Actual source code: ex12.c

petsc-master 2019-12-09
Report Typos and Errors
  1: static char help[] = "Poisson Problem in 2d and 3d with simplicial finite elements.\n\
  2: We solve the Poisson problem in a rectangular\n\
  3: domain, using a parallel unstructured mesh (DMPLEX) to discretize it.\n\
  4: This example supports discretized auxiliary fields (conductivity) as well as\n\
  5: multilevel nonlinear solvers.\n\n\n";

  7: /*
  8: A visualization of the adaptation can be accomplished using:

 10:   -dm_adapt_view hdf5:$PWD/adapt.h5 -sol_adapt_view hdf5:$PWD/adapt.h5::append -dm_adapt_pre_view hdf5:$PWD/orig.h5 -sol_adapt_pre_view hdf5:$PWD/orig.h5::append

 12: Information on refinement:

 14:    -info -info_exclude null,sys,vec,is,mat,ksp,snes,ts
 15: */

 17:  #include <petscdmplex.h>
 18:  #include <petscdmadaptor.h>
 19:  #include <petscsnes.h>
 20:  #include <petscds.h>
 21: #include <petscviewerhdf5.h>

 23: typedef enum {NEUMANN, DIRICHLET, NONE} BCType;
 24: typedef enum {RUN_FULL, RUN_EXACT, RUN_TEST, RUN_PERF} RunType;
 25: typedef enum {COEFF_NONE, COEFF_ANALYTIC, COEFF_FIELD, COEFF_NONLINEAR, COEFF_CIRCLE, COEFF_CROSS} CoeffType;

 27: typedef struct {
 28:   PetscInt       debug;             /* The debugging level */
 29:   RunType        runType;           /* Whether to run tests, or solve the full problem */
 30:   PetscBool      jacobianMF;        /* Whether to calculate the Jacobian action on the fly */
 31:   PetscLogEvent  createMeshEvent;
 32:   PetscBool      showInitial, showSolution, restart, quiet, nonzInit;
 33:   /* Domain and mesh definition */
 34:   PetscInt       dim;               /* The topological mesh dimension */
 35:   DMBoundaryType periodicity[3];    /* The domain periodicity */
 36:   PetscInt       cells[3];          /* The initial domain division */
 37:   char           filename[2048];    /* The optional mesh file */
 38:   PetscBool      interpolate;       /* Generate intermediate mesh elements */
 39:   PetscReal      refinementLimit;   /* The largest allowable cell volume */
 40:   PetscBool      viewHierarchy;     /* Whether to view the hierarchy */
 41:   PetscBool      simplex;           /* Simplicial mesh */
 42:   /* Problem definition */
 43:   BCType         bcType;
 44:   CoeffType      variableCoefficient;
 45:   PetscErrorCode (**exactFuncs)(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx);
 46:   PetscBool      fieldBC;
 47:   void           (**exactFields)(PetscInt, PetscInt, PetscInt,
 48:                                  const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
 49:                                  const PetscInt[], const PetscInt[], const PetscScalar[], const PetscScalar[], const PetscScalar[],
 50:                                  PetscReal, const PetscReal[], PetscInt, const PetscScalar[], PetscScalar[]);
 51:   PetscBool      bdIntegral;       /* Compute the integral of the solution on the boundary */
 52:   /* Solver */
 53:   PC             pcmg;              /* This is needed for error monitoring */
 54:   PetscBool      checkksp;          /* Whether to check the KSPSolve for runType == RUN_TEST */
 55: } AppCtx;

 57: static PetscErrorCode zero(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
 58: {
 59:   u[0] = 0.0;
 60:   return 0;
 61: }

 63: static PetscErrorCode ecks(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
 64: {
 65:   u[0] = x[0];
 66:   return 0;
 67: }

 69: /*
 70:   In 2D for Dirichlet conditions, we use exact solution:

 72:     u = x^2 + y^2
 73:     f = 4

 75:   so that

 77:     -\Delta u + f = -4 + 4 = 0

 79:   For Neumann conditions, we have

 81:     -\nabla u \cdot -\hat y |_{y=0} =  (2y)|_{y=0} =  0 (bottom)
 82:     -\nabla u \cdot  \hat y |_{y=1} = -(2y)|_{y=1} = -2 (top)
 83:     -\nabla u \cdot -\hat x |_{x=0} =  (2x)|_{x=0} =  0 (left)
 84:     -\nabla u \cdot  \hat x |_{x=1} = -(2x)|_{x=1} = -2 (right)

 86:   Which we can express as

 88:     \nabla u \cdot  \hat n|_\Gamma = {2 x, 2 y} \cdot \hat n = 2 (x + y)

 90:   The boundary integral of this solution is (assuming we are not orienting the edges)

 92:     \int^1_0 x^2 dx + \int^1_0 (1 + y^2) dy + \int^1_0 (x^2 + 1) dx + \int^1_0 y^2 dy = 1/3 + 4/3 + 4/3 + 1/3 = 3 1/3
 93: */
 94: static PetscErrorCode quadratic_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
 95: {
 96:   *u = x[0]*x[0] + x[1]*x[1];
 97:   return 0;
 98: }

100: static void quadratic_u_field_2d(PetscInt dim, PetscInt Nf, PetscInt NfAux,
101:                                  const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
102:                                  const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
103:                                  PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar uexact[])
104: {
105:   uexact[0] = a[0];
106: }

108: static PetscErrorCode circle_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
109: {
110:   const PetscReal alpha   = 500.;
111:   const PetscReal radius2 = PetscSqr(0.15);
112:   const PetscReal r2      = PetscSqr(x[0] - 0.5) + PetscSqr(x[1] - 0.5);
113:   const PetscReal xi      = alpha*(radius2 - r2);

115:   *u = PetscTanhScalar(xi) + 1.0;
116:   return 0;
117: }

119: static PetscErrorCode cross_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
120: {
121:   const PetscReal alpha = 50*4;
122:   const PetscReal xy    = (x[0]-0.5)*(x[1]-0.5);

124:   *u = PetscSinReal(alpha*xy) * (alpha*PetscAbsReal(xy) < 2*PETSC_PI ? 1 : 0.01);
125:   return 0;
126: }

128: static void f0_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
129:                  const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
130:                  const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
131:                  PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
132: {
133:   f0[0] = 4.0;
134: }

136: static void f0_circle_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
137:                         const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
138:                         const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
139:                         PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
140: {
141:   const PetscReal alpha   = 500.;
142:   const PetscReal radius2 = PetscSqr(0.15);
143:   const PetscReal r2      = PetscSqr(x[0] - 0.5) + PetscSqr(x[1] - 0.5);
144:   const PetscReal xi      = alpha*(radius2 - r2);

146:   f0[0] = (-4.0*alpha - 8.0*PetscSqr(alpha)*r2*PetscTanhReal(xi)) * PetscSqr(1.0/PetscCoshReal(xi));
147: }

149: static void f0_cross_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
150:                        const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
151:                        const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
152:                        PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
153: {
154:   const PetscReal alpha = 50*4;
155:   const PetscReal xy    = (x[0]-0.5)*(x[1]-0.5);

157:   f0[0] = PetscSinReal(alpha*xy) * (alpha*PetscAbsReal(xy) < 2*PETSC_PI ? 1 : 0.01);
158: }

160: static void f0_bd_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
161:                     const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
162:                     const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
163:                     PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
164: {
165:   PetscInt d;
166:   for (d = 0, f0[0] = 0.0; d < dim; ++d) f0[0] += -n[d]*2.0*x[d];
167: }

169: static void f1_bd_zero(PetscInt dim, PetscInt Nf, PetscInt NfAux,
170:                        const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
171:                        const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
172:                        PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
173: {
174:   PetscInt comp;
175:   for (comp = 0; comp < dim; ++comp) f1[comp] = 0.0;
176: }

178: /* gradU[comp*dim+d] = {u_x, u_y} or {u_x, u_y, u_z} */
179: static void f1_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
180:                  const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
181:                  const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
182:                  PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
183: {
184:   PetscInt d;
185:   for (d = 0; d < dim; ++d) f1[d] = u_x[d];
186: }

188: /* < \nabla v, \nabla u + {\nabla u}^T >
189:    This just gives \nabla u, give the perdiagonal for the transpose */
190: static void g3_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux,
191:                   const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
192:                   const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
193:                   PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
194: {
195:   PetscInt d;
196:   for (d = 0; d < dim; ++d) g3[d*dim+d] = 1.0;
197: }

