Actual source code: gcreate.c

  1: #include <petsc/private/matimpl.h>

  3: #include <../src/mat/impls/aij/seq/aij.h>
  4: #include <../src/mat/impls/aij/mpi/mpiaij.h>

  6: PetscErrorCode MatSetBlockSizes_Default(Mat mat, PetscInt rbs, PetscInt cbs)
  7: {
  8:   PetscFunctionBegin;
  9:   if (!mat->preallocated) PetscFunctionReturn(PETSC_SUCCESS);
 10:   PetscCheck(mat->rmap->bs <= 0 || mat->rmap->bs == rbs, PetscObjectComm((PetscObject)mat), PETSC_ERR_SUP, "Cannot change row block size %" PetscInt_FMT " to %" PetscInt_FMT, mat->rmap->bs, rbs);
 11:   PetscCheck(mat->cmap->bs <= 0 || mat->cmap->bs == cbs, PetscObjectComm((PetscObject)mat), PETSC_ERR_SUP, "Cannot change column block size %" PetscInt_FMT " to %" PetscInt_FMT, mat->cmap->bs, cbs);
 12:   PetscFunctionReturn(PETSC_SUCCESS);
 13: }

 15: PetscErrorCode MatShift_Basic(Mat Y, PetscScalar a)
 16: {
 17:   PetscInt    i, start, end, oldValA = 0, oldValB = 0;
 18:   PetscScalar alpha = a;
 19:   PetscBool   prevoption;
 20:   PetscBool   isSeqAIJDerived, isMPIAIJDerived; // all classes sharing SEQAIJHEADER or MPIAIJHEADER
 21:   Mat         A = NULL, B = NULL;

 23:   PetscFunctionBegin;
 24:   PetscCall(MatGetOption(Y, MAT_NO_OFF_PROC_ENTRIES, &prevoption));
 25:   PetscCall(MatSetOption(Y, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE));
 26:   PetscCall(PetscObjectBaseTypeCompareAny((PetscObject)Y, &isSeqAIJDerived, MATSEQAIJ, MATSEQBAIJ, MATSEQSBAIJ, ""));
 27:   PetscCall(PetscObjectBaseTypeCompareAny((PetscObject)Y, &isMPIAIJDerived, MATMPIAIJ, MATMPIBAIJ, MATMPISBAIJ, ""));

 29:   if (isSeqAIJDerived) A = Y;
 30:   else if (isMPIAIJDerived) {
 31:     Mat_MPIAIJ *mpiaij = (Mat_MPIAIJ *)Y->data;
 32:     A                  = mpiaij->A;
 33:     B                  = mpiaij->B;
 34:   }

 36:   if (A) {
 37:     oldValA                        = ((Mat_SeqAIJ *)A->data)->nonew;
 38:     ((Mat_SeqAIJ *)A->data)->nonew = 0; // so that new nonzero locations are allowed
 39:   }
 40:   if (B) {
 41:     oldValB                        = ((Mat_SeqAIJ *)B->data)->nonew;
 42:     ((Mat_SeqAIJ *)B->data)->nonew = 0;
 43:   }

 45:   PetscCall(MatGetOwnershipRange(Y, &start, &end));
 46:   for (i = start; i < end; i++) {
 47:     if (i < Y->cmap->N) PetscCall(MatSetValues(Y, 1, &i, 1, &i, &alpha, ADD_VALUES));
 48:   }
 49:   PetscCall(MatAssemblyBegin(Y, MAT_FINAL_ASSEMBLY));
 50:   PetscCall(MatAssemblyEnd(Y, MAT_FINAL_ASSEMBLY));
 51:   PetscCall(MatSetOption(Y, MAT_NO_OFF_PROC_ENTRIES, prevoption));
 52:   if (A) ((Mat_SeqAIJ *)A->data)->nonew = oldValA;
 53:   if (B) ((Mat_SeqAIJ *)B->data)->nonew = oldValB;
 54:   PetscFunctionReturn(PETSC_SUCCESS);
 55: }

 57: /*@
 58:   MatCreate - Creates a matrix where the type is determined
 59:   from either a call to `MatSetType()` or from the options database
 60:   with a call to `MatSetFromOptions()`.

 62:   Collective

 64:   Input Parameter:
 65: . comm - MPI communicator

 67:   Output Parameter:
 68: . A - the matrix

 70:   Options Database Keys:
 71: + -mat_type seqaij   - `MATSEQAIJ` type, uses `MatCreateSeqAIJ()`
 72: . -mat_type mpiaij   - `MATMPIAIJ` type, uses `MatCreateAIJ()`
 73: . -mat_type seqdense - `MATSEQDENSE`, uses `MatCreateSeqDense()`
 74: . -mat_type mpidense - `MATMPIDENSE` type, uses `MatCreateDense()`
 75: . -mat_type seqbaij  - `MATSEQBAIJ` type, uses `MatCreateSeqBAIJ()`
 76: - -mat_type mpibaij  - `MATMPIBAIJ` type, uses `MatCreateBAIJ()`

 78:    See the manpages for particular formats (e.g., `MATSEQAIJ`)
 79:    for additional format-specific options.

 81:   Level: beginner

 83:   Notes:
 84:   The default matrix type is `MATAIJ`, using the routines `MatCreateSeqAIJ()` or
 85:   `MatCreateAIJ()` if you do not set a type in the options database. If you never call
 86:   `MatSetType()` or `MatSetFromOptions()` it will generate an error when you try to use the
 87:   matrix.

