grad u <grad u,grad w>)
348: */
349: void g3_analytic_nonlinear_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux,
350:                               const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
351:                               const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
352:                               PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
353: {
354:   PetscScalar nu = 0.0;
355:   PetscInt    d, e;
356:   for (d = 0; d < dim; ++d) nu += u_x[d]*u_x[d];
357:   for (d = 0; d < dim; ++d) {
358:     g3[d*dim+d] = 0.5*nu;
359:     for (e = 0; e < dim; ++e) {
360:       g3[d*dim+e] += u_x[d]*u_x[e];
361:     }
362:   }
363: }

365: /*
366:   In 3D for Dirichlet conditions we use exact solution:

368:     u = 2/3 (x^2 + y^2 + z^2)
369:     f = 4

371:   so that

373:     -\Delta u + f = -2/3 * 6 + 4 = 0

375:   For Neumann conditions, we have

377:     -\nabla u \cdot -\hat z |_{z=0} =  (2z)|_{z=0} =  0 (bottom)
378:     -\nabla u \cdot  \hat z |_{z=1} = -(2z)|_{z=1} = -2 (top)
379:     -\nabla u \cdot -\hat y |_{y=0} =  (2y)|_{y=0} =  0 (front)
380:     -\nabla u \cdot  \hat y |_{y=1} = -(2y)|_{y=1} = -2 (back)
381:     -\nabla u \cdot -\hat x |_{x=0} =  (2x)|_{x=0} =  0 (left)
382:     -\nabla u \cdot  \hat x |_{x=1} = -(2x)|_{x=1} = -2 (right)

384:   Which we can express as

386:     \nabla u \cdot  \hat n|_\Gamma = {2 x, 2 y, 2z} \cdot \hat n = 2 (x + y + z)
387: */
388: static PetscErrorCode quadratic_u_3d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
389: {
390:   *u = 2.0*(x[0]*x[0] + x[1]*x[1] + x[2]*x[2])/3.0;
391:   return 0;
392: }

394: static void quadratic_u_field_3d(PetscInt dim, PetscInt Nf, PetscInt NfAux,
395:                                  const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
396:                                  const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
397:                                  PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar uexact[])
398: {
399:   uexact[0] = a[0];
400: }

402: static void bd_integral_2d(PetscInt dim, PetscInt Nf, PetscInt NfAux,
403:                            const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
404:                            const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
405:                            PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar *uint)
406: {
407:   uint[0] = u[0];
408: }

410: static PetscErrorCode ProcessOptions(MPI_Comm comm, AppCtx *options)
411: {
412:   const char    *bcTypes[3]  = {"neumann", "dirichlet", "none"};
413:   const char    *runTypes[4] = {"full", "exact", "test", "perf"};
414:   const char    *coeffTypes[6] = {"none", "analytic", "field", "nonlinear", "circle", "cross"};
415:   PetscInt       bd, bc, run, coeff, n;
416:   PetscBool      flg;

420:   options->debug               = 0;
421:   options->runType             = RUN_FULL;
422:   options->dim                 = 2;
423:   options->periodicity[0]      = DM_BOUNDARY_NONE;
424:   options->periodicity[1]      = DM_BOUNDARY_NONE;
425:   options->periodicity[2]      = DM_BOUNDARY_NONE;
426:   options->cells[0]            = 2;
427:   options->cells[1]            = 2;
428:   options->cells[2]            = 2;
429:   options->filename[0]         = '\0';
430:   options->interpolate         = PETSC_FALSE;
431:   options->refinementLimit     = 0.0;
432:   options->bcType              = DIRICHLET;
433:   options->variableCoefficient = COEFF_NONE;
434:   options->fieldBC             = PETSC_FALSE;
435:   options->jacobianMF          = PETSC_FALSE;
436:   options->showInitial         = PETSC_FALSE;
437:   options->showSolution        = PETSC_FALSE;
438:   options->restart             = PETSC_FALSE;
439:   options->check               = PETSC_FALSE;
440:   options->viewHierarchy       = PETSC_FALSE;
441:   options->simplex             = PETSC_TRUE;
442:   options->quiet               = PETSC_FALSE;
443:   options->nonzInit            = PETSC_FALSE;
444:   options->bdIntegral          = PETSC_FALSE;

446:   PetscOptionsBegin(comm, "", "Poisson Problem Options", "DMPLEX");
447:   PetscOptionsInt("-debug", "The debugging level", "ex12.c", options->debug, &options->debug, NULL);
448:   run  = options->runType;
449:   PetscOptionsEList("-run_type", "The run type", "ex12.c", runTypes, 3, runTypes[options->runType], &run, NULL);

451:   options->runType = (RunType) run;

453:   PetscOptionsInt("-dim", "The topological mesh dimension", "ex12.c", options->dim, &options->dim, NULL);
454:   bd = options->periodicity[0];
455:   PetscOptionsEList("-x_periodicity", "The x-boundary periodicity", "ex12.c", DMBoundaryTypes, 5, DMBoundaryTypes[options->periodicity[0]], &bd, NULL);
456:   options->periodicity[0] = (DMBoundaryType) bd;
457:   bd = options->periodicity[1];
458:   PetscOptionsEList("-y_periodicity", "The y-boundary periodicity", "ex12.c", DMBoundaryTypes, 5, DMBoundaryTypes[options->periodicity[1]], &bd, NULL);
459:   options->periodicity[1] = (DMBoundaryType) bd;
460:   bd = options->periodicity[2];
461:   PetscOptionsEList("-z_periodicity", "The z-boundary periodicity", "ex12.c", DMBoundaryTypes, 5, DMBoundaryTypes[options->periodicity[2]], &bd, NULL);
462:   options->periodicity[2] = (DMBoundaryType) bd;
463:   n = 3;
464:   PetscOptionsIntArray("-cells", "The initial mesh division", "ex12.c", options->cells, &n, NULL);
465:   PetscOptionsString("-f", "Mesh filename to read", "ex12.c", options->filename, options->filename, sizeof(options->filename), &flg);
466:   PetscOptionsBool("-interpolate", "Generate intermediate mesh elements", "ex12.c", options->interpolate, &options->interpolate, NULL);
467:   PetscOptionsReal("-refinement_limit", "The largest allowable cell volume", "ex12.c", options->refinementLimit, &options->refinementLimit, NULL);
468:   bc   = options->bcType;
469:   PetscOptionsEList("-bc_type","Type of boundary condition","ex12.c",bcTypes,3,bcTypes[options->bcType],&bc,NULL);
470:   options->bcType = (BCType) bc;
471:   coeff = options->variableCoefficient;
472:   PetscOptionsEList("-variable_coefficient","Type of variable coefficent","ex12.c",coeffTypes,6,coeffTypes[options->variableCoefficient],&coeff,NULL);
473:   options->variableCoefficient = (CoeffType) coeff;

475:   PetscOptionsBool("-field_bc", "Use a field representation for the BC", "ex12.c", options->fieldBC, &options->fieldBC, NULL);
476:   PetscOptionsBool("-jacobian_mf", "Calculate the action of the Jacobian on the fly", "ex12.c", options->jacobianMF, &options->jacobianMF, NULL);
477:   PetscOptionsBool("-show_initial", "Output the initial guess for verification", "ex12.c", options->showInitial, &options->showInitial, NULL);
478:   PetscOptionsBool("-show_solution", "Output the solution for verification", "ex12.c", options->showSolution, &options->showSolution, NULL);
479:   PetscOptionsBool("-restart", "Read in the mesh and solution from a file", "ex12.c", options->restart, &options->restart, NULL);
480:   PetscOptionsBool("-check", "Compare with default integration routines", "ex12.c", options->check, &options->check, NULL);
481:   PetscOptionsBool("-dm_view_hierarchy", "View the coarsened hierarchy", "ex12.c", options->viewHierarchy, &options->viewHierarchy, NULL);
482:   PetscOptionsBool("-simplex", "Simplicial (true) or tensor (false) mesh", "ex12.c", options->simplex, &options->simplex, NULL);
483:   PetscOptionsBool("-quiet", "Don't print any vecs", "ex12.c", options->quiet, &options->quiet, NULL);
484:   PetscOptionsBool("-nonzero_initial_guess", "nonzero intial guess", "ex12.c", options->nonzInit, &options->nonzInit, NULL);
485:   PetscOptionsBool("-bd_integral", "Compute the integral of the solution on the boundary", "ex12.c", options->bdIntegral, &options->bdIntegral, NULL);
486:   PetscOptionsEnd();
487:   PetscLogEventRegister("CreateMesh", DM_CLASSID, &options->createMeshEvent);
488:   return(0);
489: }

491: static PetscErrorCode CreateBCLabel(DM dm, const char name[])
492: {
493:   DMLabel        label;

497:   DMCreateLabel(dm, name);
498:   DMGetLabel(dm, name, &label);
499:   DMPlexMarkBoundaryFaces(dm, 1, label);
500:   DMPlexLabelComplete(dm, label);
501:   return(0);
502: }

504: static PetscErrorCode CreateMesh(MPI_Comm comm, AppCtx *user, DM *dm)
505: {
506:   PetscInt       dim             = user->dim;
507:   const char    *filename        = user->filename;
508:   PetscBool      interpolate     = user->interpolate;
509:   PetscReal      refinementLimit = user->refinementLimit;
510:   size_t         len;