199: /*
200:   In 2D for x periodicity and y Dirichlet conditions, we use exact solution:

202:     u = sin(2 pi x)
203:     f = -4 pi^2 sin(2 pi x)

205:   so that

207:     -\Delta u + f = 4 pi^2 sin(2 pi x) - 4 pi^2 sin(2 pi x) = 0
208: */
209: static PetscErrorCode xtrig_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
210: {
211:   *u = PetscSinReal(2.0*PETSC_PI*x[0]);
212:   return 0;
213: }

215: static void f0_xtrig_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
216:                        const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
217:                        const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
218:                        PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
219: {
220:   f0[0] = -4.0*PetscSqr(PETSC_PI)*PetscSinReal(2.0*PETSC_PI*x[0]);
221: }

223: /*
224:   In 2D for x-y periodicity, we use exact solution:

226:     u = sin(2 pi x) sin(2 pi y)
227:     f = -8 pi^2 sin(2 pi x)

229:   so that

231:     -\Delta u + f = 4 pi^2 sin(2 pi x) sin(2 pi y) + 4 pi^2 sin(2 pi x) sin(2 pi y) - 8 pi^2 sin(2 pi x) = 0
232: */
233: static PetscErrorCode xytrig_u_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
234: {
235:   *u = PetscSinReal(2.0*PETSC_PI*x[0])*PetscSinReal(2.0*PETSC_PI*x[1]);
236:   return 0;
237: }

239: static void f0_xytrig_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
240:                         const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
241:                         const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
242:                         PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
243: {
244:   f0[0] = -8.0*PetscSqr(PETSC_PI)*PetscSinReal(2.0*PETSC_PI*x[0]);
245: }

247: /*
248:   In 2D for Dirichlet conditions with a variable coefficient, we use exact solution:

250:     u  = x^2 + y^2
251:     f  = 6 (x + y)
252:     nu = (x + y)

254:   so that

256:     -\div \nu \grad u + f = -6 (x + y) + 6 (x + y) = 0
257: */
258: static PetscErrorCode nu_2d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
259: {
260:   *u = x[0] + x[1];
261:   return 0;
262: }

264: void f0_analytic_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
265:                    const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
266:                    const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
267:                    PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
268: {
269:   f0[0] = 6.0*(x[0] + x[1]);
270: }

272: /* gradU[comp*dim+d] = {u_x, u_y} or {u_x, u_y, u_z} */
273: void f1_analytic_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
274:                    const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
275:                    const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
276:                    PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
277: {
278:   PetscInt d;
279:   for (d = 0; d < dim; ++d) f1[d] = (x[0] + x[1])*u_x[d];
280: }

282: void f1_field_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
283:                 const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
284:                 const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
285:                 PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
286: {
287:   PetscInt d;
288:   for (d = 0; d < dim; ++d) f1[d] = a[0]*u_x[d];
289: }

291: /* < \nabla v, \nabla u + {\nabla u}^T >
292:    This just gives \nabla u, give the perdiagonal for the transpose */
293: void g3_analytic_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux,
294:                     const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
295:                     const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
296:                     PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
297: {
298:   PetscInt d;
299:   for (d = 0; d < dim; ++d) g3[d*dim+d] = x[0] + x[1];
300: }

302: void g3_field_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux,
303:                  const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
304:                  const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
305:                  PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
306: {
307:   PetscInt d;
308:   for (d = 0; d < dim; ++d) g3[d*dim+d] = a[0];
309: }

311: /*
312:   In 2D for Dirichlet conditions with a nonlinear coefficient (p-Laplacian with p = 4), we use exact solution:

314:     u  = x^2 + y^2
315:     f  = 16 (x^2 + y^2)
316:     nu = 1/2 |grad u|^2

318:   so that

320:     -\div \nu \grad u + f = -16 (x^2 + y^2) + 16 (x^2 + y^2) = 0
321: */
322: void f0_analytic_nonlinear_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
323:                              const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
324:                              const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
325:                              PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f0[])
326: {
327:   f0[0] = 16.0*(x[0]*x[0] + x[1]*x[1]);
328: }

330: /* gradU[comp*dim+d] = {u_x, u_y} or {u_x, u_y, u_z} */
331: void f1_analytic_nonlinear_u(PetscInt dim, PetscInt Nf, PetscInt NfAux,
332:                              const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
333:                              const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
334:                              PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar f1[])
335: {
336:   PetscScalar nu = 0.0;
337:   PetscInt    d;
338:   for (d = 0; d < dim; ++d) nu += u_x[d]*u_x[d];
339:   for (d = 0; d < dim; ++d) f1[d] = 0.5*nu*u_x[d];
340: }

342: /*
343:   grad (u + eps w) - grad u = eps grad w

345:   1/2 |grad (u + eps w)|^2 grad (u + eps w) - 1/2 |grad u|^2 grad u
346: = 1/2 (|grad u|^2 + 2 eps <grad u,grad w>) (grad u + eps grad w) - 1/2 |grad u|^2 grad u
347: = 1/2 (eps |grad u|^2 grad w + 2 eps <grad u,grad w> grad u)
348: = eps (1/2 |grad u|^2 grad w + grad u <grad u,grad w>)
349: */
350: void g3_analytic_nonlinear_uu(PetscInt dim, PetscInt Nf, PetscInt NfAux,
351:                               const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
352:                               const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
353:                               PetscReal t, PetscReal u_tShift, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar g3[])
354: {
355:   PetscScalar nu = 0.0;
356:   PetscInt    d, e;
357:   for (d = 0; d < dim; ++d) nu += u_x[d]*u_x[d];
358:   for (d = 0; d < dim; ++d) {
359:     g3[d*dim+d] = 0.5*nu;
360:     for (e = 0; e < dim; ++e) {
361:       g3[d*dim+e] += u_x[d]*u_x[e];
362:     }
363:   }
364: }

366: /*
367:   In 3D for Dirichlet conditions we use exact solution:

369:     u = 2/3 (x^2 + y^2 + z^2)
370:     f = 4

372:   so that

374:     -\Delta u + f = -2/3 * 6 + 4 = 0

376:   For Neumann conditions, we have

378:     -\nabla u \cdot -\hat z |_{z=0} =  (2z)|_{z=0} =  0 (bottom)
379:     -\nabla u \cdot  \hat z |_{z=1} = -(2z)|_{z=1} = -2 (top)
380:     -\nabla u \cdot -\hat y |_{y=0} =  (2y)|_{y=0} =  0 (front)
381:     -\nabla u \cdot  \hat y |_{y=1} = -(2y)|_{y=1} = -2 (back)
382:     -\nabla u \cdot -\hat x |_{x=0} =  (2x)|_{x=0} =  0 (left)
383:     -\nabla u \cdot  \hat x |_{x=1} = -(2x)|_{x=1} = -2 (right)

385:   Which we can express as

387:     \nabla u \cdot  \hat n|_\Gamma = {2 x, 2 y, 2z} \cdot \hat n = 2 (x + y + z)
388: */
389: static PetscErrorCode quadratic_u_3d(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar *u, void *ctx)
390: {
391:   *u = 2.0*(x[0]*x[0] + x[1]*x[1] + x[2]*x[2])/3.0;
392:   return 0;
393: }

395: static void quadratic_u_field_3d(PetscInt dim, PetscInt Nf, PetscInt NfAux,
396:                                  const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
397:                                  const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
398:                                  PetscReal t, const PetscReal x[], PetscInt numConstants, const PetscScalar constants[], PetscScalar uexact[])
399: {
400:   uexact[0] = a[0];
401: }

403: static void bd_integral_2d(PetscInt dim, PetscInt Nf, PetscInt NfAux,
404:                            const PetscInt uOff[], const PetscInt uOff_x[], const PetscScalar u[], const PetscScalar u_t[], const PetscScalar u_x[],
405:                            const PetscInt aOff[], const PetscInt aOff_x[], const PetscScalar a[], const PetscScalar a_t[], const PetscScalar a_x[],
406:                            PetscReal t, const PetscReal x[], const PetscReal n[], PetscInt numConstants, const PetscScalar constants[], PetscScalar *uint)
407: {
408:   uint[0] = u[0];
409: }