 89: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MatCreateAIJ()`,
 90:           `MatCreateSeqDense()`, `MatCreateDense()`,
 91:           `MatCreateSeqBAIJ()`, `MatCreateBAIJ()`,
 92:           `MatCreateSeqSBAIJ()`, `MatCreateSBAIJ()`,
 93:           `MatConvert()`
 94: @*/
 95: PetscErrorCode MatCreate(MPI_Comm comm, Mat *A)
 96: {
 97:   Mat B;

 99:   PetscFunctionBegin;
100:   PetscAssertPointer(A, 2);

102:   *A = NULL;
103:   PetscCall(MatInitializePackage());

105:   PetscCall(PetscHeaderCreate(B, MAT_CLASSID, "Mat", "Matrix", "Mat", comm, MatDestroy, MatView));
106:   PetscCall(PetscLayoutCreate(comm, &B->rmap));
107:   PetscCall(PetscLayoutCreate(comm, &B->cmap));
108:   PetscCall(PetscStrallocpy(VECSTANDARD, &B->defaultvectype));
109:   PetscCall(PetscStrallocpy(PETSCRANDER48, &B->defaultrandtype));

111:   B->symmetric                   = PETSC_BOOL3_UNKNOWN;
112:   B->hermitian                   = PETSC_BOOL3_UNKNOWN;
113:   B->structurally_symmetric      = PETSC_BOOL3_UNKNOWN;
114:   B->spd                         = PETSC_BOOL3_UNKNOWN;
115:   B->symmetry_eternal            = PETSC_FALSE;
116:   B->structural_symmetry_eternal = PETSC_FALSE;

118:   B->congruentlayouts = PETSC_DECIDE;
119:   B->preallocated     = PETSC_FALSE;
120: #if defined(PETSC_HAVE_DEVICE)
121:   B->boundtocpu = PETSC_TRUE;
122: #endif
123:   *A = B;
124:   PetscFunctionReturn(PETSC_SUCCESS);
125: }

127: /*@C
128:   MatCreateFromOptions - Creates a matrix whose type is set from the options database

130:   Collective

132:   Input Parameters:
133: + comm   - MPI communicator
134: . prefix - [optional] prefix for the options database
135: . bs     - the blocksize (commonly 1)
136: . m      - the local number of rows (or `PETSC_DECIDE`)
137: . n      - the local number of columns (or `PETSC_DECIDE` or `PETSC_DETERMINE`)
138: . M      - the global number of rows (or `PETSC_DETERMINE`)
139: - N      - the global number of columns (or `PETSC_DETERMINE`)

141:   Output Parameter:
142: . A - the matrix

144:   Options Database Key:
145: . -mat_type - see `MatType`, for example `aij`, `aijcusparse`, `baij`, `sbaij`, dense, defaults to `aij`

147:   Level: beginner

149: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MatCreateAIJ()`,
150:           `MatCreateSeqDense()`, `MatCreateDense()`,
151:           `MatCreateSeqBAIJ()`, `MatCreateBAIJ()`,
152:           `MatCreateSeqSBAIJ()`, `MatCreateSBAIJ()`,
153:           `MatConvert()`, `MatCreate()`
154: @*/
155: PetscErrorCode MatCreateFromOptions(MPI_Comm comm, const char *prefix, PetscInt bs, PetscInt m, PetscInt n, PetscInt M, PetscInt N, Mat *A)
156: {
157:   PetscFunctionBegin;
158:   PetscAssertPointer(A, 8);
159:   PetscCall(MatCreate(comm, A));
160:   if (prefix) PetscCall(MatSetOptionsPrefix(*A, prefix));
161:   PetscCall(MatSetBlockSize(*A, bs));
162:   PetscCall(MatSetSizes(*A, m, n, M, N));
163:   PetscCall(MatSetFromOptions(*A));
164:   PetscFunctionReturn(PETSC_SUCCESS);
165: }

167: /*@
168:   MatSetErrorIfFailure - Causes `Mat` to generate an immediate error, for example a zero pivot, is detected.

170:   Logically Collective

172:   Input Parameters:
173: + mat - matrix obtained from `MatCreate()`
174: - flg - `PETSC_TRUE` indicates you want the error generated

176:   Level: advanced

178:   Note:
179:   If this flag is not set then the matrix operation will note the error and continue. The error may cause a later `PC` or `KSP` error
180:   or result in a `KSPConvergedReason` indicating the method did not converge.

182: .seealso: [](ch_matrices), `Mat`, `PCSetErrorIfFailure()`, `KSPConvergedReason`, `SNESConvergedReason`
183: @*/
184: PetscErrorCode MatSetErrorIfFailure(Mat mat, PetscBool flg)
185: {
186:   PetscFunctionBegin;
189:   mat->erroriffailure = flg;
190:   PetscFunctionReturn(PETSC_SUCCESS);
191: }

193: /*@
194:   MatSetSizes - Sets the local and global sizes, and checks to determine compatibility

196:   Collective

198:   Input Parameters:
199: + A - the matrix
200: . m - number of local rows (or `PETSC_DECIDE`)
201: . n - number of local columns (or `PETSC_DECIDE`)
202: . M - number of global rows (or `PETSC_DETERMINE`)
203: - N - number of global columns (or `PETSC_DETERMINE`)

205:   Level: beginner

207:   Notes:
208:   `m` (`n`) and `M` (`N`) cannot be both `PETSC_DECIDE`
209:   If one processor calls this with `M` (`N`) of `PETSC_DECIDE` then all processors must, otherwise the program will hang.

211:   If `PETSC_DECIDE` is not used for the arguments 'm' and 'n', then the
212:   user must ensure that they are chosen to be compatible with the
213:   vectors. To do this, one first considers the matrix-vector product
214:   'y = A x'. The `m` that is used in the above routine must match the
215:   local size used in the vector creation routine `VecCreateMPI()` for 'y'.
216:   Likewise, the `n` used must match that used as the local size in
217:   `VecCreateMPI()` for 'x'.

219:   You cannot change the sizes once they have been set.

221:   The sizes must be set before `MatSetUp()` or MatXXXSetPreallocation() is called.