514:   PetscLogEventBegin(user->createMeshEvent,0,0,0,0);
515:   PetscStrlen(filename, &len);
516:   if (!len) {
517:     PetscInt d;

519:     if (user->periodicity[0] || user->periodicity[1] || user->periodicity[2]) for (d = 0; d < dim; ++d) user->cells[d] = PetscMax(user->cells[d], 3);
520:     DMPlexCreateBoxMesh(comm, dim, user->simplex, user->cells, NULL, NULL, user->periodicity, interpolate, dm);
521:     PetscObjectSetName((PetscObject) *dm, "Mesh");
522:   } else {
523:     DMPlexCreateFromFile(comm, filename, interpolate, dm);
524:     DMPlexSetRefinementUniform(*dm, PETSC_FALSE);
525:   }
526:   {
527:     PetscPartitioner part;
528:     DM               refinedMesh     = NULL;
529:     DM               distributedMesh = NULL;

531:     /* Refine mesh using a volume constraint */
532:     if (refinementLimit > 0.0) {
533:       DMPlexSetRefinementLimit(*dm, refinementLimit);
534:       DMRefine(*dm, comm, &refinedMesh);
535:       if (refinedMesh) {
536:         const char *name;

538:         PetscObjectGetName((PetscObject) *dm,         &name);
539:         PetscObjectSetName((PetscObject) refinedMesh,  name);
540:         DMDestroy(dm);
541:         *dm  = refinedMesh;
542:       }
543:     }
544:     /* Distribute mesh over processes */
545:     DMPlexGetPartitioner(*dm,&part);
546:     PetscPartitionerSetFromOptions(part);
547:     DMPlexDistribute(*dm, 0, NULL, &distributedMesh);
548:     if (distributedMesh) {
549:       DMDestroy(dm);
550:       *dm  = distributedMesh;
551:     }
552:   }
553:   if (user->bcType == NEUMANN) {
554:     DMLabel   label;

556:     DMCreateLabel(*dm, "boundary");
557:     DMGetLabel(*dm, "boundary", &label);
558:     DMPlexMarkBoundaryFaces(*dm, 1, label);
559:   } else if (user->bcType == DIRICHLET) {
560:     PetscBool hasLabel;

562:     DMHasLabel(*dm,"marker",&hasLabel);
563:     if (!hasLabel) {CreateBCLabel(*dm, "marker");}
564:   }
565:   {
566:     char      convType[256];
567:     PetscBool flg;

569:     PetscOptionsBegin(comm, "", "Mesh conversion options", "DMPLEX");
570:     PetscOptionsFList("-dm_plex_convert_type","Convert DMPlex to another format","ex12",DMList,DMPLEX,convType,256,&flg);
571:     PetscOptionsEnd();
572:     if (flg) {
573:       DM dmConv;

575:       DMConvert(*dm,convType,&dmConv);
576:       if (dmConv) {
577:         DMDestroy(dm);
578:         *dm  = dmConv;
579:       }
580:     }
581:   }
582:   DMLocalizeCoordinates(*dm); /* needed for periodic */
583:   DMSetFromOptions(*dm);
584:   DMViewFromOptions(*dm, NULL, "-dm_view");
585:   if (user->viewHierarchy) {
586:     DM       cdm = *dm;
587:     PetscInt i   = 0;
588:     char     buf[256];

590:     while (cdm) {
591:       DMSetUp(cdm);
592:       DMGetCoarseDM(cdm, &cdm);
593:       ++i;
594:     }
595:     cdm = *dm;
596:     while (cdm) {
597:       PetscViewer       viewer;
598:       PetscBool   isHDF5, isVTK;

600:       --i;
601:       PetscViewerCreate(comm,&viewer);
602:       PetscViewerSetType(viewer,PETSCVIEWERHDF5);
603:       PetscViewerSetOptionsPrefix(viewer,"hierarchy_");
604:       PetscViewerSetFromOptions(viewer);
605:       PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERHDF5,&isHDF5);
606:       PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERVTK,&isVTK);
607:       if (isHDF5) {
608:         PetscSNPrintf(buf, 256, "ex12-%d.h5", i);
609:       } else if (isVTK) {
610:         PetscSNPrintf(buf, 256, "ex12-%d.vtu", i);
611:         PetscViewerPushFormat(viewer,PETSC_VIEWER_VTK_VTU);
612:       } else {
613:         PetscSNPrintf(buf, 256, "ex12-%d", i);
614:       }
615:       PetscViewerFileSetMode(viewer,FILE_MODE_WRITE);
616:       PetscViewerFileSetName(viewer,buf);
617:       DMView(cdm, viewer);
618:       PetscViewerDestroy(&viewer);
619:       DMGetCoarseDM(cdm, &cdm);
620:     }
621:   }
622:   PetscLogEventEnd(user->createMeshEvent,0,0,0,0);
623:   return(0);
624: }

626: static PetscErrorCode SetupProblem(PetscDS prob, AppCtx *user)
627: {
628:   const PetscInt id = 1;

632:   switch (user->variableCoefficient) {
633:   case COEFF_NONE:
634:     if (user->periodicity[0]) {
635:       if (user->periodicity[1]) {
636:         PetscDSSetResidual(prob, 0, f0_xytrig_u, f1_u);
637:         PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_uu);
638:       } else {
639:         PetscDSSetResidual(prob, 0, f0_xtrig_u,  f1_u);
640:         PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_uu);
641:       }
642:     } else {
643:       PetscDSSetResidual(prob, 0, f0_u, f1_u);
644:       PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_uu);
645:     }
646:     break;
647:   case COEFF_ANALYTIC:
648:     PetscDSSetResidual(prob, 0, f0_analytic_u, f1_analytic_u);
649:     PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_analytic_uu);
650:     break;
651:   case COEFF_FIELD:
652:     PetscDSSetResidual(prob, 0, f0_analytic_u, f1_field_u);
653:     PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_field_uu);
654:     break;
655:   case COEFF_NONLINEAR:
656:     PetscDSSetResidual(prob, 0, f0_analytic_nonlinear_u, f1_analytic_nonlinear_u);
657:     PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_analytic_nonlinear_uu);
658:     break;
659:   case COEFF_CIRCLE:
660:     PetscDSSetResidual(prob, 0, f0_circle_u, f1_u);
661:     PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_uu);
662:     break;
663:   case COEFF_CROSS:
664:     PetscDSSetResidual(prob, 0, f0_cross_u, f1_u);
665:     PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_uu);
666:     break;
667:   default: SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid variable coefficient type %d", user->variableCoefficient);
668:   }
669:   switch (user->dim) {
670:   case 2:
671:     switch (user->variableCoefficient) {
672:     case COEFF_CIRCLE:
673:       user->exactFuncs[0]  = circle_u_2d;break;
674:     case COEFF_CROSS:
675:       user->exactFuncs[0]  = cross_u_2d;break;
676:     default:
677:       if (user->periodicity[0]) {
678:         if (user->periodicity[1]) {
679:           user->exactFuncs[0] = xytrig_u_2d;
680:         } else {
681:           user->exactFuncs[0] = xtrig_u_2d;
682:         }
683:       } else {
684:         user->exactFuncs[0]  = quadratic_u_2d;
685:         user->exactFields[0] = quadratic_u_field_2d;
686:       }
687:     }
688:     if (user->bcType == NEUMANN) {PetscDSSetBdResidual(prob, 0, f0_bd_u, f1_bd_zero);}
689:     break;
690:   case 3:
691:     user->exactFuncs[0]  = quadratic_u_3d;
692:     user->exactFields[0] = quadratic_u_field_3d;
693:     if (user->bcType == NEUMANN) {PetscDSSetBdResidual(prob, 0, f0_bd_u, f1_bd_zero);}
694:     break;
695:   default:
696:     SETERRQ1(PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Invalid dimension %d", user->dim);
697:   }
698:   PetscDSAddBoundary(prob, user->bcType == DIRICHLET ? (user->fieldBC ? DM_BC_ESSENTIAL_FIELD : DM_BC_ESSENTIAL) : DM_BC_NATURAL,
699:                             "wall", user->bcType == DIRICHLET ? "marker" : "boundary", 0, 0, NULL,
700:                             user->fieldBC ? (void (*)(void)) user->exactFields[0] : (void (*)(void)) user->exactFuncs[0], 1, &id, user);
701:   PetscDSSetExactSolution(prob, 0, user->exactFuncs[0]);
702:   PetscDSSetFromOptions(prob);
703:   return(0);
704: }

706: static PetscErrorCode SetupMaterial(DM dm, DM dmAux, AppCtx *user)
707: {
708:   PetscErrorCode (*matFuncs[1])(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx) = {nu_2d};
709:   Vec            nu;

713:   DMCreateLocalVector(dmAux, &nu);
714:   DMProjectFunctionLocal(dmAux, 0.0, matFuncs, NULL, INSERT_ALL_VALUES, nu);
715:   PetscObjectCompose((PetscObject) dm, "A", (PetscObject) nu);
716:   VecDestroy(&nu);
717:   return(0);
718: }

720: static PetscErrorCode SetupBC(DM dm, DM dmAux, AppCtx *user)
721: {
722:   PetscErrorCode (*bcFuncs[1])(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx);
723:   Vec            uexact;
724:   PetscInt       dim;