411: static PetscErrorCode ProcessOptions(MPI_Comm comm, AppCtx *options)
412: {
413:   const char    *bcTypes[3]  = {"neumann", "dirichlet", "none"};
414:   const char    *runTypes[4] = {"full", "exact", "test", "perf"};
415:   const char    *coeffTypes[6] = {"none", "analytic", "field", "nonlinear", "circle", "cross"};
416:   PetscInt       bd, bc, run, coeff, n;
417:   PetscBool      flg;

421:   options->debug               = 0;
422:   options->runType             = RUN_FULL;
423:   options->dim                 = 2;
424:   options->periodicity[0]      = DM_BOUNDARY_NONE;
425:   options->periodicity[1]      = DM_BOUNDARY_NONE;
426:   options->periodicity[2]      = DM_BOUNDARY_NONE;
427:   options->cells[0]            = 2;
428:   options->cells[1]            = 2;
429:   options->cells[2]            = 2;
430:   options->filename[0]         = '\0';
431:   options->interpolate         = PETSC_TRUE;
432:   options->refinementLimit     = 0.0;
433:   options->bcType              = DIRICHLET;
434:   options->variableCoefficient = COEFF_NONE;
435:   options->fieldBC             = PETSC_FALSE;
436:   options->jacobianMF          = PETSC_FALSE;
437:   options->showInitial         = PETSC_FALSE;
438:   options->showSolution        = PETSC_FALSE;
439:   options->restart             = PETSC_FALSE;
440:   options->viewHierarchy       = PETSC_FALSE;
441:   options->simplex             = PETSC_TRUE;
442:   options->quiet               = PETSC_FALSE;
443:   options->nonzInit            = PETSC_FALSE;
444:   options->bdIntegral          = PETSC_FALSE;
445:   options->checkksp            = PETSC_FALSE;

447:   PetscOptionsBegin(comm, "", "Poisson Problem Options", "DMPLEX");
448:   PetscOptionsInt("-debug", "The debugging level", "ex12.c", options->debug, &options->debug, NULL);
449:   run  = options->runType;
450:   PetscOptionsEList("-run_type", "The run type", "ex12.c", runTypes, 4, runTypes[options->runType], &run, NULL);

452:   options->runType = (RunType) run;

454:   PetscOptionsInt("-dim", "The topological mesh dimension", "ex12.c", options->dim, &options->dim, NULL);
455:   bd = options->periodicity[0];
456:   PetscOptionsEList("-x_periodicity", "The x-boundary periodicity", "ex12.c", DMBoundaryTypes, 5, DMBoundaryTypes[options->periodicity[0]], &bd, NULL);
457:   options->periodicity[0] = (DMBoundaryType) bd;
458:   bd = options->periodicity[1];
459:   PetscOptionsEList("-y_periodicity", "The y-boundary periodicity", "ex12.c", DMBoundaryTypes, 5, DMBoundaryTypes[options->periodicity[1]], &bd, NULL);
460:   options->periodicity[1] = (DMBoundaryType) bd;
461:   bd = options->periodicity[2];
462:   PetscOptionsEList("-z_periodicity", "The z-boundary periodicity", "ex12.c", DMBoundaryTypes, 5, DMBoundaryTypes[options->periodicity[2]], &bd, NULL);
463:   options->periodicity[2] = (DMBoundaryType) bd;
464:   n = 3;
465:   PetscOptionsIntArray("-cells", "The initial mesh division", "ex12.c", options->cells, &n, NULL);
466:   PetscOptionsString("-f", "Mesh filename to read", "ex12.c", options->filename, options->filename, sizeof(options->filename), &flg);
467:   PetscOptionsBool("-interpolate", "Generate intermediate mesh elements", "ex12.c", options->interpolate, &options->interpolate, NULL);
468:   PetscOptionsReal("-refinement_limit", "The largest allowable cell volume", "ex12.c", options->refinementLimit, &options->refinementLimit, NULL);
469:   bc   = options->bcType;
470:   PetscOptionsEList("-bc_type","Type of boundary condition","ex12.c",bcTypes,3,bcTypes[options->bcType],&bc,NULL);
471:   options->bcType = (BCType) bc;
472:   coeff = options->variableCoefficient;
473:   PetscOptionsEList("-variable_coefficient","Type of variable coefficent","ex12.c",coeffTypes,6,coeffTypes[options->variableCoefficient],&coeff,NULL);
474:   options->variableCoefficient = (CoeffType) coeff;

476:   PetscOptionsBool("-field_bc", "Use a field representation for the BC", "ex12.c", options->fieldBC, &options->fieldBC, NULL);
477:   PetscOptionsBool("-jacobian_mf", "Calculate the action of the Jacobian on the fly", "ex12.c", options->jacobianMF, &options->jacobianMF, NULL);
478:   PetscOptionsBool("-show_initial", "Output the initial guess for verification", "ex12.c", options->showInitial, &options->showInitial, NULL);
479:   PetscOptionsBool("-show_solution", "Output the solution for verification", "ex12.c", options->showSolution, &options->showSolution, NULL);
480:   PetscOptionsBool("-restart", "Read in the mesh and solution from a file", "ex12.c", options->restart, &options->restart, NULL);
481:   PetscOptionsBool("-dm_view_hierarchy", "View the coarsened hierarchy", "ex12.c", options->viewHierarchy, &options->viewHierarchy, NULL);
482:   PetscOptionsBool("-simplex", "Simplicial (true) or tensor (false) mesh", "ex12.c", options->simplex, &options->simplex, NULL);
483:   PetscOptionsBool("-quiet", "Don't print any vecs", "ex12.c", options->quiet, &options->quiet, NULL);
484:   PetscOptionsBool("-nonzero_initial_guess", "nonzero intial guess", "ex12.c", options->nonzInit, &options->nonzInit, NULL);
485:   PetscOptionsBool("-bd_integral", "Compute the integral of the solution on the boundary", "ex12.c", options->bdIntegral, &options->bdIntegral, NULL);
486:   if (options->runType == RUN_TEST) {
487:     PetscOptionsBool("-run_test_check_ksp", "Check solution of KSP", "ex12.c", options->checkksp, &options->checkksp, NULL);
488:   }
489:   PetscOptionsEnd();
490:   PetscLogEventRegister("CreateMesh", DM_CLASSID, &options->createMeshEvent);
491:   return(0);
492: }

494: static PetscErrorCode CreateBCLabel(DM dm, const char name[])
495: {
496:   DMLabel        label;

500:   DMCreateLabel(dm, name);
501:   DMGetLabel(dm, name, &label);
502:   DMPlexMarkBoundaryFaces(dm, 1, label);
503:   DMPlexLabelComplete(dm, label);
504:   return(0);
505: }

507: static PetscErrorCode CreateMesh(MPI_Comm comm, AppCtx *user, DM *dm)
508: {
509:   PetscInt       dim             = user->dim;
510:   const char    *filename        = user->filename;
511:   PetscBool      interpolate     = user->interpolate;
512:   PetscReal      refinementLimit = user->refinementLimit;
513:   size_t         len;

517:   PetscLogEventBegin(user->createMeshEvent,0,0,0,0);
518:   PetscStrlen(filename, &len);
519:   if (!len) {
520:     PetscInt d;

522:     if (user->periodicity[0] || user->periodicity[1] || user->periodicity[2]) for (d = 0; d < dim; ++d) user->cells[d] = PetscMax(user->cells[d], 3);
523:     DMPlexCreateBoxMesh(comm, dim, user->simplex, user->cells, NULL, NULL, user->periodicity, interpolate, dm);
524:     PetscObjectSetName((PetscObject) *dm, "Mesh");
525:   } else {
526:     DMPlexCreateFromFile(comm, filename, interpolate, dm);
527:     DMPlexSetRefinementUniform(*dm, PETSC_FALSE);
528:   }
529:   {
530:     PetscPartitioner part;
531:     DM               refinedMesh     = NULL;
532:     DM               distributedMesh = NULL;

534:     /* Refine mesh using a volume constraint */
535:     if (refinementLimit > 0.0) {
536:       DMPlexSetRefinementLimit(*dm, refinementLimit);
537:       DMRefine(*dm, comm, &refinedMesh);
538:       if (refinedMesh) {
539:         const char *name;