223: .seealso: [](ch_matrices), `Mat`, `MatGetSize()`, `PetscSplitOwnership()`
224: @*/
225: PetscErrorCode MatSetSizes(Mat A, PetscInt m, PetscInt n, PetscInt M, PetscInt N)
226: {
227:   PetscFunctionBegin;
231:   PetscCheck(M <= 0 || m <= M, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local row size %" PetscInt_FMT " cannot be larger than global row size %" PetscInt_FMT, m, M);
232:   PetscCheck(N <= 0 || n <= N, PETSC_COMM_SELF, PETSC_ERR_ARG_INCOMP, "Local column size %" PetscInt_FMT " cannot be larger than global column size %" PetscInt_FMT, n, N);
233:   PetscCheck((A->rmap->n < 0 || A->rmap->N < 0) || (A->rmap->n == m && (M <= 0 || A->rmap->N == M)), PETSC_COMM_SELF, PETSC_ERR_SUP, "Cannot change/reset row sizes to %" PetscInt_FMT " local %" PetscInt_FMT " global after previously setting them to %" PetscInt_FMT " local %" PetscInt_FMT " global", m, M,
234:              A->rmap->n, A->rmap->N);
235:   PetscCheck((A->cmap->n < 0 || A->cmap->N < 0) || (A->cmap->n == n && (N <= 0 || A->cmap->N == N)), PETSC_COMM_SELF, PETSC_ERR_SUP, "Cannot change/reset column sizes to %" PetscInt_FMT " local %" PetscInt_FMT " global after previously setting them to %" PetscInt_FMT " local %" PetscInt_FMT " global", n, N,
236:              A->cmap->n, A->cmap->N);
237:   A->rmap->n = m;
238:   A->cmap->n = n;
239:   A->rmap->N = M > -1 ? M : A->rmap->N;
240:   A->cmap->N = N > -1 ? N : A->cmap->N;
241:   PetscFunctionReturn(PETSC_SUCCESS);
242: }

244: /*@
245:   MatSetFromOptions - Creates a matrix where the type is determined
246:   from the options database.

248:   Collective

250:   Input Parameter:
251: . B - the matrix

253:   Options Database Keys:
254: + -mat_type seqaij   - `MATSEQAIJ` type, uses `MatCreateSeqAIJ()`
255: . -mat_type mpiaij   - `MATMPIAIJ` type, uses `MatCreateAIJ()`
256: . -mat_type seqdense - `MATSEQDENSE` type, uses `MatCreateSeqDense()`
257: . -mat_type mpidense - `MATMPIDENSE`, uses `MatCreateDense()`
258: . -mat_type seqbaij  - `MATSEQBAIJ`, uses `MatCreateSeqBAIJ()`
259: - -mat_type mpibaij  - `MATMPIBAIJ`, uses `MatCreateBAIJ()`

261:    See the manpages for particular formats (e.g., `MATSEQAIJ`)
262:    for additional format-specific options.

264:   Level: beginner

266:   Notes:
267:   Generates a parallel MPI matrix if the communicator has more than one processor.  The default
268:   matrix type is `MATAIJ`, using the routines `MatCreateSeqAIJ()` and `MatCreateAIJ()` if you
269:   do not select a type in the options database.

271: .seealso: [](ch_matrices), `Mat`, `MatCreateSeqAIJ()`, `MatCreateAIJ()`,
272:           `MatCreateSeqDense()`, `MatCreateDense()`,
273:           `MatCreateSeqBAIJ()`, `MatCreateBAIJ()`,
274:           `MatCreateSeqSBAIJ()`, `MatCreateSBAIJ()`,
275:           `MatConvert()`
276: @*/
277: PetscErrorCode MatSetFromOptions(Mat B)
278: {
279:   const char *deft = MATAIJ;
280:   char        type[256];
281:   PetscBool   flg, set;
282:   PetscInt    bind_below = 0;

284:   PetscFunctionBegin;

287:   PetscObjectOptionsBegin((PetscObject)B);

289:   if (B->rmap->bs < 0) {
290:     PetscInt newbs = -1;
291:     PetscCall(PetscOptionsInt("-mat_block_size", "Set the blocksize used to store the matrix", "MatSetBlockSize", newbs, &newbs, &flg));
292:     if (flg) {
293:       PetscCall(PetscLayoutSetBlockSize(B->rmap, newbs));
294:       PetscCall(PetscLayoutSetBlockSize(B->cmap, newbs));
295:     }
296:   }

298:   PetscCall(PetscOptionsFList("-mat_type", "Matrix type", "MatSetType", MatList, deft, type, 256, &flg));
299:   if (flg) {
300:     PetscCall(MatSetType(B, type));
301:   } else if (!((PetscObject)B)->type_name) {
302:     PetscCall(MatSetType(B, deft));
303:   }

305:   PetscCall(PetscOptionsName("-mat_is_symmetric", "Checks if mat is symmetric on MatAssemblyEnd()", "MatIsSymmetric", &B->checksymmetryonassembly));
306:   PetscCall(PetscOptionsReal("-mat_is_symmetric", "Checks if mat is symmetric on MatAssemblyEnd()", "MatIsSymmetric", B->checksymmetrytol, &B->checksymmetrytol, NULL));
307:   PetscCall(PetscOptionsBool("-mat_null_space_test", "Checks if provided null space is correct in MatAssemblyEnd()", "MatSetNullSpaceTest", B->checknullspaceonassembly, &B->checknullspaceonassembly, NULL));
308:   PetscCall(PetscOptionsBool("-mat_error_if_failure", "Generate an error if an error occurs when factoring the matrix", "MatSetErrorIfFailure", B->erroriffailure, &B->erroriffailure, NULL));

310:   PetscTryTypeMethod(B, setfromoptions, PetscOptionsObject);

312:   flg = PETSC_FALSE;
313:   PetscCall(PetscOptionsBool("-mat_new_nonzero_location_err", "Generate an error if new nonzeros are created in the matrix structure (useful to test preallocation)", "MatSetOption", flg, &flg, &set));
314:   if (set) PetscCall(MatSetOption(B, MAT_NEW_NONZERO_LOCATION_ERR, flg));
315:   flg = PETSC_FALSE;
316:   PetscCall(PetscOptionsBool("-mat_new_nonzero_allocation_err", "Generate an error if new nonzeros are allocated in the matrix structure (useful to test preallocation)", "MatSetOption", flg, &flg, &set));
317:   if (set) PetscCall(MatSetOption(B, MAT_NEW_NONZERO_ALLOCATION_ERR, flg));
318:   flg = PETSC_FALSE;
319:   PetscCall(PetscOptionsBool("-mat_ignore_zero_entries", "For AIJ/IS matrices this will stop zero values from creating a zero location in the matrix", "MatSetOption", flg, &flg, &set));
320:   if (set) PetscCall(MatSetOption(B, MAT_IGNORE_ZERO_ENTRIES, flg));