728:   DMGetDimension(dm, &dim);
729:   if (dim == 2) bcFuncs[0] = quadratic_u_2d;
730:   else          bcFuncs[0] = quadratic_u_3d;
731:   DMCreateLocalVector(dmAux, &uexact);
732:   DMProjectFunctionLocal(dmAux, 0.0, bcFuncs, NULL, INSERT_ALL_VALUES, uexact);
733:   PetscObjectCompose((PetscObject) dm, "A", (PetscObject) uexact);
734:   VecDestroy(&uexact);
735:   return(0);
736: }

738: static PetscErrorCode SetupDiscretization(DM dm, AppCtx *user)
739: {
740:   DM             cdm   = dm;
741:   const PetscInt dim   = user->dim;
742:   PetscFE        feAux = NULL;
743:   PetscFE        feCh  = NULL;
744:   PetscFE        fe;
745:   PetscDS        prob, probAux = NULL, probCh = NULL;
746:   PetscBool      simplex = user->simplex;
747:   MPI_Comm       comm;

751:   /* Create finite element */
752:   PetscObjectGetComm((PetscObject) dm, &comm);
753:   PetscFECreateDefault(comm, dim, 1, simplex, NULL, -1, &fe);
754:   PetscObjectSetName((PetscObject) fe, "potential");
755:   if (user->variableCoefficient == COEFF_FIELD) {
756:     PetscQuadrature q;

758:     PetscFECreateDefault(comm, dim, 1, simplex, "mat_", -1, &feAux);
759:     PetscFEGetQuadrature(fe, &q);
760:     PetscFESetQuadrature(feAux, q);
761:     PetscDSCreate(PetscObjectComm((PetscObject)dm),&probAux);
762:     PetscDSSetDiscretization(probAux, 0, (PetscObject) feAux);
763:   } else if (user->fieldBC) {
764:     PetscQuadrature q;

766:     PetscFECreateDefault(comm, dim, 1, simplex, "bc_", -1, &feAux);
767:     PetscFEGetQuadrature(fe, &q);
768:     PetscFESetQuadrature(feAux, q);
769:     PetscDSCreate(PetscObjectComm((PetscObject)dm),&probAux);
770:     PetscDSSetDiscretization(probAux, 0, (PetscObject) feAux);
771:   }
772:   if (user->check) {
773:     PetscFECreateDefault(comm, dim, 1, simplex, "ch_", -1, &feCh);
774:     PetscDSCreate(PetscObjectComm((PetscObject)dm),&probCh);
775:     PetscDSSetDiscretization(probCh, 0, (PetscObject) feCh);
776:   }
777:   /* Set discretization and boundary conditions for each mesh */
778:   DMGetDS(dm, &prob);
779:   PetscDSSetDiscretization(prob, 0, (PetscObject) fe);
780:   SetupProblem(prob, user);
781:   while (cdm) {
782:     DM coordDM;

784:     DMSetDS(cdm,prob);
785:     DMGetCoordinateDM(cdm,&coordDM);
786:     if (feAux) {
787:       DM      dmAux;

789:       DMClone(cdm, &dmAux);
790:       DMSetCoordinateDM(dmAux, coordDM);
791:       DMSetDS(dmAux, probAux);
792:       PetscObjectCompose((PetscObject) dm, "dmAux", (PetscObject) dmAux);
793:       if (user->fieldBC) {SetupBC(cdm, dmAux, user);}
794:       else               {SetupMaterial(cdm, dmAux, user);}
795:       DMDestroy(&dmAux);
796:     }
797:     if (feCh) {
798:       DM      dmCh;

800:       DMClone(cdm, &dmCh);
801:       DMSetCoordinateDM(dmCh, coordDM);
802:       DMSetDS(dmCh, probCh);
803:       PetscObjectCompose((PetscObject) dm, "dmCh", (PetscObject) dmCh);
804:       DMDestroy(&dmCh);
805:     }
806:     if (user->bcType == DIRICHLET) {
807:       PetscBool hasLabel;

809:       DMHasLabel(cdm, "marker", &hasLabel);
810:       if (!hasLabel) {CreateBCLabel(cdm, "marker");}
811:     }
812:     DMGetCoarseDM(cdm, &cdm);
813:   }
814:   PetscFEDestroy(&fe);
815:   PetscFEDestroy(&feAux);
816:   PetscFEDestroy(&feCh);
817:   PetscDSDestroy(&probAux);
818:   PetscDSDestroy(&probCh);
819:   return(0);
820: }

822: #include "petsc/private/petscimpl.h"

824: /*@C
825:   KSPMonitorError - Outputs the error at each iteration of an iterative solver.

827:   Collective on KSP

829:   Input Parameters:
830: + ksp   - the KSP
831: . its   - iteration number
832: . rnorm - 2-norm, preconditioned residual value (may be estimated).
833: - ctx   - monitor context

835:   Level: intermediate

837: .keywords: KSP, default, monitor, residual
838: .seealso: KSPMonitorSet(), KSPMonitorTrueResidualNorm(), KSPMonitorDefault()
839: @*/
840: static PetscErrorCode KSPMonitorError(KSP ksp, PetscInt its, PetscReal rnorm, void *ctx)
841: {
842:   AppCtx        *user = (AppCtx *) ctx;
843:   DM             dm;
844:   Vec            du = NULL, r;
845:   PetscInt       level = 0;
846:   PetscBool      hasLevel;
847: #if defined(PETSC_HAVE_HDF5)
848:   PetscViewer    viewer;
849:   char           buf[256];
850: #endif

854:   KSPGetDM(ksp, &dm);
855:   /* Calculate solution */
856:   {
857:     PC        pc = user->pcmg; /* The MG PC */
858:     DM        fdm = NULL,  cdm = NULL;
859:     KSP       fksp, cksp;
860:     Vec       fu,   cu = NULL;
861:     PetscInt  levels, l;

863:     KSPBuildSolution(ksp, NULL, &du);
864:     PetscObjectComposedDataGetInt((PetscObject) ksp, PetscMGLevelId, level, hasLevel);
865:     PCMGGetLevels(pc, &levels);
866:     PCMGGetSmoother(pc, levels-1, &fksp);
867:     KSPBuildSolution(fksp, NULL, &fu);
868:     for (l = levels-1; l > level; --l) {
869:       Mat R;
870:       Vec s;

872:       PCMGGetSmoother(pc, l-1, &cksp);
873:       KSPGetDM(cksp, &cdm);
874:       DMGetGlobalVector(cdm, &cu);
875:       PCMGGetRestriction(pc, l, &R);
876:       PCMGGetRScale(pc, l, &s);
877:       MatRestrict(R, fu, cu);
878:       VecPointwiseMult(cu, cu, s);
879:       if (l < levels-1) {DMRestoreGlobalVector(fdm, &fu);}
880:       fdm  = cdm;
881:       fu   = cu;
882:     }
883:     if (levels-1 > level) {
884:       VecAXPY(du, 1.0, cu);
885:       DMRestoreGlobalVector(cdm, &cu);
886:     }
887:   }
888:   /* Calculate error */
889:   DMGetGlobalVector(dm, &r);
890:   DMProjectFunction(dm, 0.0, user->exactFuncs, NULL, INSERT_ALL_VALUES, r);
891:   VecAXPY(r,-1.0,du);
892:   PetscObjectSetName((PetscObject) r, "solution error");
893:   /* View error */
894: #if defined(PETSC_HAVE_HDF5)
895:   PetscSNPrintf(buf, 256, "ex12-%D.h5", level);
896:   PetscViewerHDF5Open(PETSC_COMM_WORLD, buf, FILE_MODE_APPEND, &viewer);
897:   VecView(r, viewer);
898:   PetscViewerDestroy(&viewer);
899: #endif
900:   DMRestoreGlobalVector(dm, &r);
901:   return(0);
902: }

904: /*@C
905:   SNESMonitorError - Outputs the error at each iteration of an iterative solver.

907:   Collective on SNES

909:   Input Parameters:
910: + snes  - the SNES
911: . its   - iteration number
912: . rnorm - 2-norm of residual
913: - ctx   - user context

915:   Level: intermediate

917: .keywords: SNES, nonlinear, default, monitor, norm
918: .seealso: SNESMonitorDefault(), SNESMonitorSet(), SNESMonitorSolution()
919: @*/
920: static PetscErrorCode SNESMonitorError(SNES snes, PetscInt its, PetscReal rnorm, void *ctx)
921: {
922:   AppCtx        *user = (AppCtx *) ctx;
923:   DM             dm;
924:   Vec            u, r;
925:   PetscInt       level = -1;
926:   PetscBool      hasLevel;
927: #if defined(PETSC_HAVE_HDF5)
928:   PetscViewer    viewer;
929: #endif
930:   char           buf[256];

934:   SNESGetDM(snes, &dm);
935:   /* Calculate error */
936:   SNESGetSolution(snes, &u);
937:   DMGetGlobalVector(dm, &r);
938:   PetscObjectSetName((PetscObject) r, "solution error");
939:   DMProjectFunction(dm, 0.0, user->exactFuncs, NULL, INSERT_ALL_VALUES, r);
940:   VecAXPY(r, -1.0, u);
941:   /* View error */
942:   PetscObjectComposedDataGetInt((PetscObject) snes, PetscMGLevelId, level, hasLevel);
943:   PetscSNPrintf(buf, 256, "ex12-%D.h5", level);
944: #if defined(PETSC_HAVE_HDF5)
945:   PetscViewerHDF5Open(PETSC_COMM_WORLD, buf, FILE_MODE_APPEND, &viewer);
946:   VecView(r, viewer);
947:   PetscViewerDestroy(&viewer);
948:   /* Cleanup */
949:   DMRestoreGlobalVector(dm, &r);
950:   return(0);
951: #else
952:   SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"You need to configure with --download-hdf5");
953: #endif
954: }