541:         PetscObjectGetName((PetscObject) *dm,         &name);
542:         PetscObjectSetName((PetscObject) refinedMesh,  name);
543:         DMDestroy(dm);
544:         *dm  = refinedMesh;
545:       }
546:     }
547:     /* Distribute mesh over processes */
548:     DMPlexGetPartitioner(*dm,&part);
549:     PetscPartitionerSetFromOptions(part);
550:     DMPlexDistribute(*dm, 0, NULL, &distributedMesh);
551:     if (distributedMesh) {
552:       DMDestroy(dm);
553:       *dm  = distributedMesh;
554:     }
555:   }
556:   if (interpolate) {
557:     if (user->bcType == NEUMANN) {
558:       DMLabel   label;

560:       DMCreateLabel(*dm, "boundary");
561:       DMGetLabel(*dm, "boundary", &label);
562:       DMPlexMarkBoundaryFaces(*dm, 1, label);
563:     } else if (user->bcType == DIRICHLET) {
564:       PetscBool hasLabel;

566:       DMHasLabel(*dm,"marker",&hasLabel);
567:       if (!hasLabel) {CreateBCLabel(*dm, "marker");}
568:     }
569:   }
570:   {
571:     char      convType[256];
572:     PetscBool flg;

574:     PetscOptionsBegin(comm, "", "Mesh conversion options", "DMPLEX");
575:     PetscOptionsFList("-dm_plex_convert_type","Convert DMPlex to another format","ex12",DMList,DMPLEX,convType,256,&flg);
576:     PetscOptionsEnd();
577:     if (flg) {
578:       DM dmConv;

580:       DMConvert(*dm,convType,&dmConv);
581:       if (dmConv) {
582:         DMDestroy(dm);
583:         *dm  = dmConv;
584:       }
585:     }
586:   }
587:   DMLocalizeCoordinates(*dm); /* needed for periodic */
588:   DMSetFromOptions(*dm);
589:   DMViewFromOptions(*dm, NULL, "-dm_view");
590:   if (user->viewHierarchy) {
591:     DM       cdm = *dm;
592:     PetscInt i   = 0;
593:     char     buf[256];

595:     while (cdm) {
596:       DMSetUp(cdm);
597:       DMGetCoarseDM(cdm, &cdm);
598:       ++i;
599:     }
600:     cdm = *dm;
601:     while (cdm) {
602:       PetscViewer       viewer;
603:       PetscBool   isHDF5, isVTK;

605:       --i;
606:       PetscViewerCreate(comm,&viewer);
607:       PetscViewerSetType(viewer,PETSCVIEWERHDF5);
608:       PetscViewerSetOptionsPrefix(viewer,"hierarchy_");
609:       PetscViewerSetFromOptions(viewer);
610:       PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERHDF5,&isHDF5);
611:       PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERVTK,&isVTK);
612:       if (isHDF5) {
613:         PetscSNPrintf(buf, 256, "ex12-%d.h5", i);
614:       } else if (isVTK) {
615:         PetscSNPrintf(buf, 256, "ex12-%d.vtu", i);
616:         PetscViewerPushFormat(viewer,PETSC_VIEWER_VTK_VTU);
617:       } else {
618:         PetscSNPrintf(buf, 256, "ex12-%d", i);
619:       }
620:       PetscViewerFileSetMode(viewer,FILE_MODE_WRITE);
621:       PetscViewerFileSetName(viewer,buf);
622:       DMView(cdm, viewer);
623:       PetscViewerDestroy(&viewer);
624:       DMGetCoarseDM(cdm, &cdm);
625:     }
626:   }
627:   PetscLogEventEnd(user->createMeshEvent,0,0,0,0);
628:   return(0);
629: }

631: static PetscErrorCode SetupProblem(DM dm, AppCtx *user)
632: {
633:   PetscDS        prob;
634:   const PetscInt id = 1;

638:   DMGetDS(dm, &prob);
639:   switch (user->variableCoefficient) {
640:   case COEFF_NONE:
641:     if (user->periodicity[0]) {
642:       if (user->periodicity[1]) {
643:         PetscDSSetResidual(prob, 0, f0_xytrig_u, f1_u);
644:         PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_uu);
645:       } else {
646:         PetscDSSetResidual(prob, 0, f0_xtrig_u,  f1_u);
647:         PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_uu);
648:       }
649:     } else {
650:       PetscDSSetResidual(prob, 0, f0_u, f1_u);
651:       PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_uu);
652:     }
653:     break;
654:   case COEFF_ANALYTIC:
655:     PetscDSSetResidual(prob, 0, f0_analytic_u, f1_analytic_u);
656:     PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_analytic_uu);
657:     break;
658:   case COEFF_FIELD:
659:     PetscDSSetResidual(prob, 0, f0_analytic_u, f1_field_u);
660:     PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_field_uu);
661:     break;
662:   case COEFF_NONLINEAR:
663:     PetscDSSetResidual(prob, 0, f0_analytic_nonlinear_u, f1_analytic_nonlinear_u);
664:     PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_analytic_nonlinear_uu);
665:     break;
666:   case COEFF_CIRCLE:
667:     PetscDSSetResidual(prob, 0, f0_circle_u, f1_u);
668:     PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_uu);
669:     break;
670:   case COEFF_CROSS:
671:     PetscDSSetResidual(prob, 0, f0_cross_u, f1_u);
672:     PetscDSSetJacobian(prob, 0, 0, NULL, NULL, NULL, g3_uu);
673:     break;
674:   default: SETERRQ1(PETSC_COMM_SELF, PETSC_ERR_ARG_WRONG, "Invalid variable coefficient type %d", user->variableCoefficient);
675:   }
676:   switch (user->dim) {
677:   case 2:
678:     switch (user->variableCoefficient) {
679:     case COEFF_CIRCLE:
680:       user->exactFuncs[0]  = circle_u_2d;break;
681:     case COEFF_CROSS:
682:       user->exactFuncs[0]  = cross_u_2d;break;
683:     default:
684:       if (user->periodicity[0]) {
685:         if (user->periodicity[1]) {
686:           user->exactFuncs[0] = xytrig_u_2d;
687:         } else {
688:           user->exactFuncs[0] = xtrig_u_2d;
689:         }
690:       } else {
691:         user->exactFuncs[0]  = quadratic_u_2d;
692:         user->exactFields[0] = quadratic_u_field_2d;
693:       }
694:     }
695:     if (user->bcType == NEUMANN) {PetscDSSetBdResidual(prob, 0, f0_bd_u, f1_bd_zero);}
696:     break;
697:   case 3:
698:     user->exactFuncs[0]  = quadratic_u_3d;
699:     user->exactFields[0] = quadratic_u_field_3d;
700:     if (user->bcType == NEUMANN) {PetscDSSetBdResidual(prob, 0, f0_bd_u, f1_bd_zero);}
701:     break;
702:   default:
703:     SETERRQ1(PETSC_COMM_WORLD, PETSC_ERR_ARG_OUTOFRANGE, "Invalid dimension %d", user->dim);
704:   }
705:   if (user->bcType != NONE) {
706:     PetscDSAddBoundary(prob, user->bcType == DIRICHLET ? (user->fieldBC ? DM_BC_ESSENTIAL_FIELD : DM_BC_ESSENTIAL) : DM_BC_NATURAL,
707:                               "wall", user->bcType == DIRICHLET ? "marker" : "boundary", 0, 0, NULL,
708:                               user->fieldBC ? (void (*)(void)) user->exactFields[0] : (void (*)(void)) user->exactFuncs[0], 1, &id, user);
709:   }
710:   PetscDSSetExactSolution(prob, 0, user->exactFuncs[0], user);
711:   return(0);
712: }

714: static PetscErrorCode SetupMaterial(DM dm, DM dmAux, AppCtx *user)
715: {
716:   PetscErrorCode (*matFuncs[1])(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx) = {nu_2d};
717:   Vec            nu;

721:   DMCreateLocalVector(dmAux, &nu);
722:   DMProjectFunctionLocal(dmAux, 0.0, matFuncs, NULL, INSERT_ALL_VALUES, nu);
723:   PetscObjectCompose((PetscObject) dm, "A", (PetscObject) nu);
724:   VecDestroy(&nu);
725:   return(0);
726: }