322:   flg = PETSC_FALSE;
323:   PetscCall(PetscOptionsBool("-mat_form_explicit_transpose", "Hint to form an explicit transpose for operations like MatMultTranspose", "MatSetOption", flg, &flg, &set));
324:   if (set) PetscCall(MatSetOption(B, MAT_FORM_EXPLICIT_TRANSPOSE, flg));

326:   /* Bind to CPU if below a user-specified size threshold.
327:    * This perhaps belongs in the options for the GPU Mat types, but MatBindToCPU() does nothing when called on non-GPU types,
328:    * and putting it here makes is more maintainable than duplicating this for all. */
329:   PetscCall(PetscOptionsInt("-mat_bind_below", "Set the size threshold (in local rows) below which the Mat is bound to the CPU", "MatBindToCPU", bind_below, &bind_below, &flg));
330:   if (flg && B->rmap->n < bind_below) PetscCall(MatBindToCPU(B, PETSC_TRUE));

332:   /* process any options handlers added with PetscObjectAddOptionsHandler() */
333:   PetscCall(PetscObjectProcessOptionsHandlers((PetscObject)B, PetscOptionsObject));
334:   PetscOptionsEnd();
335:   PetscFunctionReturn(PETSC_SUCCESS);
336: }

338: /*@C
339:   MatXAIJSetPreallocation - set preallocation for serial and parallel `MATAIJ`, `MATBAIJ`, and `MATSBAIJ` matrices and their unassembled versions.

341:   Collective

343:   Input Parameters:
344: + A     - matrix being preallocated
345: . bs    - block size
346: . dnnz  - number of nonzero column blocks per block row of diagonal part of parallel matrix
347: . onnz  - number of nonzero column blocks per block row of off-diagonal part of parallel matrix
348: . dnnzu - number of nonzero column blocks per block row of upper-triangular part of diagonal part of parallel matrix
349: - onnzu - number of nonzero column blocks per block row of upper-triangular part of off-diagonal part of parallel matrix

351:   Level: beginner

353: .seealso: [](ch_matrices), `Mat`, `MatSeqAIJSetPreallocation()`, `MatMPIAIJSetPreallocation()`, `MatSeqBAIJSetPreallocation()`, `MatMPIBAIJSetPreallocation()`,
354:           `MatSeqSBAIJSetPreallocation()`, `MatMPISBAIJSetPreallocation()`,
355:           `PetscSplitOwnership()`
356: @*/
357: PetscErrorCode MatXAIJSetPreallocation(Mat A, PetscInt bs, const PetscInt dnnz[], const PetscInt onnz[], const PetscInt dnnzu[], const PetscInt onnzu[])
358: {
359:   PetscInt cbs;
360:   void (*aij)(void);
361:   void (*is)(void);
362:   void (*hyp)(void) = NULL;

364:   PetscFunctionBegin;
365:   if (bs != PETSC_DECIDE) { /* don't mess with an already set block size */
366:     PetscCall(MatSetBlockSize(A, bs));
367:   }
368:   PetscCall(PetscLayoutSetUp(A->rmap));
369:   PetscCall(PetscLayoutSetUp(A->cmap));
370:   PetscCall(MatGetBlockSizes(A, &bs, &cbs));
371:   /* these routines assumes bs == cbs, this should be checked somehow */
372:   PetscCall(MatSeqBAIJSetPreallocation(A, bs, 0, dnnz));
373:   PetscCall(MatMPIBAIJSetPreallocation(A, bs, 0, dnnz, 0, onnz));
374:   PetscCall(MatSeqSBAIJSetPreallocation(A, bs, 0, dnnzu));
375:   PetscCall(MatMPISBAIJSetPreallocation(A, bs, 0, dnnzu, 0, onnzu));
376:   /*
377:     In general, we have to do extra work to preallocate for scalar (AIJ) or unassembled (IS) matrices so we check whether it will do any
378:     good before going on with it.
379:   */
380:   PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatMPIAIJSetPreallocation_C", &aij));
381:   PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatISSetPreallocation_C", &is));
382: #if defined(PETSC_HAVE_HYPRE)
383:   PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatHYPRESetPreallocation_C", &hyp));
384: #endif
385:   if (!aij && !is && !hyp) PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatSeqAIJSetPreallocation_C", &aij));
386:   if (aij || is || hyp) {
387:     if (bs == cbs && bs == 1) {
388:       PetscCall(MatSeqAIJSetPreallocation(A, 0, dnnz));
389:       PetscCall(MatMPIAIJSetPreallocation(A, 0, dnnz, 0, onnz));
390:       PetscCall(MatISSetPreallocation(A, 0, dnnz, 0, onnz));
391: #if defined(PETSC_HAVE_HYPRE)
392:       PetscCall(MatHYPRESetPreallocation(A, 0, dnnz, 0, onnz));
393: #endif
394:     } else { /* Convert block-row precallocation to scalar-row */
395:       PetscInt i, m, *sdnnz, *sonnz;
396:       PetscCall(MatGetLocalSize(A, &m, NULL));
397:       PetscCall(PetscMalloc2((!!dnnz) * m, &sdnnz, (!!onnz) * m, &sonnz));
398:       for (i = 0; i < m; i++) {
399:         if (dnnz) sdnnz[i] = dnnz[i / bs] * cbs;
400:         if (onnz) sonnz[i] = onnz[i / bs] * cbs;
401:       }
402:       PetscCall(MatSeqAIJSetPreallocation(A, 0, dnnz ? sdnnz : NULL));
403:       PetscCall(MatMPIAIJSetPreallocation(A, 0, dnnz ? sdnnz : NULL, 0, onnz ? sonnz : NULL));
404:       PetscCall(MatISSetPreallocation(A, 0, dnnz ? sdnnz : NULL, 0, onnz ? sonnz : NULL));
405: #if defined(PETSC_HAVE_HYPRE)
406:       PetscCall(MatHYPRESetPreallocation(A, 0, dnnz ? sdnnz : NULL, 0, onnz ? sonnz : NULL));
407: #endif
408:       PetscCall(PetscFree2(sdnnz, sonnz));
409:     }
410:   }
411:   PetscFunctionReturn(PETSC_SUCCESS);
412: }