956: int main(int argc, char **argv)
957: {
958:   DM             dm;          /* Problem specification */
959:   SNES           snes;        /* nonlinear solver */
960:   Vec            u;           /* solution vector */
961:   Mat            A,J;         /* Jacobian matrix */
962:   MatNullSpace   nullSpace;   /* May be necessary for Neumann conditions */
963:   AppCtx         user;        /* user-defined work context */
964:   JacActionCtx   userJ;       /* context for Jacobian MF action */
965:   PetscReal      error = 0.0; /* L_2 error in the solution */
966:   PetscBool      isFAS;

969:   PetscInitialize(&argc, &argv, NULL,help);if (ierr) return ierr;
970:   ProcessOptions(PETSC_COMM_WORLD, &user);
971:   SNESCreate(PETSC_COMM_WORLD, &snes);
972:   CreateMesh(PETSC_COMM_WORLD, &user, &dm);
973:   SNESSetDM(snes, dm);
974:   DMSetApplicationContext(dm, &user);

976:   PetscMalloc2(1, &user.exactFuncs, 1, &user.exactFields);
977:   SetupDiscretization(dm, &user);

979:   DMCreateGlobalVector(dm, &u);
980:   PetscObjectSetName((PetscObject) u, "potential");

982:   DMCreateMatrix(dm, &J);
983:   if (user.jacobianMF) {
984:     PetscInt M, m, N, n;

986:     MatGetSize(J, &M, &N);
987:     MatGetLocalSize(J, &m, &n);
988:     MatCreate(PETSC_COMM_WORLD, &A);
989:     MatSetSizes(A, m, n, M, N);
990:     MatSetType(A, MATSHELL);
991:     MatSetUp(A);
992: #if 0
993:     MatShellSetOperation(A, MATOP_MULT, (void (*)(void))FormJacobianAction);
994: #endif

996:     userJ.dm   = dm;
997:     userJ.J    = J;
998:     userJ.user = &user;

1000:     DMCreateLocalVector(dm, &userJ.u);
1001:     if (user.fieldBC) {DMProjectFieldLocal(dm, 0.0, userJ.u, user.exactFields, INSERT_BC_VALUES, userJ.u);}
1002:     else              {DMProjectFunctionLocal(dm, 0.0, user.exactFuncs, NULL, INSERT_BC_VALUES, userJ.u);}
1003:     MatShellSetContext(A, &userJ);
1004:   } else {
1005:     A = J;
1006:   }
1007:   if (user.bcType == NEUMANN) {
1008:     MatNullSpaceCreate(PetscObjectComm((PetscObject) dm), PETSC_TRUE, 0, NULL, &nullSpace);
1009:     MatSetNullSpace(A, nullSpace);
1010:   }

1012:   DMPlexSetSNESLocalFEM(dm,&user,&user,&user);
1013:   SNESSetJacobian(snes, A, J, NULL, NULL);

1015:   SNESSetFromOptions(snes);

1017:   if (user.fieldBC) {DMProjectField(dm, 0.0, u, user.exactFields, INSERT_ALL_VALUES, u);}
1018:   else              {DMProjectFunction(dm, 0.0, user.exactFuncs, NULL, INSERT_ALL_VALUES, u);}
1019:   if (user.restart) {
1020: #if defined(PETSC_HAVE_HDF5)
1021:     PetscViewer viewer;

1023:     PetscViewerCreate(PETSC_COMM_WORLD, &viewer);
1024:     PetscViewerSetType(viewer, PETSCVIEWERHDF5);
1025:     PetscViewerFileSetMode(viewer, FILE_MODE_READ);
1026:     PetscViewerFileSetName(viewer, user.filename);
1027:     PetscViewerHDF5PushGroup(viewer, "/fields");
1028:     VecLoad(u, viewer);
1029:     PetscViewerHDF5PopGroup(viewer);
1030:     PetscViewerDestroy(&viewer);
1031: #endif
1032:   }
1033:   if (user.showInitial) {
1034:     Vec lv;
1035:     DMGetLocalVector(dm, &lv);
1036:     DMGlobalToLocalBegin(dm, u, INSERT_VALUES, lv);
1037:     DMGlobalToLocalEnd(dm, u, INSERT_VALUES, lv);
1038:     DMPrintLocalVec(dm, "Local function", 1.0e-10, lv);
1039:     DMRestoreLocalVector(dm, &lv);
1040:   }
1041:   if (user.viewHierarchy) {
1042:     SNES      lsnes;
1043:     KSP       ksp;
1044:     PC        pc;
1045:     PetscInt  numLevels, l;
1046:     PetscBool isMG;

1048:     PetscObjectTypeCompare((PetscObject) snes, SNESFAS, &isFAS);
1049:     if (isFAS) {
1050:       SNESFASGetLevels(snes, &numLevels);
1051:       for (l = 0; l < numLevels; ++l) {
1052:         SNESFASGetCycleSNES(snes, l, &lsnes);
1053:         SNESMonitorSet(lsnes, SNESMonitorError, &user, NULL);
1054:       }
1055:     } else {
1056:       SNESGetKSP(snes, &ksp);
1057:       KSPGetPC(ksp, &pc);
1058:       PetscObjectTypeCompare((PetscObject) pc, PCMG, &isMG);
1059:       if (isMG) {
1060:         user.pcmg = pc;
1061:         PCMGGetLevels(pc, &numLevels);
1062:         for (l = 0; l < numLevels; ++l) {
1063:           PCMGGetSmootherDown(pc, l, &ksp);
1064:           KSPMonitorSet(ksp, KSPMonitorError, &user, NULL);
1065:         }
1066:       }
1067:     }
1068:   }
1069:   if (user.runType == RUN_FULL || user.runType == RUN_EXACT) {
1070:     PetscErrorCode (*initialGuess[1])(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx) = {zero};

1072:     if (user.nonzInit) initialGuess[0] = ecks;
1073:     if (user.runType == RUN_FULL) {
1074:       DMProjectFunction(dm, 0.0, initialGuess, NULL, INSERT_VALUES, u);
1075:     }
1076:     if (user.debug) {
1077:       PetscPrintf(PETSC_COMM_WORLD, "Initial guess\n");
1078:       VecView(u, PETSC_VIEWER_STDOUT_WORLD);
1079:     }
1080:     SNESSolve(snes, NULL, u);
1081:     SNESGetSolution(snes, &u);
1082:     SNESGetDM(snes, &dm);

1084:     if (user.showSolution) {
1085:       PetscPrintf(PETSC_COMM_WORLD, "Solution\n");
1086:       VecChop(u, 3.0e-9);
1087:       VecView(u, PETSC_VIEWER_STDOUT_WORLD);
1088:     }
1089:     VecViewFromOptions(u, NULL, "-vec_view");
1090:   } else if (user.runType == RUN_PERF) {
1091:     Vec       r;
1092:     PetscReal res = 0.0;

1094:     SNESGetFunction(snes, &r, NULL, NULL);
1095:     SNESComputeFunction(snes, u, r);
1096:     PetscPrintf(PETSC_COMM_WORLD, "Initial Residual\n");
1097:     VecChop(r, 1.0e-10);
1098:     VecNorm(r, NORM_2, &res);
1099:     PetscPrintf(PETSC_COMM_WORLD, "L_2 Residual: %g\n", res);
1100:   } else {
1101:     Vec       r;
1102:     PetscReal res = 0.0, tol = 1.0e-11;

1104:     /* Check discretization error */
1105:     SNESGetFunction(snes, &r, NULL, NULL);
1106:     PetscPrintf(PETSC_COMM_WORLD, "Initial guess\n");
1107:     if (!user.quiet) {VecView(u, PETSC_VIEWER_STDOUT_WORLD);}
1108:     DMComputeL2Diff(dm, 0.0, user.exactFuncs, NULL, u, &error);
1109:     if (error < tol) {PetscPrintf(PETSC_COMM_WORLD, "L_2 Error: < %2.1e\n", tol);}
1110:     else             {PetscPrintf(PETSC_COMM_WORLD, "L_2 Error: %g\n", error);}
1111:     /* Check residual */
1112:     SNESComputeFunction(snes, u, r);
1113:     PetscPrintf(PETSC_COMM_WORLD, "Initial Residual\n");
1114:     VecChop(r, 1.0e-10);
1115:     if (!user.quiet) {VecView(r, PETSC_VIEWER_STDOUT_WORLD);}
1116:     VecNorm(r, NORM_2, &res);
1117:     PetscPrintf(PETSC_COMM_WORLD, "L_2 Residual: %g\n", res);
1118:     /* Check Jacobian */
1119:     {
1120:       Vec b;