728: static PetscErrorCode SetupBC(DM dm, DM dmAux, AppCtx *user)
729: {
730:   PetscErrorCode (*bcFuncs[1])(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx);
731:   Vec            uexact;
732:   PetscInt       dim;

736:   DMGetDimension(dm, &dim);
737:   if (dim == 2) bcFuncs[0] = quadratic_u_2d;
738:   else          bcFuncs[0] = quadratic_u_3d;
739:   DMCreateLocalVector(dmAux, &uexact);
740:   DMProjectFunctionLocal(dmAux, 0.0, bcFuncs, NULL, INSERT_ALL_VALUES, uexact);
741:   PetscObjectCompose((PetscObject) dm, "A", (PetscObject) uexact);
742:   VecDestroy(&uexact);
743:   return(0);
744: }

746: static PetscErrorCode SetupAuxDM(DM dm, PetscFE feAux, AppCtx *user)
747: {
748:   DM             dmAux, coordDM;

752:   /* MUST call DMGetCoordinateDM() in order to get p4est setup if present */
753:   DMGetCoordinateDM(dm, &coordDM);
754:   if (!feAux) return(0);
755:   DMClone(dm, &dmAux);
756:   PetscObjectCompose((PetscObject) dm, "dmAux", (PetscObject) dmAux);
757:   DMSetCoordinateDM(dmAux, coordDM);
758:   DMSetField(dmAux, 0, NULL, (PetscObject) feAux);
759:   DMCreateDS(dmAux);
760:   if (user->fieldBC) {SetupBC(dm, dmAux, user);}
761:   else               {SetupMaterial(dm, dmAux, user);}
762:   DMDestroy(&dmAux);
763:   return(0);
764: }

766: static PetscErrorCode SetupDiscretization(DM dm, AppCtx *user)
767: {
768:   DM             cdm = dm;
769:   const PetscInt dim = user->dim;
770:   PetscFE        fe, feAux = NULL;
771:   PetscBool      simplex   = user->simplex;
772:   MPI_Comm       comm;

776:   /* Create finite element for each field and auxiliary field */
777:   PetscObjectGetComm((PetscObject) dm, &comm);
778:   PetscFECreateDefault(comm, dim, 1, simplex, NULL, -1, &fe);
779:   PetscObjectSetName((PetscObject) fe, "potential");
780:   if (user->variableCoefficient == COEFF_FIELD) {
781:     PetscFECreateDefault(comm, dim, 1, simplex, "mat_", -1, &feAux);
782:     PetscFECopyQuadrature(fe, feAux);
783:   } else if (user->fieldBC) {
784:     PetscFECreateDefault(comm, dim, 1, simplex, "bc_", -1, &feAux);
785:     PetscFECopyQuadrature(fe, feAux);
786:   }
787:   /* Set discretization and boundary conditions for each mesh */
788:   DMSetField(dm, 0, NULL, (PetscObject) fe);
789:   DMCreateDS(dm);
790:   SetupProblem(dm, user);
791:   while (cdm) {
792:     DMCopyDisc(dm, cdm);
793:     SetupAuxDM(cdm, feAux, user);
794:     if (user->bcType == DIRICHLET && user->interpolate) {
795:       PetscBool hasLabel;

797:       DMHasLabel(cdm, "marker", &hasLabel);
798:       if (!hasLabel) {CreateBCLabel(cdm, "marker");}
799:     }
800:     DMGetCoarseDM(cdm, &cdm);
801:   }
802:   PetscFEDestroy(&fe);
803:   PetscFEDestroy(&feAux);
804:   return(0);
805: }

807: #include "petsc/private/petscimpl.h"

809: /*@C
810:   KSPMonitorError - Outputs the error at each iteration of an iterative solver.

812:   Collective on KSP

814:   Input Parameters:
815: + ksp   - the KSP
816: . its   - iteration number
817: . rnorm - 2-norm, preconditioned residual value (may be estimated).
818: - ctx   - monitor context

820:   Level: intermediate

822: .seealso: KSPMonitorSet(), KSPMonitorTrueResidualNorm(), KSPMonitorDefault()
823: @*/
824: static PetscErrorCode KSPMonitorError(KSP ksp, PetscInt its, PetscReal rnorm, void *ctx)
825: {
826:   AppCtx        *user = (AppCtx *) ctx;
827:   DM             dm;
828:   Vec            du = NULL, r;
829:   PetscInt       level = 0;
830:   PetscBool      hasLevel;
831: #if defined(PETSC_HAVE_HDF5)
832:   PetscViewer    viewer;
833:   char           buf[256];
834: #endif

838:   KSPGetDM(ksp, &dm);
839:   /* Calculate solution */
840:   {
841:     PC        pc = user->pcmg; /* The MG PC */
842:     DM        fdm = NULL,  cdm = NULL;
843:     KSP       fksp, cksp;
844:     Vec       fu,   cu = NULL;
845:     PetscInt  levels, l;

847:     KSPBuildSolution(ksp, NULL, &du);
848:     PetscObjectComposedDataGetInt((PetscObject) ksp, PetscMGLevelId, level, hasLevel);
849:     PCMGGetLevels(pc, &levels);
850:     PCMGGetSmoother(pc, levels-1, &fksp);
851:     KSPBuildSolution(fksp, NULL, &fu);
852:     for (l = levels-1; l > level; --l) {
853:       Mat R;
854:       Vec s;

856:       PCMGGetSmoother(pc, l-1, &cksp);
857:       KSPGetDM(cksp, &cdm);
858:       DMGetGlobalVector(cdm, &cu);
859:       PCMGGetRestriction(pc, l, &R);
860:       PCMGGetRScale(pc, l, &s);
861:       MatRestrict(R, fu, cu);
862:       VecPointwiseMult(cu, cu, s);
863:       if (l < levels-1) {DMRestoreGlobalVector(fdm, &fu);}
864:       fdm  = cdm;
865:       fu   = cu;
866:     }
867:     if (levels-1 > level) {
868:       VecAXPY(du, 1.0, cu);
869:       DMRestoreGlobalVector(cdm, &cu);
870:     }
871:   }
872:   /* Calculate error */
873:   DMGetGlobalVector(dm, &r);
874:   DMProjectFunction(dm, 0.0, user->exactFuncs, NULL, INSERT_ALL_VALUES, r);
875:   VecAXPY(r,-1.0,du);
876:   PetscObjectSetName((PetscObject) r, "solution error");
877:   /* View error */
878: #if defined(PETSC_HAVE_HDF5)
879:   PetscSNPrintf(buf, 256, "ex12-%D.h5", level);
880:   PetscViewerHDF5Open(PETSC_COMM_WORLD, buf, FILE_MODE_APPEND, &viewer);
881:   VecView(r, viewer);
882:   PetscViewerDestroy(&viewer);
883: #endif
884:   DMRestoreGlobalVector(dm, &r);
885:   return(0);
886: }

888: /*@C
889:   SNESMonitorError - Outputs the error at each iteration of an iterative solver.

891:   Collective on SNES

893:   Input Parameters:
894: + snes  - the SNES
895: . its   - iteration number
896: . rnorm - 2-norm of residual
897: - ctx   - user context

899:   Level: intermediate

901: .seealso: SNESMonitorDefault(), SNESMonitorSet(), SNESMonitorSolution()
902: @*/
903: static PetscErrorCode SNESMonitorError(SNES snes, PetscInt its, PetscReal rnorm, void *ctx)
904: {
905:   AppCtx        *user = (AppCtx *) ctx;
906:   DM             dm;
907:   Vec            u, r;
908:   PetscInt       level = -1;
909:   PetscBool      hasLevel;
910: #if defined(PETSC_HAVE_HDF5)
911:   PetscViewer    viewer;
912: #endif
913:   char           buf[256];

917:   SNESGetDM(snes, &dm);
918:   /* Calculate error */
919:   SNESGetSolution(snes, &u);
920:   DMGetGlobalVector(dm, &r);
921:   PetscObjectSetName((PetscObject) r, "solution error");
922:   DMProjectFunction(dm, 0.0, user->exactFuncs, NULL, INSERT_ALL_VALUES, r);
923:   VecAXPY(r, -1.0, u);
924:   /* View error */
925:   PetscObjectComposedDataGetInt((PetscObject) snes, PetscMGLevelId, level, hasLevel);
926:   PetscSNPrintf(buf, 256, "ex12-%D.h5", level);
927: #if defined(PETSC_HAVE_HDF5)
928:   PetscViewerHDF5Open(PETSC_COMM_WORLD, buf, FILE_MODE_APPEND, &viewer);
929:   VecView(r, viewer);
930:   PetscViewerDestroy(&viewer);
931:   /* Cleanup */
932:   DMRestoreGlobalVector(dm, &r);
933:   return(0);
934: #else
935:   SETERRQ(PETSC_COMM_WORLD,PETSC_ERR_SUP,"You need to configure with --download-hdf5");
936: #endif
937: }