414: /*@C
415:   MatHeaderMerge - Merges some information from the header of `C` to `A`; the `C` object is then destroyed

417:   Collective, No Fortran Support

419:   Input Parameters:
420: + A - a `Mat` being merged into
421: - C - the `Mat` providing the merge information

423:   Level: developer

425:   Developer Note:
426:   This is somewhat different from `MatHeaderReplace()`, it would be nice to merge the code

428: .seealso: `Mat`, `MatHeaderReplace()`
429:  @*/
430: PetscErrorCode MatHeaderMerge(Mat A, Mat *C)
431: {
432:   PetscInt         refct;
433:   PetscOps         Abops;
434:   struct _MatOps   Aops;
435:   char            *mtype, *mname, *mprefix;
436:   Mat_Product     *product;
437:   Mat_Redundant   *redundant;
438:   PetscObjectState state;

440:   PetscFunctionBegin;
443:   if (A == *C) PetscFunctionReturn(PETSC_SUCCESS);
444:   PetscCheckSameComm(A, 1, *C, 2);
445:   /* save the parts of A we need */
446:   Abops     = ((PetscObject)A)->bops[0];
447:   Aops      = A->ops[0];
448:   refct     = ((PetscObject)A)->refct;
449:   mtype     = ((PetscObject)A)->type_name;
450:   mname     = ((PetscObject)A)->name;
451:   state     = ((PetscObject)A)->state;
452:   mprefix   = ((PetscObject)A)->prefix;
453:   product   = A->product;
454:   redundant = A->redundant;

456:   /* zero these so the destroy below does not free them */
457:   ((PetscObject)A)->type_name = NULL;
458:   ((PetscObject)A)->name      = NULL;

460:   /*
461:      free all the interior data structures from mat
462:      cannot use PetscUseTypeMethod(A,destroy); because compiler
463:      thinks it may print NULL type_name and name
464:   */
465:   PetscTryTypeMethod(A, destroy);

467:   PetscCall(PetscFree(A->defaultvectype));
468:   PetscCall(PetscFree(A->defaultrandtype));
469:   PetscCall(PetscLayoutDestroy(&A->rmap));
470:   PetscCall(PetscLayoutDestroy(&A->cmap));
471:   PetscCall(PetscFunctionListDestroy(&((PetscObject)A)->qlist));
472:   PetscCall(PetscObjectListDestroy(&((PetscObject)A)->olist));
473:   PetscCall(PetscComposedQuantitiesDestroy((PetscObject)A));

475:   /* copy C over to A */
476:   PetscCall(PetscFree(A->factorprefix));
477:   PetscCall(PetscMemcpy(A, *C, sizeof(struct _p_Mat)));

479:   /* return the parts of A we saved */
480:   ((PetscObject)A)->bops[0]   = Abops;
481:   A->ops[0]                   = Aops;
482:   ((PetscObject)A)->refct     = refct;
483:   ((PetscObject)A)->type_name = mtype;
484:   ((PetscObject)A)->name      = mname;
485:   ((PetscObject)A)->prefix    = mprefix;
486:   ((PetscObject)A)->state     = state + 1;
487:   A->product                  = product;
488:   A->redundant                = redundant;

490:   /* since these two are copied into A we do not want them destroyed in C */
491:   ((PetscObject)*C)->qlist = NULL;
492:   ((PetscObject)*C)->olist = NULL;

494:   PetscCall(PetscHeaderDestroy(C));
495:   PetscFunctionReturn(PETSC_SUCCESS);
496: }

498: /*@
499:   MatHeaderReplace - Replaces the internal data of matrix `A` by the internal data of matrix `C` while deleting the outer wrapper of `C`

501:   Input Parameters:
502: + A - a `Mat` whose internal data is to be replaced
503: - C - the `Mat` providing new internal data for `A`

505:   Level: advanced

507:   Example Usage\:
508: .vb
509:   Mat C;
510:   MatCreateSeqAIJWithArrays(..., &C);
511:   MatHeaderReplace(A, &C);
512:   // C has been destroyed and A contains the matrix entries of C
513: .ve

515:   Note:
516:   This can be used inside a function provided to `SNESSetJacobian()`, `TSSetRHSJacobian()`, or `TSSetIJacobian()` in cases where the user code computes an entirely new sparse matrix
517:   (generally with a different nonzero pattern) for each Newton update. It is usually better to reuse the matrix structure of `A` instead of constructing an entirely new one.

519:   Developer Note:
520:   This is somewhat different from `MatHeaderMerge()` it would be nice to merge the code

522: .seealso: `Mat`, `MatHeaderMerge()`
523:  @*/
524: PetscErrorCode MatHeaderReplace(Mat A, Mat *C)
525: {
526:   PetscInt         refct;
527:   PetscObjectState state;
528:   struct _p_Mat    buffer;
529:   MatStencilInfo   stencil;

531:   PetscFunctionBegin;
534:   if (A == *C) PetscFunctionReturn(PETSC_SUCCESS);
535:   PetscCheckSameComm(A, 1, *C, 2);
536:   PetscCheck(((PetscObject)*C)->refct == 1, PetscObjectComm((PetscObject)C), PETSC_ERR_ARG_WRONGSTATE, "Object C has refct %" PetscInt_FMT " > 1, would leave hanging reference", ((PetscObject)*C)->refct);

538:   /* swap C and A */
539:   refct   = ((PetscObject)A)->refct;
540:   state   = ((PetscObject)A)->state;
541:   stencil = A->stencil;
542:   PetscCall(PetscMemcpy(&buffer, A, sizeof(struct _p_Mat)));
543:   PetscCall(PetscMemcpy(A, *C, sizeof(struct _p_Mat)));
544:   PetscCall(PetscMemcpy(*C, &buffer, sizeof(struct _p_Mat)));
545:   ((PetscObject)A)->refct = refct;
546:   ((PetscObject)A)->state = state + 1;
547:   A->stencil              = stencil;