1122:       SNESComputeJacobian(snes, u, A, A);
1123:       VecDuplicate(u, &b);
1124:       VecSet(r, 0.0);
1125:       SNESComputeFunction(snes, r, b);
1126:       MatMult(A, u, r);
1127:       VecAXPY(r, 1.0, b);
1128:       VecDestroy(&b);
1129:       PetscPrintf(PETSC_COMM_WORLD, "Au - b = Au + F(0)\n");
1130:       VecChop(r, 1.0e-10);
1131:       if (!user.quiet) {VecView(r, PETSC_VIEWER_STDOUT_WORLD);}
1132:       VecNorm(r, NORM_2, &res);
1133:       PetscPrintf(PETSC_COMM_WORLD, "Linear L_2 Residual: %g\n", res);
1134:     }
1135:   }
1136:   VecViewFromOptions(u, NULL, "-vec_view");

1138:   if (user.bdIntegral) {
1139:     DMLabel   label;
1140:     PetscInt  id = 1;
1141:     PetscScalar bdInt = 0.0;
1142:     PetscReal   exact = 3.3333333333;

1144:     DMGetLabel(dm, "marker", &label);
1145:     DMPlexComputeBdIntegral(dm, u, label, 1, &id, bd_integral_2d, &bdInt, NULL);
1146:     PetscPrintf(PETSC_COMM_WORLD, "Solution boundary integral: %.4g\n", (double) PetscAbsScalar(bdInt));
1147:     if (PetscAbsReal(PetscAbsScalar(bdInt) - exact) > PETSC_SQRT_MACHINE_EPSILON) SETERRQ2(PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Invalid boundary integral %g != %g", bdInt, exact);
1148:   }

1150:   if (user.bcType == NEUMANN) {MatNullSpaceDestroy(&nullSpace);}
1151:   if (user.jacobianMF) {VecDestroy(&userJ.u);}
1152:   if (A != J) {MatDestroy(&A);}
1153:   MatDestroy(&J);
1154:   VecDestroy(&u);
1155:   SNESDestroy(&snes);
1156:   DMDestroy(&dm);
1157:   PetscFree2(user.exactFuncs, user.exactFields);
1158:   PetscFinalize();
1159:   return ierr;
1160: }

1162: /*TEST
1163:   # 2D serial P1 test 0-4
1164:   test:
1165:     suffix: 0
1166:     requires: triangle
1167:     args: -run_type test -refinement_limit 0.0    -bc_type dirichlet -interpolate 0 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1169:   test:
1170:     suffix: 1
1171:     requires: triangle
1172:     args: -run_type test -refinement_limit 0.0    -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1174:   test:
1175:     suffix: 2
1176:     requires: triangle
1177:     args: -run_type test -refinement_limit 0.0625 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1179:   test:
1180:     suffix: 3
1181:     requires: triangle
1182:     args: -run_type test -refinement_limit 0.0    -bc_type neumann   -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -dm_view ascii::ascii_info_detail

1184:   test:
1185:     suffix: 4
1186:     requires: triangle
1187:     args: -run_type test -refinement_limit 0.0625 -bc_type neumann   -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1189:   # 2D serial P2 test 5-8
1190:   test:
1191:     suffix: 5
1192:     requires: triangle
1193:     args: -run_type test -refinement_limit 0.0    -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1195:   test:
1196:     suffix: 6
1197:     requires: triangle
1198:     args: -run_type test -refinement_limit 0.0625 -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1200:   test:
1201:     suffix: 7
1202:     requires: triangle
1203:     args: -run_type test -refinement_limit 0.0    -bc_type neumann   -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -dm_view ascii::ascii_info_detail

1205:   test:
1206:     suffix: 8
1207:     requires: triangle
1208:     args: -run_type test -refinement_limit 0.0625 -bc_type neumann   -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -dm_view ascii::ascii_info_detail

1210:   test:
1211:     suffix: bd_int_0
1212:     requires: triangle
1213:     args: -run_type test -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -bd_integral -dm_view -quiet

1215:   test:
1216:     suffix: bd_int_1
1217:     requires: triangle
1218:     args: -run_type test -dm_refine 2 -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -bd_integral -dm_view -quiet

1220:   # 3D serial P1 test 9-12
1221:   test:
1222:     suffix: 9
1223:     requires: ctetgen
1224:     args: -run_type test -dim 3 -refinement_limit 0.0    -bc_type dirichlet -interpolate 0 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -dm_view -cells 1,1,1

1226:   test:
1227:     suffix: 10
1228:     requires: ctetgen
1229:     args: -run_type test -dim 3 -refinement_limit 0.0    -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -dm_view -cells 1,1,1

1231:   test:
1232:     suffix: 11
1233:     requires: ctetgen
1234:     args: -run_type test -dim 3 -refinement_limit 0.0125 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -dm_view -cells 1,1,1

1236:   test:
1237:     suffix: 12
1238:     requires: ctetgen
1239:     args: -run_type test -dim 3 -refinement_limit 0.0    -bc_type neumann   -interpolate 1 -petscspace_degree 1 -snes_fd -show_initial -dm_plex_print_fem 1 -dm_view -cells 1,1,1

1241:   # Analytic variable coefficient 13-20
1242:   test:
1243:     suffix: 13
1244:     requires: triangle
1245:     args: -run_type test -refinement_limit 0.0    -variable_coefficient analytic -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1246:   test:
1247:     suffix: 14
1248:     requires: triangle
1249:     args: -run_type test -refinement_limit 0.0625 -variable_coefficient analytic -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1250:   test:
1251:     suffix: 15
1252:     requires: triangle
1253:     args: -run_type test -refinement_limit 0.0    -variable_coefficient analytic -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1254:   test:
1255:     suffix: 16
1256:     requires: triangle
1257:     args: -run_type test -refinement_limit 0.0625 -variable_coefficient analytic -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1258:   test:
1259:     suffix: 17
1260:     requires: hdf5 ctetgen
1261:     args: -run_type test -dim 3 -refinement_limit 0.0    -variable_coefficient analytic -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1263:   test:
1264:     suffix: 18
1265:     requires: ctetgen
1266:     args: -run_type test -dim 3 -refinement_limit 0.0125 -variable_coefficient analytic -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1268:   test:
1269:     suffix: 19
1270:     requires: ctetgen
1271:     args: -run_type test -dim 3 -refinement_limit 0.0    -variable_coefficient analytic -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1273:   test:
1274:     suffix: 20
1275:     requires: ctetgen
1276:     args: -run_type test -dim 3 -refinement_limit 0.0125 -variable_coefficient analytic -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1278:   # P1 variable coefficient 21-28
1279:   test:
1280:     suffix: 21
1281:     requires: triangle
1282:     args: -run_type test -refinement_limit 0.0    -variable_coefficient field    -interpolate 1 -petscspace_degree 1 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1284:   test:
1285:     suffix: 22
1286:     requires: triangle
1287:     args: -run_type test -refinement_limit 0.0625 -variable_coefficient field    -interpolate 1 -petscspace_degree 1 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1289:   test:
1290:     suffix: 23
1291:     requires: triangle
1292:     args: -run_type test -refinement_limit 0.0    -variable_coefficient field    -interpolate 1 -petscspace_degree 2 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1294:   test:
1295:     suffix: 24
1296:     requires: triangle
1297:     args: -run_type test -refinement_limit 0.0625 -variable_coefficient field    -interpolate 1 -petscspace_degree 2 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1299:   test:
1300:     suffix: 25
1301:     requires: ctetgen
1302:     args: -run_type test -dim 3 -refinement_limit 0.0    -variable_coefficient field    -interpolate 1 -petscspace_degree 1 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1304:   test:
1305:     suffix: 26
1306:     requires: ctetgen
1307:     args: -run_type test -dim 3 -refinement_limit 0.0125 -variable_coefficient field    -interpolate 1 -petscspace_degree 1 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1309:   test:
1310:     suffix: 27
1311:     requires: ctetgen
1312:     args: -run_type test -dim 3 -refinement_limit 0.0    -variable_coefficient field    -interpolate 1 -petscspace_degree 2 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1314:   test:
1315:     suffix: 28
1316:     requires: ctetgen
1317:     args: -run_type test -dim 3 -refinement_limit 0.0125 -variable_coefficient field    -interpolate 1 -petscspace_degree 2 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1319:   # P0 variable coefficient 29-36
1320:   test:
1321:     suffix: 29
1322:     requires: triangle
1323:     args: -run_type test -refinement_limit 0.0    -variable_coefficient field    -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1325:   test:
1326:     suffix: 30
1327:     requires: triangle
1328:     args: -run_type test -refinement_limit 0.0625 -variable_coefficient field    -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1330:   test:
1331:     suffix: 31
1332:     requires: triangle
1333:     args: -run_type test -refinement_limit 0.0    -variable_coefficient field    -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1335:   test:
1336:     requires: triangle
1337:     suffix: 32
1338:     args: -run_type test -refinement_limit 0.0625 -variable_coefficient field    -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1340:   test:
1341:     requires: ctetgen
1342:     suffix: 33
1343:     args: -run_type test -dim 3 -refinement_limit 0.0    -variable_coefficient field    -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1345:   test:
1346:     suffix: 34
1347:     requires: ctetgen
1348:     args: -run_type test -dim 3 -refinement_limit 0.0125 -variable_coefficient field    -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1350:   test:
1351:     suffix: 35
1352:     requires: ctetgen
1353:     args: -run_type test -dim 3 -refinement_limit 0.0    -variable_coefficient field    -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1355:   test:
1356:     suffix: 36
1357:     requires: ctetgen
1358:     args: -run_type test -dim 3 -refinement_limit 0.0125 -variable_coefficient field    -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1360:   # Full solve 39-44
1361:   test:
1362:     suffix: 39
1363:     requires: triangle !single
1364:     args: -run_type full -refinement_limit 0.015625 -interpolate 1 -petscspace_degree 2 -pc_type gamg -ksp_rtol 1.0e-10 -ksp_monitor_short -ksp_converged_reason -snes_monitor_short -snes_converged_reason ::ascii_info_detail
1365:   test:
1366:     suffix: 40
1367:     requires: triangle !single
1368:     args: -run_type full -refinement_limit 0.015625 -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 2 -pc_type svd -ksp_rtol 1.0e-10 -snes_monitor_short -snes_converged_reason ::ascii_info_detail
1369:   test:
1370:     suffix: 41
1371:     requires: triangle !single
1372:     args: -run_type full -refinement_limit 0.03125 -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -pc_type svd -ksp_rtol 1.0e-10 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 1 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short
1373:   test:
1374:     suffix: 42
1375:     requires: triangle !single
1376:     args: -run_type full -refinement_limit 0.0625 -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 3 -pc_type svd -ksp_rtol 1.0e-10 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 2 -dm_plex_print_fem 0 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short -fas_levels_2_snes_type newtonls -fas_levels_2_pc_type svd -fas_levels_2_ksp_rtol 1.0e-10 -fas_levels_2_snes_atol 1.0e-11 -fas_levels_2_snes_monitor_short
1377:   test:
1378:     suffix: 43
1379:     requires: triangle !single
1380:     nsize: 2
1381:     args: -run_type full -refinement_limit 0.03125 -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -pc_type svd -ksp_rtol 1.0e-10 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 1 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short