939: int main(int argc, char **argv)
940: {
941:   DM             dm;          /* Problem specification */
942:   SNES           snes;        /* nonlinear solver */
943:   Vec            u;           /* solution vector */
944:   Mat            A,J;         /* Jacobian matrix */
945:   MatNullSpace   nullSpace;   /* May be necessary for Neumann conditions */
946:   AppCtx         user;        /* user-defined work context */
947:   JacActionCtx   userJ;       /* context for Jacobian MF action */
948:   PetscReal      error = 0.0; /* L_2 error in the solution */
949:   PetscBool      isFAS;

952:   PetscInitialize(&argc, &argv, NULL,help);if (ierr) return ierr;
953:   ProcessOptions(PETSC_COMM_WORLD, &user);
954:   SNESCreate(PETSC_COMM_WORLD, &snes);
955:   CreateMesh(PETSC_COMM_WORLD, &user, &dm);
956:   SNESSetDM(snes, dm);
957:   DMSetApplicationContext(dm, &user);

959:   PetscMalloc2(1, &user.exactFuncs, 1, &user.exactFields);
960:   SetupDiscretization(dm, &user);

962:   DMCreateGlobalVector(dm, &u);
963:   PetscObjectSetName((PetscObject) u, "potential");

965:   DMCreateMatrix(dm, &J);
966:   if (user.jacobianMF) {
967:     PetscInt M, m, N, n;

969:     MatGetSize(J, &M, &N);
970:     MatGetLocalSize(J, &m, &n);
971:     MatCreate(PETSC_COMM_WORLD, &A);
972:     MatSetSizes(A, m, n, M, N);
973:     MatSetType(A, MATSHELL);
974:     MatSetUp(A);
975: #if 0
976:     MatShellSetOperation(A, MATOP_MULT, (void (*)(void))FormJacobianAction);
977: #endif

979:     userJ.dm   = dm;
980:     userJ.J    = J;
981:     userJ.user = &user;

983:     DMCreateLocalVector(dm, &userJ.u);
984:     if (user.fieldBC) {DMProjectFieldLocal(dm, 0.0, userJ.u, user.exactFields, INSERT_BC_VALUES, userJ.u);}
985:     else              {DMProjectFunctionLocal(dm, 0.0, user.exactFuncs, NULL, INSERT_BC_VALUES, userJ.u);}
986:     MatShellSetContext(A, &userJ);
987:   } else {
988:     A = J;
989:   }

991:   nullSpace = NULL;
992:   if (user.bcType != DIRICHLET) {
993:     MatNullSpaceCreate(PetscObjectComm((PetscObject) dm), PETSC_TRUE, 0, NULL, &nullSpace);
994:     MatSetNullSpace(A, nullSpace);
995:   }

997:   DMPlexSetSNESLocalFEM(dm,&user,&user,&user);
998:   SNESSetJacobian(snes, A, J, NULL, NULL);

1000:   SNESSetFromOptions(snes);

1002:   if (user.fieldBC) {DMProjectField(dm, 0.0, u, user.exactFields, INSERT_ALL_VALUES, u);}
1003:   else              {DMProjectFunction(dm, 0.0, user.exactFuncs, NULL, INSERT_ALL_VALUES, u);}
1004:   if (user.restart) {
1005: #if defined(PETSC_HAVE_HDF5)
1006:     PetscViewer viewer;

1008:     PetscViewerCreate(PETSC_COMM_WORLD, &viewer);
1009:     PetscViewerSetType(viewer, PETSCVIEWERHDF5);
1010:     PetscViewerFileSetMode(viewer, FILE_MODE_READ);
1011:     PetscViewerFileSetName(viewer, user.filename);
1012:     PetscViewerHDF5PushGroup(viewer, "/fields");
1013:     VecLoad(u, viewer);
1014:     PetscViewerHDF5PopGroup(viewer);
1015:     PetscViewerDestroy(&viewer);
1016: #endif
1017:   }
1018:   if (user.showInitial) {
1019:     Vec lv;
1020:     DMGetLocalVector(dm, &lv);
1021:     DMGlobalToLocalBegin(dm, u, INSERT_VALUES, lv);
1022:     DMGlobalToLocalEnd(dm, u, INSERT_VALUES, lv);
1023:     DMPrintLocalVec(dm, "Local function", 1.0e-10, lv);
1024:     DMRestoreLocalVector(dm, &lv);
1025:   }
1026:   if (user.viewHierarchy) {
1027:     SNES      lsnes;
1028:     KSP       ksp;
1029:     PC        pc;
1030:     PetscInt  numLevels, l;
1031:     PetscBool isMG;

1033:     PetscObjectTypeCompare((PetscObject) snes, SNESFAS, &isFAS);
1034:     if (isFAS) {
1035:       SNESFASGetLevels(snes, &numLevels);
1036:       for (l = 0; l < numLevels; ++l) {
1037:         SNESFASGetCycleSNES(snes, l, &lsnes);
1038:         SNESMonitorSet(lsnes, SNESMonitorError, &user, NULL);
1039:       }
1040:     } else {
1041:       SNESGetKSP(snes, &ksp);
1042:       KSPGetPC(ksp, &pc);
1043:       PetscObjectTypeCompare((PetscObject) pc, PCMG, &isMG);
1044:       if (isMG) {
1045:         user.pcmg = pc;
1046:         PCMGGetLevels(pc, &numLevels);
1047:         for (l = 0; l < numLevels; ++l) {
1048:           PCMGGetSmootherDown(pc, l, &ksp);
1049:           KSPMonitorSet(ksp, KSPMonitorError, &user, NULL);
1050:         }
1051:       }
1052:     }
1053:   }
1054:   if (user.runType == RUN_FULL || user.runType == RUN_EXACT) {
1055:     PetscErrorCode (*initialGuess[1])(PetscInt dim, PetscReal time, const PetscReal x[], PetscInt Nc, PetscScalar u[], void *ctx) = {zero};

1057:     if (user.nonzInit) initialGuess[0] = ecks;
1058:     if (user.runType == RUN_FULL) {
1059:       DMProjectFunction(dm, 0.0, initialGuess, NULL, INSERT_VALUES, u);
1060:     }
1061:     if (user.debug) {
1062:       PetscPrintf(PETSC_COMM_WORLD, "Initial guess\n");
1063:       VecView(u, PETSC_VIEWER_STDOUT_WORLD);
1064:     }
1065:     VecViewFromOptions(u, NULL, "-guess_vec_view");
1066:     SNESSolve(snes, NULL, u);
1067:     SNESGetSolution(snes, &u);
1068:     SNESGetDM(snes, &dm);

1070:     if (user.showSolution) {
1071:       PetscPrintf(PETSC_COMM_WORLD, "Solution\n");
1072:       VecChop(u, 3.0e-9);
1073:       VecView(u, PETSC_VIEWER_STDOUT_WORLD);
1074:     }
1075:     VecViewFromOptions(u, NULL, "-vec_view");
1076:   } else if (user.runType == RUN_PERF) {
1077:     Vec       r;
1078:     PetscReal res = 0.0;

1080:     SNESGetFunction(snes, &r, NULL, NULL);
1081:     SNESComputeFunction(snes, u, r);
1082:     PetscPrintf(PETSC_COMM_WORLD, "Initial Residual\n");
1083:     VecChop(r, 1.0e-10);
1084:     VecNorm(r, NORM_2, &res);
1085:     PetscPrintf(PETSC_COMM_WORLD, "L_2 Residual: %g\n", (double)res);
1086:   } else {
1087:     Vec       r;
1088:     PetscReal res = 0.0, tol = 1.0e-11;