549:   ((PetscObject)*C)->refct = 1;
550:   PetscCall(MatDestroy(C));
551:   PetscFunctionReturn(PETSC_SUCCESS);
552: }

554: /*@
555:   MatBindToCPU - marks a matrix to temporarily stay on the CPU and perform computations on the CPU

557:   Logically Collective

559:   Input Parameters:
560: + A   - the matrix
561: - flg - bind to the CPU if value of `PETSC_TRUE`

563:   Level: intermediate

565: .seealso: [](ch_matrices), `Mat`, `MatBoundToCPU()`
566: @*/
567: PetscErrorCode MatBindToCPU(Mat A, PetscBool flg)
568: {
569:   PetscFunctionBegin;
572: #if defined(PETSC_HAVE_DEVICE)
573:   if (A->boundtocpu == flg) PetscFunctionReturn(PETSC_SUCCESS);
574:   A->boundtocpu = flg;
575:   PetscTryTypeMethod(A, bindtocpu, flg);
576: #endif
577:   PetscFunctionReturn(PETSC_SUCCESS);
578: }

580: /*@
581:   MatBoundToCPU - query if a matrix is bound to the CPU

583:   Input Parameter:
584: . A - the matrix

586:   Output Parameter:
587: . flg - the logical flag

589:   Level: intermediate

591: .seealso: [](ch_matrices), `Mat`, `MatBindToCPU()`
592: @*/
593: PetscErrorCode MatBoundToCPU(Mat A, PetscBool *flg)
594: {
595:   PetscFunctionBegin;
597:   PetscAssertPointer(flg, 2);
598: #if defined(PETSC_HAVE_DEVICE)
599:   *flg = A->boundtocpu;
600: #else
601:   *flg = PETSC_TRUE;
602: #endif
603:   PetscFunctionReturn(PETSC_SUCCESS);
604: }

606: PetscErrorCode MatSetValuesCOO_Basic(Mat A, const PetscScalar coo_v[], InsertMode imode)
607: {
608:   IS              is_coo_i, is_coo_j;
609:   const PetscInt *coo_i, *coo_j;
610:   PetscInt        n, n_i, n_j;
611:   PetscScalar     zero = 0.;

613:   PetscFunctionBegin;
614:   PetscCall(PetscObjectQuery((PetscObject)A, "__PETSc_coo_i", (PetscObject *)&is_coo_i));
615:   PetscCall(PetscObjectQuery((PetscObject)A, "__PETSc_coo_j", (PetscObject *)&is_coo_j));
616:   PetscCheck(is_coo_i, PetscObjectComm((PetscObject)A), PETSC_ERR_COR, "Missing coo_i IS");
617:   PetscCheck(is_coo_j, PetscObjectComm((PetscObject)A), PETSC_ERR_COR, "Missing coo_j IS");
618:   PetscCall(ISGetLocalSize(is_coo_i, &n_i));
619:   PetscCall(ISGetLocalSize(is_coo_j, &n_j));
620:   PetscCheck(n_i == n_j, PETSC_COMM_SELF, PETSC_ERR_COR, "Wrong local size %" PetscInt_FMT " != %" PetscInt_FMT, n_i, n_j);
621:   PetscCall(ISGetIndices(is_coo_i, &coo_i));
622:   PetscCall(ISGetIndices(is_coo_j, &coo_j));
623:   if (imode != ADD_VALUES) PetscCall(MatZeroEntries(A));
624:   for (n = 0; n < n_i; n++) PetscCall(MatSetValue(A, coo_i[n], coo_j[n], coo_v ? coo_v[n] : zero, ADD_VALUES));
625:   PetscCall(ISRestoreIndices(is_coo_i, &coo_i));
626:   PetscCall(ISRestoreIndices(is_coo_j, &coo_j));
627:   PetscFunctionReturn(PETSC_SUCCESS);
628: }

630: PetscErrorCode MatSetPreallocationCOO_Basic(Mat A, PetscCount ncoo, PetscInt coo_i[], PetscInt coo_j[])
631: {
632:   Mat         preallocator;
633:   IS          is_coo_i, is_coo_j;
634:   PetscScalar zero = 0.0;

636:   PetscFunctionBegin;
637:   PetscCall(PetscLayoutSetUp(A->rmap));
638:   PetscCall(PetscLayoutSetUp(A->cmap));
639:   PetscCall(MatCreate(PetscObjectComm((PetscObject)A), &preallocator));
640:   PetscCall(MatSetType(preallocator, MATPREALLOCATOR));
641:   PetscCall(MatSetSizes(preallocator, A->rmap->n, A->cmap->n, A->rmap->N, A->cmap->N));
642:   PetscCall(MatSetLayouts(preallocator, A->rmap, A->cmap));
643:   PetscCall(MatSetUp(preallocator));
644:   for (PetscCount n = 0; n < ncoo; n++) PetscCall(MatSetValue(preallocator, coo_i[n], coo_j[n], zero, INSERT_VALUES));
645:   PetscCall(MatAssemblyBegin(preallocator, MAT_FINAL_ASSEMBLY));
646:   PetscCall(MatAssemblyEnd(preallocator, MAT_FINAL_ASSEMBLY));
647:   PetscCall(MatPreallocatorPreallocate(preallocator, PETSC_TRUE, A));
648:   PetscCall(MatDestroy(&preallocator));
649:   PetscCheck(ncoo <= PETSC_MAX_INT, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "ncoo %" PetscCount_FMT " overflowed PetscInt; configure --with-64-bit-indices or request support", ncoo);
650:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, ncoo, coo_i, PETSC_COPY_VALUES, &is_coo_i));
651:   PetscCall(ISCreateGeneral(PETSC_COMM_SELF, ncoo, coo_j, PETSC_COPY_VALUES, &is_coo_j));
652:   PetscCall(PetscObjectCompose((PetscObject)A, "__PETSc_coo_i", (PetscObject)is_coo_i));
653:   PetscCall(PetscObjectCompose((PetscObject)A, "__PETSc_coo_j", (PetscObject)is_coo_j));
654:   PetscCall(ISDestroy(&is_coo_i));
655:   PetscCall(ISDestroy(&is_coo_j));
656:   PetscFunctionReturn(PETSC_SUCCESS);
657: }