1383:   test:
1384:     suffix: 44
1385:     requires: triangle !single
1386:     nsize: 2
1387:     args: -run_type full -refinement_limit 0.0625 -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 3 -pc_type svd -ksp_rtol 1.0e-10 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 2 -dm_plex_print_fem 0 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short -fas_levels_2_snes_type newtonls -fas_levels_2_pc_type svd -fas_levels_2_ksp_rtol 1.0e-10 -fas_levels_2_snes_atol 1.0e-11 -fas_levels_2_snes_monitor_short

1389:   # These tests use a loose tolerance just to exercise the PtAP operations for MATIS and multiple BDDC setup calls inside PCMG
1390:   testset:
1391:     requires: triangle !single
1392:     nsize: 3
1393:     args: -interpolate -run_type full -petscspace_degree 1 -dm_mat_type is -pc_type mg -pc_mg_levels 2 -mg_coarse_pc_type bddc -pc_mg_galerkin pmat -ksp_rtol 1.0e-2 -snes_converged_reason -dm_refine_hierarchy 2 -snes_max_it 4
1394:     test:
1395:       suffix: gmg_bddc
1396:       args: -mg_levels_pc_type jacobi
1397:     test:
1398:       filter: sed -e "s/iterations 1/iterations 4/g"
1399:       suffix: gmg_bddc_lev
1400:       args: -mg_levels_pc_type bddc

1402:   # Restarting
1403:   testset:
1404:     suffix: restart
1405:     requires: hdf5 triangle !complex
1406:     args: -run_type test -refinement_limit 0.0    -bc_type dirichlet -interpolate 1 -petscspace_degree 1
1407:     test:
1408:       args: -dm_view hdf5:sol.h5 -vec_view hdf5:sol.h5::append
1409:     test:
1410:       args: -f sol.h5 -restart

1412:   # Periodicity
1413:   test:
1414:     suffix: periodic_0
1415:     requires: triangle
1416:     args: -run_type full -refinement_limit 0.0    -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -snes_converged_reason ::ascii_info_detail

1418:   # 2D serial P1 test with field bc
1419:   test:
1420:     suffix: field_bc_p1_0
1421:     requires: triangle
1422:     args: -run_type test              -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1424:   test:
1425:     suffix: field_bc_p1_1
1426:     requires: triangle
1427:     args: -run_type test -dm_refine 1 -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1429:   test:
1430:     suffix: field_bc_p1_2
1431:     requires: triangle
1432:     args: -run_type test              -interpolate 1 -bc_type neumann   -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1434:   test:
1435:     suffix: field_bc_p1_3
1436:     requires: triangle
1437:     args: -run_type test -dm_refine 1 -interpolate 1 -bc_type neumann   -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1439:   # 3D serial P1 test with field bc
1440:   test:
1441:     suffix: field_bc_p1_4
1442:     requires: ctetgen
1443:     args: -run_type test -dim 3              -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1445:   test:
1446:     suffix: field_bc_p1_5
1447:     requires: ctetgen
1448:     args: -run_type test -dim 3 -dm_refine 1 -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1450:   test:
1451:     suffix: field_bc_p1_6
1452:     requires: ctetgen
1453:     args: -run_type test -dim 3              -interpolate 1 -bc_type neumann   -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1455:   test:
1456:     suffix: field_bc_p1_7
1457:     requires: ctetgen
1458:     args: -run_type test -dim 3 -dm_refine 1 -interpolate 1 -bc_type neumann   -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1460:   # 2D serial P2 test with field bc
1461:   test:
1462:     suffix: field_bc_p2_0
1463:     requires: triangle
1464:     args: -run_type test              -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1466:   test:
1467:     suffix: field_bc_p2_1
1468:     requires: triangle
1469:     args: -run_type test -dm_refine 1 -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1471:   test:
1472:     suffix: field_bc_p2_2
1473:     requires: triangle
1474:     args: -run_type test              -interpolate 1 -bc_type neumann   -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1476:   test:
1477:     suffix: field_bc_p2_3
1478:     requires: triangle
1479:     args: -run_type test -dm_refine 1 -interpolate 1 -bc_type neumann   -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1481:   # 3D serial P2 test with field bc
1482:   test:
1483:     suffix: field_bc_p2_4
1484:     requires: ctetgen
1485:     args: -run_type test -dim 3              -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1487:   test:
1488:     suffix: field_bc_p2_5
1489:     requires: ctetgen
1490:     args: -run_type test -dim 3 -dm_refine 1 -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1492:   test:
1493:     suffix: field_bc_p2_6
1494:     requires: ctetgen
1495:     args: -run_type test -dim 3              -interpolate 1 -bc_type neumann   -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1497:   test:
1498:     suffix: field_bc_p2_7
1499:     requires: ctetgen
1500:     args: -run_type test -dim 3 -dm_refine 1 -interpolate 1 -bc_type neumann   -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1502:   # Full solve simplex: Convergence
1503:   test:
1504:     suffix: tet_conv_p1_r0
1505:     requires: ctetgen
1506:     args: -run_type full -dim 3 -dm_refine 0 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -dm_view -snes_converged_reason ::ascii_info_detail -pc_type lu -cells 1,1,1
1507:   test:
1508:     suffix: tet_conv_p1_r2
1509:     requires: ctetgen
1510:     args: -run_type full -dim 3 -dm_refine 2 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -dm_view -snes_converged_reason ::ascii_info_detail -pc_type lu -cells 1,1,1
1511:   test:
1512:     suffix: tet_conv_p1_r3
1513:     requires: ctetgen
1514:     args: -run_type full -dim 3 -dm_refine 3 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -dm_view -snes_converged_reason ::ascii_info_detail -pc_type lu -cells 1,1,1
1515:   test:
1516:     suffix: tet_conv_p2_r0
1517:     requires: ctetgen
1518:     args: -run_type full -dim 3 -dm_refine 0 -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -dm_view -snes_converged_reason ::ascii_info_detail -pc_type lu -cells 1,1,1
1519:   test:
1520:     suffix: tet_conv_p2_r2
1521:     requires: ctetgen
1522:     args: -run_type full -dim 3 -dm_refine 2 -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -dm_view -snes_converged_reason ::ascii_info_detail -pc_type lu -cells 1,1,1

1524:   # Full solve simplex: BDDC
1525:   test:
1526:     suffix: tri_bddc
1527:     requires: triangle !single
1528:     nsize: 5
1529:     args: -run_type full -petscpartitioner_type simple -dm_refine 2 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -dm_mat_type is -pc_type bddc -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0

1531:   # Full solve simplex: BDDC
1532:   test:
1533:     suffix: tri_bddc_parmetis
1534:     requires: hdf5 triangle !single parmetis
1535:     nsize: 4
1536:     args: -run_type full -petscpartitioner_type parmetis -dm_refine 2 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -dm_mat_type is -pc_type bddc -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0

1538:   testset:
1539:     args: -run_type full -petscpartitioner_type simple -dm_refine 2 -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -dm_mat_type is -pc_type bddc -ksp_type gmres -snes_monitor_short -ksp_monitor_short -snes_view -simplex 0 -petscspace_poly_tensor -pc_bddc_corner_selection -cells 3,3 -ksp_rtol 1.e-9 -pc_bddc_use_edges 0
1540:     nsize: 5
1541:     output_file: output/ex12_quad_bddc.out
1542:     filter: sed -e "s/aijcusparse/aij/g" -e "s/aijviennacl/aij/g" -e "s/factorization: cusparse/factorization: petsc/g"
1543:     test:
1544:       requires: !single
1545:       suffix: quad_bddc
1546:     test:
1547:       requires: !single cuda
1548:       suffix: quad_bddc_cuda
1549:       args: -matis_localmat_type aijcusparse -pc_bddc_dirichlet_pc_factor_mat_solver_type cusparse -pc_bddc_neumann_pc_factor_mat_solver_type cusparse
1550:     test:
1551:       requires: !single viennacl
1552:       suffix: quad_bddc_viennacl
1553:       args: -matis_localmat_type aijviennacl