1090:     /* Check discretization error */
1091:     SNESGetFunction(snes, &r, NULL, NULL);
1092:     PetscPrintf(PETSC_COMM_WORLD, "Initial guess\n");
1093:     if (!user.quiet) {VecView(u, PETSC_VIEWER_STDOUT_WORLD);}
1094:     DMComputeL2Diff(dm, 0.0, user.exactFuncs, NULL, u, &error);
1095:     if (error < tol) {PetscPrintf(PETSC_COMM_WORLD, "L_2 Error: < %2.1e\n", (double)tol);}
1096:     else             {PetscPrintf(PETSC_COMM_WORLD, "L_2 Error: %g\n", (double)error);}
1097:     /* Check residual */
1098:     SNESComputeFunction(snes, u, r);
1099:     PetscPrintf(PETSC_COMM_WORLD, "Initial Residual\n");
1100:     VecChop(r, 1.0e-10);
1101:     if (!user.quiet) {VecView(r, PETSC_VIEWER_STDOUT_WORLD);}
1102:     VecNorm(r, NORM_2, &res);
1103:     PetscPrintf(PETSC_COMM_WORLD, "L_2 Residual: %g\n", (double)res);
1104:     /* Check Jacobian */
1105:     {
1106:       Vec b;

1108:       SNESComputeJacobian(snes, u, A, A);
1109:       VecDuplicate(u, &b);
1110:       VecSet(r, 0.0);
1111:       SNESComputeFunction(snes, r, b);
1112:       MatMult(A, u, r);
1113:       VecAXPY(r, 1.0, b);
1114:       PetscPrintf(PETSC_COMM_WORLD, "Au - b = Au + F(0)\n");
1115:       VecChop(r, 1.0e-10);
1116:       if (!user.quiet) {VecView(r, PETSC_VIEWER_STDOUT_WORLD);}
1117:       VecNorm(r, NORM_2, &res);
1118:       PetscPrintf(PETSC_COMM_WORLD, "Linear L_2 Residual: %g\n", (double)res);
1119:       /* check solver */
1120:       if (user.checkksp) {
1121:         KSP ksp;

1123:         if (nullSpace) {
1124:           MatNullSpaceRemove(nullSpace, u);
1125:         }
1126:         SNESComputeJacobian(snes, u, A, J);
1127:         MatMult(A, u, b);
1128:         SNESGetKSP(snes, &ksp);
1129:         KSPSetOperators(ksp, A, J);
1130:         KSPSolve(ksp, b, r);
1131:         VecAXPY(r, -1.0, u);
1132:         VecNorm(r, NORM_2, &res);
1133:         PetscPrintf(PETSC_COMM_WORLD, "KSP Error: %g\n", (double)res);
1134:       }
1135:       VecDestroy(&b);
1136:     }
1137:   }
1138:   VecViewFromOptions(u, NULL, "-vec_view");

1140:   if (user.bdIntegral) {
1141:     DMLabel   label;
1142:     PetscInt  id = 1;
1143:     PetscScalar bdInt = 0.0;
1144:     PetscReal   exact = 3.3333333333;

1146:     DMGetLabel(dm, "marker", &label);
1147:     DMPlexComputeBdIntegral(dm, u, label, 1, &id, bd_integral_2d, &bdInt, NULL);
1148:     PetscPrintf(PETSC_COMM_WORLD, "Solution boundary integral: %.4g\n", (double) PetscAbsScalar(bdInt));
1149:     if (PetscAbsReal(PetscAbsScalar(bdInt) - exact) > PETSC_SQRT_MACHINE_EPSILON) SETERRQ2(PETSC_COMM_WORLD, PETSC_ERR_PLIB, "Invalid boundary integral %g != %g", (double) PetscAbsScalar(bdInt), (double)exact);
1150:   }

1152:   MatNullSpaceDestroy(&nullSpace);
1153:   if (user.jacobianMF) {VecDestroy(&userJ.u);}
1154:   if (A != J) {MatDestroy(&A);}
1155:   MatDestroy(&J);
1156:   VecDestroy(&u);
1157:   SNESDestroy(&snes);
1158:   DMDestroy(&dm);
1159:   PetscFree2(user.exactFuncs, user.exactFields);
1160:   PetscFinalize();
1161:   return ierr;
1162: }

1164: /*TEST
1165:   # 2D serial P1 test 0-4
1166:   test:
1167:     suffix: 2d_p1_0
1168:     requires: triangle
1169:     args: -run_type test -refinement_limit 0.0    -bc_type dirichlet -interpolate 0 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1171:   test:
1172:     suffix: 2d_p1_1
1173:     requires: triangle
1174:     args: -run_type test -refinement_limit 0.0    -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1176:   test:
1177:     suffix: 2d_p1_2
1178:     requires: triangle
1179:     args: -run_type test -refinement_limit 0.0625 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1181:   test:
1182:     suffix: 2d_p1_neumann_0
1183:     requires: triangle
1184:     args: -run_type test -refinement_limit 0.0    -bc_type neumann   -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -dm_view ascii::ascii_info_detail

1186:   test:
1187:     suffix: 2d_p1_neumann_1
1188:     requires: triangle
1189:     args: -run_type test -refinement_limit 0.0625 -bc_type neumann   -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1191:   # 2D serial P2 test 5-8
1192:   test:
1193:     suffix: 2d_p2_0
1194:     requires: triangle
1195:     args: -run_type test -refinement_limit 0.0    -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1197:   test:
1198:     suffix: 2d_p2_1
1199:     requires: triangle
1200:     args: -run_type test -refinement_limit 0.0625 -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1202:   test:
1203:     suffix: 2d_p2_neumann_0
1204:     requires: triangle
1205:     args: -run_type test -refinement_limit 0.0    -bc_type neumann   -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -dm_view ascii::ascii_info_detail

1207:   test:
1208:     suffix: 2d_p2_neumann_1
1209:     requires: triangle
1210:     args: -run_type test -refinement_limit 0.0625 -bc_type neumann   -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -dm_view ascii::ascii_info_detail

1212:   test:
1213:     suffix: bd_int_0
1214:     requires: triangle
1215:     args: -run_type test -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -bd_integral -dm_view -quiet

1217:   test:
1218:     suffix: bd_int_1
1219:     requires: triangle
1220:     args: -run_type test -dm_refine 2 -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -bd_integral -dm_view -quiet

1222:   # 3D serial P1 test 9-12
1223:   test:
1224:     suffix: 3d_p1_0
1225:     requires: ctetgen
1226:     args: -run_type test -dim 3 -refinement_limit 0.0    -bc_type dirichlet -interpolate 0 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -dm_view -cells 1,1,1

1228:   test:
1229:     suffix: 3d_p1_1
1230:     requires: ctetgen
1231:     args: -run_type test -dim 3 -refinement_limit 0.0    -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -dm_view -cells 1,1,1

1233:   test:
1234:     suffix: 3d_p1_2
1235:     requires: ctetgen
1236:     args: -run_type test -dim 3 -refinement_limit 0.0125 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -dm_view -cells 1,1,1

1238:   test:
1239:     suffix: 3d_p1_neumann_0
1240:     requires: ctetgen
1241:     args: -run_type test -dim 3 -bc_type neumann   -interpolate 1 -petscspace_degree 1 -snes_fd -show_initial -dm_plex_print_fem 1 -dm_view -cells 1,1,1

