static char help[] = "Solves the van der Pol equation.\n\ Input parameters include:\n"; /* Concepts: TS^time-dependent nonlinear problems Concepts: TS^van der Pol equation DAE equivalent Processors: 1 */ /* ------------------------------------------------------------------------ This program solves the van der Pol DAE ODE equivalent y' = z (1) z' = mu[(1-y^2)z-y] on the domain 0 <= x <= 1, with the boundary conditions y(0) = 2, y'(0) = -6.6e-01, and mu = 10^6. This is a nonlinear equation. This is a copy and modification of ex20.c to exactly match a test problem that comes with the Radau5 integrator package. ------------------------------------------------------------------------- */ #include typedef struct _n_User *User; struct _n_User { PetscReal mu; PetscReal next_output; }; static PetscErrorCode IFunction(TS ts,PetscReal t,Vec X,Vec Xdot,Vec F,void *ctx) { PetscErrorCode ierr; User user = (User)ctx; const PetscScalar *x,*xdot; PetscScalar *f; PetscFunctionBeginUser; ierr = VecGetArrayRead(X,&x);CHKERRQ(ierr); ierr = VecGetArrayRead(Xdot,&xdot);CHKERRQ(ierr); ierr = VecGetArray(F,&f);CHKERRQ(ierr); f[0] = xdot[0] - x[1]; f[1] = xdot[1] - user->mu*((1.0-x[0]*x[0])*x[1] - x[0]); ierr = VecRestoreArrayRead(X,&x);CHKERRQ(ierr); ierr = VecRestoreArrayRead(Xdot,&xdot);CHKERRQ(ierr); ierr = VecRestoreArray(F,&f);CHKERRQ(ierr); PetscFunctionReturn(0); } static PetscErrorCode IJacobian(TS ts,PetscReal t,Vec X,Vec Xdot,PetscReal a,Mat A,Mat B,void *ctx) { PetscErrorCode ierr; User user = (User)ctx; PetscInt rowcol[] = {0,1}; const PetscScalar *x; PetscScalar J[2][2]; PetscFunctionBeginUser; ierr = VecGetArrayRead(X,&x);CHKERRQ(ierr); J[0][0] = a; J[0][1] = -1.0; J[1][0] = user->mu*(1.0 + 2.0*x[0]*x[1]); J[1][1] = a - user->mu*(1.0-x[0]*x[0]); ierr = MatSetValues(B,2,rowcol,2,rowcol,&J[0][0],INSERT_VALUES);CHKERRQ(ierr); ierr = VecRestoreArrayRead(X,&x);CHKERRQ(ierr); ierr = MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); if (A != B) { ierr = MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); ierr = MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);CHKERRQ(ierr); } PetscFunctionReturn(0); } int main(int argc,char **argv) { TS ts; /* nonlinear solver */ Vec x; /* solution, residual vectors */ Mat A; /* Jacobian matrix */ PetscInt steps; PetscReal ftime = 2; PetscScalar *x_ptr; PetscMPIInt size; struct _n_User user; PetscErrorCode ierr; /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Initialize program - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = PetscInitialize(&argc,&argv,NULL,help);if (ierr) return ierr; ierr = MPI_Comm_size(PETSC_COMM_WORLD,&size);CHKERRMPI(ierr); if (size != 1) SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_WRONG_MPI_SIZE,"This is a uniprocessor example only!"); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set runtime options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ user.next_output = 0.0; user.mu = 1.0e6; ierr = PetscOptionsBegin(PETSC_COMM_WORLD,NULL,"Physical parameters",NULL); ierr = PetscOptionsReal("-mu","Stiffness parameter","<1.0e6>",user.mu,&user.mu,NULL);CHKERRQ(ierr); ierr = PetscOptionsEnd();CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create necessary matrix and vectors, solve same ODE on every process - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatCreate(PETSC_COMM_WORLD,&A);CHKERRQ(ierr); ierr = MatSetSizes(A,PETSC_DECIDE,PETSC_DECIDE,2,2);CHKERRQ(ierr); ierr = MatSetFromOptions(A);CHKERRQ(ierr); ierr = MatSetUp(A);CHKERRQ(ierr); ierr = MatCreateVecs(A,&x,NULL);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Create timestepping solver context - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSCreate(PETSC_COMM_WORLD,&ts);CHKERRQ(ierr); ierr = TSSetType(ts,TSBEULER);CHKERRQ(ierr); ierr = TSSetIFunction(ts,NULL,IFunction,&user);CHKERRQ(ierr); ierr = TSSetIJacobian(ts,A,A,IJacobian,&user);CHKERRQ(ierr); ierr = TSSetMaxTime(ts,ftime);CHKERRQ(ierr); ierr = TSSetExactFinalTime(ts,TS_EXACTFINALTIME_STEPOVER);CHKERRQ(ierr); ierr = TSSetTolerances(ts,1.e-4,NULL,1.e-4,NULL);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set initial conditions - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = VecGetArray(x,&x_ptr);CHKERRQ(ierr); x_ptr[0] = 2.0; x_ptr[1] = -6.6e-01; ierr = VecRestoreArray(x,&x_ptr);CHKERRQ(ierr); ierr = TSSetTimeStep(ts,.000001);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Set runtime options - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSetFromOptions(ts);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Solve nonlinear system - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = TSSolve(ts,x);CHKERRQ(ierr); ierr = TSGetSolveTime(ts,&ftime);CHKERRQ(ierr); ierr = TSGetStepNumber(ts,&steps);CHKERRQ(ierr); ierr = PetscPrintf(PETSC_COMM_WORLD,"steps %D, ftime %g\n",steps,(double)ftime);CHKERRQ(ierr); ierr = VecView(x,PETSC_VIEWER_STDOUT_WORLD);CHKERRQ(ierr); /* - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Free work space. All PETSc objects should be destroyed when they are no longer needed. - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - */ ierr = MatDestroy(&A);CHKERRQ(ierr); ierr = VecDestroy(&x);CHKERRQ(ierr); ierr = TSDestroy(&ts);CHKERRQ(ierr); ierr = PetscFinalize(); return(ierr); } /*TEST build: requires: double !complex !define(PETSC_USE_64BIT_INDICES) radau5 test: args: -ts_monitor_solution -ts_type radau5 TEST*/