1555:   # Full solve simplex: ASM
1556:   test:
1557:     suffix: tri_q2q1_asm_lu
1558:     requires: triangle !single
1559:     args: -run_type full -dm_refine 3 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -pc_type asm -pc_asm_type restrict -pc_asm_blocks 4 -sub_pc_type lu -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0

1561:   test:
1562:     suffix: tri_q2q1_msm_lu
1563:     requires: triangle !single
1564:     args: -run_type full -dm_refine 3 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -pc_type asm -pc_asm_type restrict -pc_asm_local_type multiplicative -pc_asm_blocks 4 -sub_pc_type lu -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0

1566:   test:
1567:     suffix: tri_q2q1_asm_sor
1568:     requires: triangle !single
1569:     args: -run_type full -dm_refine 3 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -pc_type asm -pc_asm_type restrict -pc_asm_blocks 4 -sub_pc_type sor -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0

1571:   test:
1572:     suffix: tri_q2q1_msm_sor
1573:     requires: triangle !single
1574:     args: -run_type full -dm_refine 3 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -pc_type asm -pc_asm_type restrict -pc_asm_local_type multiplicative -pc_asm_blocks 4 -sub_pc_type sor -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0

1576:   # Full solve simplex: FAS
1577:   test:
1578:     suffix: fas_newton_0
1579:     requires: triangle !single
1580:     args: -run_type full -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -pc_type svd -ksp_rtol 1.0e-10 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 1 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short

1582:   test:
1583:     suffix: fas_newton_1
1584:     requires: triangle !single
1585:     args: -run_type full -dm_refine_hierarchy 3 -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 3 -ksp_rtol 1.0e-10 -fas_coarse_pc_type lu -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_snes_linesearch_type basic -fas_levels_ksp_rtol 1.0e-10 -fas_levels_snes_monitor_short

1587:   test:
1588:     suffix: fas_ngs_0
1589:     requires: triangle !single
1590:     args: -run_type full -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -pc_type svd -ksp_rtol 1.0e-10 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 1 -snes_view -fas_levels_1_snes_type ngs -fas_levels_1_snes_monitor_short

1592:   test:
1593:     suffix: fas_newton_coarse_0
1594:     requires: pragmatic triangle
1595:     TODO: broken
1596:     args: -run_type full -dm_refine 2 -dm_plex_hash_location -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -pc_type svd -ksp_rtol 1.0e-10 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_coarsen_hierarchy 1 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short

1598:   test:
1599:     suffix: mg_newton_coarse_0
1600:     requires: triangle pragmatic
1601:     args: -run_type full -dm_refine 3 -interpolate 1 -petscspace_degree 1 -snes_monitor_short -ksp_monitor_true_residual -snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_coarsen_hierarchy 3 -dm_plex_hash_location -snes_view -dm_view -ksp_type richardson -pc_type mg  -pc_mg_levels 4 -snes_atol 1.0e-8 -ksp_atol 1.0e-8 -snes_rtol 0.0 -ksp_rtol 0.0 -ksp_norm_type unpreconditioned -mg_levels_ksp_type gmres -mg_levels_pc_type ilu -mg_levels_ksp_max_it 10

1603:   test:
1604:     suffix: mg_newton_coarse_1
1605:     requires: triangle pragmatic
1606:     args: -run_type full -dm_refine 5 -interpolate 1 -petscspace_degree 1 -dm_coarsen_hierarchy 5 -dm_plex_hash_location -dm_plex_separate_marker -dm_plex_coarsen_bd_label marker -dm_plex_remesh_bd -ksp_type richardson -ksp_rtol 1.0e-12 -pc_type mg -pc_mg_levels 3 -mg_levels_ksp_max_it 2 -snes_converged_reason ::ascii_info_detail -snes_monitor -ksp_monitor_true_residual -mg_levels_ksp_monitor_true_residual -dm_view -ksp_view

1608:   test:
1609:     suffix: mg_newton_coarse_2
1610:     requires: triangle pragmatic
1611:     args: -run_type full -dm_refine 5 -interpolate 1 -petscspace_degree 1 -dm_coarsen_hierarchy 5 -dm_plex_hash_location -dm_plex_separate_marker -dm_plex_remesh_bd -ksp_type richardson -ksp_rtol 1.0e-12 -pc_type mg -pc_mg_levels 3 -mg_levels_ksp_max_it 2 -snes_converged_reason ::ascii_info_detail -snes_monitor -ksp_monitor_true_residual -mg_levels_ksp_monitor_true_residual -dm_view -ksp_view

1613:   # Full solve tensor
1614:   test:
1615:     suffix: tensor_plex_2d
1616:     args: -run_type test -refinement_limit 0.0 -simplex 0 -interpolate -bc_type dirichlet -petscspace_degree 1 -dm_refine_hierarchy 2 -cells 2,2

1618:   test:
1619:     suffix: tensor_p4est_2d
1620:     requires: p4est
1621:     args: -run_type test -refinement_limit 0.0 -simplex 0 -interpolate -bc_type dirichlet -petscspace_degree 1 -dm_forest_initial_refinement 2 -dm_forest_minimum_refinement 0 -dm_plex_convert_type p4est -cells 2,2

1623:   test:
1624:     suffix: tensor_plex_3d
1625:     args: -run_type test -refinement_limit 0.0 -simplex 0 -interpolate -bc_type dirichlet -petscspace_degree 1 -dim 3 -dm_refine_hierarchy 1 -cells 2,2,2

1627:   test:
1628:     suffix: tensor_p4est_3d
1629:     requires: p4est
1630:     args: -run_type test -refinement_limit 0.0 -simplex 0 -interpolate -bc_type dirichlet -petscspace_degree 1 -dm_forest_initial_refinement 1 -dm_forest_minimum_refinement 0 -dim 3 -dm_plex_convert_type p8est -cells 2,2,2

1632:   test:
1633:     suffix: p4est_test_q2_conformal_serial
1634:     requires: p4est
1635:     args: -run_type test -interpolate 1 -petscspace_degree 2 -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -cells 2,2

1637:   test:
1638:     suffix: p4est_test_q2_conformal_parallel
1639:     requires: p4est
1640:     nsize: 7
1641:     args: -run_type test -interpolate 1 -petscspace_degree 2 -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -petscpartitioner_type simple -cells 2,2

1643:   test:
1644:     suffix: p4est_test_q2_conformal_parallel_parmetis
1645:     requires: hdf5 p4est
1646:     nsize: 4
1647:     args: -run_type test -interpolate 1 -petscspace_degree 2 -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -petscpartitioner_type parmetis -cells 2,2

1649:   test:
1650:     suffix: p4est_test_q2_nonconformal_serial
1651:     requires: p4est
1652:     filter: grep -v "CG or CGNE: variant"
1653:     args: -run_type test -interpolate 1 -petscspace_degree 2 -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -cells 2,2

1655:   test:
1656:     suffix: p4est_test_q2_nonconformal_parallel
1657:     requires: p4est
1658:     filter: grep -v "CG or CGNE: variant"
1659:     nsize: 7
1660:     args: -run_type test -interpolate 1 -petscspace_degree 2 -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple -cells 2,2

1662:   test:
1663:     suffix: p4est_test_q2_nonconformal_parallel_parmetis
1664:     requires: hdf5 p4est
1665:     nsize: 4
1666:     args: -run_type test -interpolate 1 -petscspace_degree 2 -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type parmetis -cells 2,2

1668:   test:
1669:     suffix: p4est_exact_q2_conformal_serial
1670:     requires: p4est !single
1671:     args: -run_type exact -interpolate 1 -petscspace_degree 2 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -pc_type none -ksp_type preonly -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -cells 2,2

1673:   test:
1674:     suffix: p4est_exact_q2_conformal_parallel
1675:     TODO: broken
1676:     requires: p4est !single
1677:     nsize: 7
1678:     args: -run_type exact -interpolate 1 -petscspace_degree 2 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -pc_type none -ksp_type preonly -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -cells 2,2

1680:   test:
1681:     suffix: p4est_exact_q2_conformal_parallel_parmetis
1682:     requires: hdf5 p4est !single
1683:     nsize: 4
1684:     args: -run_type exact -interpolate 1 -petscspace_degree 2 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -pc_type none -ksp_type preonly -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -petscpartitioner_type parmetis  -cells 2,2

1686:   test:
1687:     suffix: p4est_exact_q2_nonconformal_serial
1688:     requires: p4est
1689:     args: -run_type exact -interpolate 1 -petscspace_degree 2 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -pc_type none -ksp_type preonly -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -cells 2,2

1691:   test:
1692:     suffix: p4est_exact_q2_nonconformal_parallel
1693:     requires: p4est
1694:     nsize: 7
1695:     args: -run_type exact -interpolate 1 -petscspace_degree 2 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -pc_type none -ksp_type preonly -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple -cells 2,2