659: /*@C
660:   MatSetPreallocationCOO - set preallocation for matrices using a coordinate format of the entries with global indices

662:   Collective

664:   Input Parameters:
665: + A     - matrix being preallocated
666: . ncoo  - number of entries
667: . coo_i - row indices
668: - coo_j - column indices

670:   Level: beginner

672:   Notes:
673:   The indices `coo_i` and `coo_j` may be modified within this function. The caller should not rely on them
674:   having any specific value after this function returns. The arrays can be freed or reused immediately
675:   after this function returns.

677:   Entries can be repeated, see `MatSetValuesCOO()`. Entries with negative row or column indices are allowed
678:   but will be ignored. The corresponding entries in `MatSetValuesCOO()` will be ignored too. Remote entries
679:   are allowed and will be properly added or inserted to the matrix, unless the matrix option `MAT_IGNORE_OFF_PROC_ENTRIES`
680:   is set, in which case remote entries are ignored, or `MAT_NO_OFF_PROC_ENTRIES` is set, in which case an error will be generated.

682:   If you just want to create a sequential AIJ matrix (`MATSEQAIJ`), and your matrix entries in COO format are unique, you can also use
683:   `MatCreateSeqAIJFromTriple()`. But that is not recommended for iterative applications.

685: .seealso: [](ch_matrices), `Mat`, `MatSetValuesCOO()`, `MatSeqAIJSetPreallocation()`, `MatMPIAIJSetPreallocation()`, `MatSeqBAIJSetPreallocation()`,
686:           `MatMPIBAIJSetPreallocation()`, `MatSeqSBAIJSetPreallocation()`, `MatMPISBAIJSetPreallocation()`, `MatSetPreallocationCOOLocal()`,
687:           `DMSetMatrixPreallocateSkip()`, `MatCreateSeqAIJFromTriple()`
688: @*/
689: PetscErrorCode MatSetPreallocationCOO(Mat A, PetscCount ncoo, PetscInt coo_i[], PetscInt coo_j[])
690: {
691:   PetscErrorCode (*f)(Mat, PetscCount, PetscInt[], PetscInt[]) = NULL;

693:   PetscFunctionBegin;
696:   if (ncoo) PetscAssertPointer(coo_i, 3);
697:   if (ncoo) PetscAssertPointer(coo_j, 4);
698:   PetscCall(PetscLayoutSetUp(A->rmap));
699:   PetscCall(PetscLayoutSetUp(A->cmap));
700:   PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatSetPreallocationCOO_C", &f));

702:   PetscCall(PetscLogEventBegin(MAT_PreallCOO, A, 0, 0, 0));
703:   if (f) {
704:     PetscCall((*f)(A, ncoo, coo_i, coo_j));
705:   } else { /* allow fallback, very slow */
706:     PetscCall(MatSetPreallocationCOO_Basic(A, ncoo, coo_i, coo_j));
707:   }
708:   PetscCall(PetscLogEventEnd(MAT_PreallCOO, A, 0, 0, 0));
709:   A->preallocated = PETSC_TRUE;
710:   A->nonzerostate++;
711:   PetscFunctionReturn(PETSC_SUCCESS);
712: }

714: /*@C
715:   MatSetPreallocationCOOLocal - set preallocation for matrices using a coordinate format of the entries with local indices

717:   Collective

719:   Input Parameters:
720: + A     - matrix being preallocated
721: . ncoo  - number of entries
722: . coo_i - row indices (local numbering; may be modified)
723: - coo_j - column indices (local numbering; may be modified)

725:   Level: beginner

727:   Notes:
728:   The local indices are translated using the local to global mapping, thus `MatSetLocalToGlobalMapping()` must have been
729:   called prior to this function. For matrices created with `DMCreateMatrix()` the local to global mapping is often already provided.

731:   The indices `coo_i` and `coo_j` may be modified within this function. They might be translated to corresponding global
732:   indices, but the caller should not rely on them having any specific value after this function returns. The arrays
733:   can be freed or reused immediately after this function returns.

735:   Entries can be repeated, see `MatSetValuesCOO()`. Entries with negative row or column indices are allowed
736:   but will be ignored. The corresponding entries in `MatSetValuesCOO()` will be ignored too. Remote entries
737:   are allowed and will be properly added or inserted to the matrix.

739: .seealso: [](ch_matrices), `Mat`, `MatSetValuesCOO()`, `MatSeqAIJSetPreallocation()`, `MatMPIAIJSetPreallocation()`, `MatSeqBAIJSetPreallocation()`,
740:           `MatMPIBAIJSetPreallocation()`, `MatSeqSBAIJSetPreallocation()`, `MatMPISBAIJSetPreallocation()`, `MatSetPreallocationCOO()`,
741:           `DMSetMatrixPreallocateSkip()`
742: @*/
743: PetscErrorCode MatSetPreallocationCOOLocal(Mat A, PetscCount ncoo, PetscInt coo_i[], PetscInt coo_j[])
744: {
745:   PetscErrorCode (*f)(Mat, PetscCount, PetscInt[], PetscInt[]) = NULL;

747:   PetscFunctionBegin;
750:   if (ncoo) PetscAssertPointer(coo_i, 3);
751:   if (ncoo) PetscAssertPointer(coo_j, 4);
752:   PetscCheck(ncoo <= PETSC_MAX_INT, PETSC_COMM_SELF, PETSC_ERR_ARG_OUTOFRANGE, "ncoo %" PetscCount_FMT " overflowed PetscInt; configure --with-64-bit-indices or request support", ncoo);
753:   PetscCall(PetscLayoutSetUp(A->rmap));
754:   PetscCall(PetscLayoutSetUp(A->cmap));