1697:   test:
1698:     suffix: p4est_exact_q2_nonconformal_parallel_parmetis
1699:     requires: hdf5 p4est
1700:     nsize: 4
1701:     args: -run_type exact -interpolate 1 -petscspace_degree 2 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -pc_type none -ksp_type preonly -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type parmetis -cells 2,2

1703:   test:
1704:     suffix: p4est_full_q2_nonconformal_serial
1705:     requires: p4est !single
1706:     filter: grep -v "variant HERMITIAN"
1707:     args: -run_type full -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -pc_type jacobi -ksp_type cg -fas_coarse_pc_type jacobi -fas_coarse_ksp_type cg -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type jacobi -fas_levels_ksp_type cg -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -cells 2,2

1709:   test:
1710:     suffix: p4est_full_q2_nonconformal_parallel
1711:     requires: p4est !single
1712:     filter: grep -v "variant HERMITIAN"
1713:     nsize: 7
1714:     args: -run_type full -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -pc_type jacobi -ksp_type cg -fas_coarse_pc_type jacobi -fas_coarse_ksp_type cg -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type jacobi -fas_levels_ksp_type cg -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple -cells 2,2

1716:   test:
1717:     suffix: p4est_full_q2_nonconformal_parallel_bddcfas
1718:     requires: p4est
1719:     filter: grep -v "variant HERMITIAN"
1720:     nsize: 7
1721:     args: -run_type full -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -dm_mat_type is -pc_type bddc -ksp_type cg -fas_coarse_pc_type bddc -fas_coarse_ksp_type cg -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type bddc -fas_levels_ksp_type cg -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple -cells 2,2

1723:   test:
1724:     suffix: p4est_full_q2_nonconformal_parallel_bddc
1725:     requires: p4est
1726:     filter: grep -v "variant HERMITIAN"
1727:     nsize: 7
1728:     args: -run_type full -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type newtonls -dm_mat_type is -pc_type bddc -ksp_type cg -snes_monitor_short -snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple -cells 2,2

1730:   test:
1731:     suffix: p4est_fas_q2_conformal_serial
1732:     requires: p4est
1733:     args: -run_type full -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -pc_type jacobi -ksp_type gmres -fas_coarse_pc_type svd -fas_coarse_ksp_type gmres -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type svd -fas_levels_ksp_type gmres -fas_levels_snes_monitor_short -simplex 0 -dm_refine_hierarchy 3 -cells 2,2
1734:     TODO: broken

1736:   test:
1737:     suffix: p4est_fas_q2_nonconformal_serial
1738:     requires: p4est broken
1739:     args: -run_type full -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -pc_type jacobi -ksp_type gmres -fas_coarse_pc_type jacobi -fas_coarse_ksp_type gmres -fas_coarse_ksp_monitor_true_residual -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type jacobi -fas_levels_ksp_type gmres -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -cells 2,2

1741:   test:
1742:     suffix: fas_newton_0_p4est
1743:     requires: p4est !single
1744:     args: -run_type full -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -pc_type svd -ksp_rtol 1.0e-10 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -snes_linesearch_type basic -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -cells 2,2

1746:   # Full solve simplicial AMR
1747:   test:
1748:     suffix: tri_p1_adapt_0
1749:     requires: pragmatic
1750:     args: -run_type exact -dim 2 -dm_refine 5 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -variable_coefficient circle -snes_converged_reason ::ascii_info_detail -pc_type lu -adaptor_refinement_factor 1.0 -dm_view -dm_adapt_view -snes_adapt_initial

1752:   test:
1753:     suffix: tri_p1_adapt_1
1754:     requires: pragmatic
1755:     args: -run_type exact -dim 2 -dm_refine 5 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -variable_coefficient circle -snes_converged_reason ::ascii_info_detail -pc_type lu -adaptor_refinement_factor 1.0 -dm_view -dm_adapt_iter_view -dm_adapt_view -snes_adapt_sequence 2

1757:   test:
1758:     suffix: tri_p1_adapt_analytic_0
1759:     requires: pragmatic
1760:     args: -run_type exact -dim 2 -dm_refine 3 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -variable_coefficient cross -snes_adapt_initial 4 -adaptor_target_num 500 -adaptor_monitor -dm_view -dm_adapt_iter_view

1762:   # Full solve tensor AMR
1763:   test:
1764:     suffix: quad_q1_adapt_0
1765:     requires: p4est
1766:     args: -run_type exact -dim 2 -simplex 0 -dm_plex_convert_type p4est -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -variable_coefficient circle -snes_converged_reason ::ascii_info_detail -pc_type lu -dm_forest_initial_refinement 4   -snes_adapt_initial -dm_view
1767:     filter: grep -v DM_

1769:   test:
1770:     suffix: amr_0
1771:     nsize: 5
1772:     args: -run_type test -petscpartitioner_type simple -refinement_limit 0.0 -simplex 0 -interpolate -bc_type dirichlet -petscspace_degree 1 -dm_refine 1 -cells 2,2

1774:   test:
1775:     suffix: amr_1
1776:     requires: p4est !complex
1777:     args: -run_type test -refinement_limit 0.0 -simplex 0 -interpolate -bc_type dirichlet -petscspace_degree 1 -dm_plex_convert_type p4est -dm_p4est_refine_pattern center -dm_forest_maximum_refinement 5 -dm_view vtk:amr.vtu:vtk_vtu -vec_view vtk:amr.vtu:vtk_vtu:append -cells 2,2

1779:   test:
1780:     suffix: p4est_solve_bddc
1781:     requires: p4est
1782:     args: -run_type full -variable_coefficient nonlinear -nonzero_initial_guess 1 -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type newtonls -dm_mat_type is -pc_type bddc -ksp_type cg -snes_monitor_short -ksp_monitor -snes_linesearch_type bt -snes_converged_reason -snes_view -simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple -pc_bddc_detect_disconnected
1783:     nsize: 4

1785:   test:
1786:     suffix: p4est_solve_fas
1787:     requires: p4est
1788:     args: -run_type full -variable_coefficient nonlinear -nonzero_initial_guess 1 -interpolate 1 -petscspace_degree 2 -snes_max_it 10 -snes_type fas -snes_linesearch_type bt -snes_fas_levels 3 -fas_coarse_snes_type newtonls -fas_coarse_snes_linesearch_type basic -fas_coarse_ksp_type cg -fas_coarse_pc_type jacobi -fas_coarse_snes_monitor_short -fas_levels_snes_max_it 4 -fas_levels_snes_type newtonls -fas_levels_snes_linesearch_type bt -fas_levels_ksp_type cg -fas_levels_pc_type jacobi -fas_levels_snes_monitor_short -fas_levels_cycle_snes_linesearch_type bt -snes_monitor_short -snes_converged_reason -snes_view -simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash
1789:     nsize: 4
1790:     TODO: identical machine two runs produce slightly different solver trackers

1792:   test:
1793:     suffix: p4est_convergence_test_1
1794:     requires: p4est
1795:     args:  -quiet -run_type test -interpolate 1 -petscspace_degree 1 -simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 2 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash
1796:     nsize: 4

1798:   test:
1799:     suffix: p4est_convergence_test_2
1800:     requires: p4est
1801:     args: -quiet -run_type test -interpolate 1 -petscspace_degree 1 -simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 3 -dm_forest_initial_refinement 3 -dm_forest_maximum_refinement 5 -dm_p4est_refine_pattern hash

1803:   test:
1804:     suffix: p4est_convergence_test_3
1805:     requires: p4est
1806:     args: -quiet -run_type test -interpolate 1 -petscspace_degree 1 -simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 4 -dm_forest_initial_refinement 4 -dm_forest_maximum_refinement 6 -dm_p4est_refine_pattern hash

1808:   test:
1809:     suffix: p4est_convergence_test_4
1810:     requires: p4est
1811:     args: -quiet -run_type test -interpolate 1 -petscspace_degree 1 -simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 5 -dm_forest_initial_refinement 5 -dm_forest_maximum_refinement 7 -dm_p4est_refine_pattern hash
1812:     timeoutfactor: 5

1814:   # Serial tests with GLVis visualization
1815:   test:
1816:     suffix: glvis_2d_tet_p1
1817:     args: -quiet -run_type test -interpolate 1 -bc_type dirichlet -petscspace_degree 1 -vec_view glvis: -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/square_periodic.msh
1818:   test:
1819:     suffix: glvis_2d_tet_p2
1820:     args: -quiet -run_type test -interpolate 1 -bc_type dirichlet -petscspace_degree 2 -vec_view glvis: -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/square_periodic.msh
1821:   test:
1822:     suffix: glvis_2d_hex_p1
1823:     args: -quiet -run_type test -interpolate 1 -bc_type dirichlet -petscspace_degree 1 -vec_view glvis: -simplex 0 -dm_refine 1
1824:   test:
1825:     suffix: glvis_2d_hex_p2
1826:     args: -quiet -run_type test -interpolate 1 -bc_type dirichlet -petscspace_degree 2 -vec_view glvis: -simplex 0 -dm_refine 1
1827:   test:
1828:     suffix: glvis_2d_hex_p2_p4est
1829:     requires: p4est
1830:     args: -quiet -run_type test -interpolate 1 -bc_type dirichlet -petscspace_degree 2 -vec_view glvis: -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 1 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -cells 2,2 -viewer_glvis_dm_plex_enable_ncmesh

1832: TEST*/