756:   PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatSetPreallocationCOOLocal_C", &f));
757:   if (f) {
758:     PetscCall((*f)(A, ncoo, coo_i, coo_j));
759:     A->nonzerostate++;
760:   } else {
761:     ISLocalToGlobalMapping ltog_row, ltog_col;
762:     PetscCall(MatGetLocalToGlobalMapping(A, &ltog_row, &ltog_col));
763:     if (ltog_row) PetscCall(ISLocalToGlobalMappingApply(ltog_row, ncoo, coo_i, coo_i));
764:     if (ltog_col) PetscCall(ISLocalToGlobalMappingApply(ltog_col, ncoo, coo_j, coo_j));
765:     PetscCall(MatSetPreallocationCOO(A, ncoo, coo_i, coo_j));
766:   }
767:   A->preallocated = PETSC_TRUE;
768:   PetscFunctionReturn(PETSC_SUCCESS);
769: }

771: /*@
772:   MatSetValuesCOO - set values at once in a matrix preallocated using `MatSetPreallocationCOO()`

774:   Collective

776:   Input Parameters:
777: + A     - matrix being preallocated
778: . coo_v - the matrix values (can be `NULL`)
779: - imode - the insert mode

781:   Level: beginner

783:   Notes:
784:   The values must follow the order of the indices prescribed with `MatSetPreallocationCOO()` or `MatSetPreallocationCOOLocal()`.

786:   When repeated entries are specified in the COO indices the `coo_v` values are first properly summed, regardless of the value of imode.
787:   The imode flag indicates if coo_v must be added to the current values of the matrix (`ADD_VALUES`) or overwritten (`INSERT_VALUES`).

789:   `MatAssemblyBegin()` and `MatAssemblyEnd()` do not need to be called after this routine. It automatically handles the assembly process.

791: .seealso: [](ch_matrices), `Mat`, `MatSetPreallocationCOO()`, `MatSetPreallocationCOOLocal()`, `InsertMode`, `INSERT_VALUES`, `ADD_VALUES`
792: @*/
793: PetscErrorCode MatSetValuesCOO(Mat A, const PetscScalar coo_v[], InsertMode imode)
794: {
795:   PetscErrorCode (*f)(Mat, const PetscScalar[], InsertMode) = NULL;
796:   PetscBool oldFlg;

798:   PetscFunctionBegin;
801:   MatCheckPreallocated(A, 1);
803:   PetscCall(PetscObjectQueryFunction((PetscObject)A, "MatSetValuesCOO_C", &f));
804:   PetscCall(PetscLogEventBegin(MAT_SetVCOO, A, 0, 0, 0));
805:   if (f) {
806:     PetscCall((*f)(A, coo_v, imode)); // all known COO implementations do not use MatStash. They do their own off-proc communication
807:     PetscCall(MatGetOption(A, MAT_NO_OFF_PROC_ENTRIES, &oldFlg));
808:     PetscCall(MatSetOption(A, MAT_NO_OFF_PROC_ENTRIES, PETSC_TRUE)); // set A->nooffprocentries to avoid costly MatStash scatter in MatAssembly
809:   } else {
810:     PetscCall(MatSetValuesCOO_Basic(A, coo_v, imode)); // fall back to MatSetValues, which might use MatStash
811:   }
812:   PetscCall(MatAssemblyBegin(A, MAT_FINAL_ASSEMBLY));
813:   PetscCall(MatAssemblyEnd(A, MAT_FINAL_ASSEMBLY));
814:   if (f) PetscCall(MatSetOption(A, MAT_NO_OFF_PROC_ENTRIES, oldFlg));
815:   PetscCall(PetscLogEventEnd(MAT_SetVCOO, A, 0, 0, 0));
816:   PetscFunctionReturn(PETSC_SUCCESS);
817: }

819: /*@
820:   MatSetBindingPropagates - Sets whether the state of being bound to the CPU for a GPU matrix type propagates to child and some other associated objects

822:   Input Parameters:
823: + A   - the matrix
824: - flg - flag indicating whether the boundtocpu flag should be propagated

826:   Level: developer

828:   Notes:
829:   If the value of flg is set to true, the following will occur
830: +   `MatCreateSubMatrices()` and `MatCreateRedundantMatrix()` - bind created matrices to CPU if the input matrix is bound to the CPU.
831: -   `MatCreateVecs()` - bind created vectors to CPU if the input matrix is bound to the CPU.

833:   The bindingpropagates flag itself is also propagated by the above routines.

835:   Developer Notes:
836:   If the fine-scale `DMDA` has the `-dm_bind_below` option set to true, then `DMCreateInterpolationScale()` calls `MatSetBindingPropagates()`
837:   on the restriction/interpolation operator to set the bindingpropagates flag to true.

839: .seealso: [](ch_matrices), `Mat`, `VecSetBindingPropagates()`, `MatGetBindingPropagates()`
840: @*/
841: PetscErrorCode MatSetBindingPropagates(Mat A, PetscBool flg)
842: {
843:   PetscFunctionBegin;
845: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
846:   A->bindingpropagates = flg;
847: #endif
848:   PetscFunctionReturn(PETSC_SUCCESS);
849: }

851: /*@
852:   MatGetBindingPropagates - Gets whether the state of being bound to the CPU for a GPU matrix type propagates to child and some other associated objects

854:   Input Parameter:
855: . A - the matrix

857:   Output Parameter:
858: . flg - flag indicating whether the boundtocpu flag will be propagated

860:   Level: developer

862: .seealso: [](ch_matrices), `Mat`, `MatSetBindingPropagates()`
863: @*/
864: PetscErrorCode MatGetBindingPropagates(Mat A, PetscBool *flg)
865: {
866:   PetscFunctionBegin;
868:   PetscAssertPointer(flg, 2);
869: #if defined(PETSC_HAVE_VIENNACL) || defined(PETSC_HAVE_CUDA) || defined(PETSC_HAVE_HIP)
870:   *flg = A->bindingpropagates;
871: #else
872:   *flg = PETSC_FALSE;
873: #endif
874:   PetscFunctionReturn(PETSC_SUCCESS);
875: }