1243:   # Analytic variable coefficient 13-20
1244:   test:
1245:     suffix: 13
1246:     requires: triangle
1247:     args: -run_type test -refinement_limit 0.0    -variable_coefficient analytic -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1248:   test:
1249:     suffix: 14
1250:     requires: triangle
1251:     args: -run_type test -refinement_limit 0.0625 -variable_coefficient analytic -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1
1252:   test:
1253:     suffix: 15
1254:     requires: triangle
1255:     args: -run_type test -refinement_limit 0.0    -variable_coefficient analytic -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1256:   test:
1257:     suffix: 16
1258:     requires: triangle
1259:     args: -run_type test -refinement_limit 0.0625 -variable_coefficient analytic -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1
1260:   test:
1261:     suffix: 17
1262:     requires: ctetgen
1263:     args: -run_type test -dim 3 -refinement_limit 0.0    -variable_coefficient analytic -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1265:   test:
1266:     suffix: 18
1267:     requires: ctetgen
1268:     args: -run_type test -dim 3 -refinement_limit 0.0125 -variable_coefficient analytic -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1270:   test:
1271:     suffix: 19
1272:     requires: ctetgen
1273:     args: -run_type test -dim 3 -refinement_limit 0.0    -variable_coefficient analytic -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1275:   test:
1276:     suffix: 20
1277:     requires: ctetgen
1278:     args: -run_type test -dim 3 -refinement_limit 0.0125 -variable_coefficient analytic -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1280:   # P1 variable coefficient 21-28
1281:   test:
1282:     suffix: 21
1283:     requires: triangle
1284:     args: -run_type test -refinement_limit 0.0    -variable_coefficient field    -interpolate 1 -petscspace_degree 1 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1286:   test:
1287:     suffix: 22
1288:     requires: triangle
1289:     args: -run_type test -refinement_limit 0.0625 -variable_coefficient field    -interpolate 1 -petscspace_degree 1 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1291:   test:
1292:     suffix: 23
1293:     requires: triangle
1294:     args: -run_type test -refinement_limit 0.0    -variable_coefficient field    -interpolate 1 -petscspace_degree 2 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1296:   test:
1297:     suffix: 24
1298:     requires: triangle
1299:     args: -run_type test -refinement_limit 0.0625 -variable_coefficient field    -interpolate 1 -petscspace_degree 2 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1301:   test:
1302:     suffix: 25
1303:     requires: ctetgen
1304:     args: -run_type test -dim 3 -refinement_limit 0.0    -variable_coefficient field    -interpolate 1 -petscspace_degree 1 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1306:   test:
1307:     suffix: 26
1308:     requires: ctetgen
1309:     args: -run_type test -dim 3 -refinement_limit 0.0125 -variable_coefficient field    -interpolate 1 -petscspace_degree 1 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1311:   test:
1312:     suffix: 27
1313:     requires: ctetgen
1314:     args: -run_type test -dim 3 -refinement_limit 0.0    -variable_coefficient field    -interpolate 1 -petscspace_degree 2 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1316:   test:
1317:     suffix: 28
1318:     requires: ctetgen
1319:     args: -run_type test -dim 3 -refinement_limit 0.0125 -variable_coefficient field    -interpolate 1 -petscspace_degree 2 -mat_petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1321:   # P0 variable coefficient 29-36
1322:   test:
1323:     suffix: 29
1324:     requires: triangle
1325:     args: -run_type test -refinement_limit 0.0    -variable_coefficient field    -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1327:   test:
1328:     suffix: 30
1329:     requires: triangle
1330:     args: -run_type test -refinement_limit 0.0625 -variable_coefficient field    -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1

1332:   test:
1333:     suffix: 31
1334:     requires: triangle
1335:     args: -run_type test -refinement_limit 0.0    -variable_coefficient field    -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1337:   test:
1338:     requires: triangle
1339:     suffix: 32
1340:     args: -run_type test -refinement_limit 0.0625 -variable_coefficient field    -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1342:   test:
1343:     requires: ctetgen
1344:     suffix: 33
1345:     args: -run_type test -dim 3 -refinement_limit 0.0    -variable_coefficient field    -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1347:   test:
1348:     suffix: 34
1349:     requires: ctetgen
1350:     args: -run_type test -dim 3 -refinement_limit 0.0125 -variable_coefficient field    -interpolate 1 -petscspace_degree 1 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1352:   test:
1353:     suffix: 35
1354:     requires: ctetgen
1355:     args: -run_type test -dim 3 -refinement_limit 0.0    -variable_coefficient field    -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1357:   test:
1358:     suffix: 36
1359:     requires: ctetgen
1360:     args: -run_type test -dim 3 -refinement_limit 0.0125 -variable_coefficient field    -interpolate 1 -petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1362:   # Full solve 39-44
1363:   test:
1364:     suffix: 39
1365:     requires: triangle !single
1366:     args: -run_type full -refinement_limit 0.015625 -interpolate 1 -petscspace_degree 2 -pc_type gamg -ksp_rtol 1.0e-10 -ksp_monitor_short -ksp_converged_reason -snes_monitor_short -snes_converged_reason ::ascii_info_detail
1367:   test:
1368:     suffix: 40
1369:     requires: triangle !single
1370:     args: -run_type full -refinement_limit 0.015625 -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 2 -pc_type svd -ksp_rtol 1.0e-10 -snes_monitor_short -snes_converged_reason ::ascii_info_detail
1371:   test:
1372:     suffix: 41
1373:     requires: triangle !single
1374:     args: -run_type full -refinement_limit 0.03125 -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 1 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short
1375:   test:
1376:     suffix: 42
1377:     requires: triangle !single
1378:     args: -run_type full -refinement_limit 0.0625 -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 2 -dm_plex_print_fem 0 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short -fas_levels_2_snes_type newtonls -fas_levels_2_pc_type svd -fas_levels_2_ksp_rtol 1.0e-10 -fas_levels_2_snes_atol 1.0e-11 -fas_levels_2_snes_monitor_short
1379:   test:
1380:     suffix: 43
1381:     requires: triangle !single
1382:     nsize: 2
1383:     args: -run_type full -refinement_limit 0.03125 -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 1 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short

1385:   test:
1386:     suffix: 44
1387:     requires: triangle !single
1388:     nsize: 2
1389:     args: -run_type full -refinement_limit 0.0625 -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short  -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 2 -dm_plex_print_fem 0 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short -fas_levels_2_snes_type newtonls -fas_levels_2_pc_type svd -fas_levels_2_ksp_rtol 1.0e-10 -fas_levels_2_snes_atol 1.0e-11 -fas_levels_2_snes_monitor_short

1391:   # These tests use a loose tolerance just to exercise the PtAP operations for MATIS and multiple PCBDDC setup calls inside PCMG
1392:   testset:
1393:     requires: triangle !single
1394:     nsize: 3
1395:     args: -interpolate -run_type full -petscspace_degree 1 -dm_mat_type is -pc_type mg -pc_mg_levels 2 -mg_coarse_pc_type bddc -pc_mg_galerkin pmat -ksp_rtol 1.0e-2 -snes_converged_reason -dm_refine_hierarchy 2 -snes_max_it 4
1396:     test:
1397:       suffix: gmg_bddc
1398:       filter: sed -e "s/CONVERGED_FNORM_RELATIVE iterations 3/CONVERGED_FNORM_RELATIVE iterations 4/g"
1399:       args: -mg_levels_pc_type jacobi
1400:     test:
1401:       filter: sed -e "s/iterations [0-4]/iterations 4/g"
1402:       suffix: gmg_bddc_lev
1403:       args: -mg_levels_pc_type bddc

1405:   # Restarting
1406:   testset:
1407:     suffix: restart
1408:     requires: hdf5 triangle !complex
1409:     args: -run_type test -refinement_limit 0.0    -bc_type dirichlet -interpolate 1 -petscspace_degree 1
1410:     test:
1411:       args: -dm_view hdf5:sol.h5 -vec_view hdf5:sol.h5::append
1412:     test:
1413:       args: -f sol.h5 -restart

1415:   # Periodicity
1416:   test:
1417:     suffix: periodic_0
1418:     requires: triangle
1419:     args: -run_type full -refinement_limit 0.0    -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -snes_converged_reason ::ascii_info_detail

1421:   test:
1422:     requires: !complex
1423:     suffix: periodic_1
1424:     args: -quiet -run_type test -simplex 0 -x_periodicity periodic -y_periodicity periodic -vec_view vtk:test.vtu:vtk_vtu -interpolate 1 -petscspace_degree 1 -dm_refine 1

1426:   # 2D serial P1 test with field bc
1427:   test:
1428:     suffix: field_bc_2d_p1_0
1429:     requires: triangle
1430:     args: -run_type test              -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1432:   test:
1433:     suffix: field_bc_2d_p1_1
1434:     requires: triangle
1435:     args: -run_type test -dm_refine 1 -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1437:   test:
1438:     suffix: field_bc_2d_p1_neumann_0
1439:     requires: triangle
1440:     args: -run_type test              -interpolate 1 -bc_type neumann   -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1442:   test:
1443:     suffix: field_bc_2d_p1_neumann_1
1444:     requires: triangle
1445:     args: -run_type test -dm_refine 1 -interpolate 1 -bc_type neumann   -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1447:   # 3D serial P1 test with field bc
1448:   test:
1449:     suffix: field_bc_3d_p1_0
1450:     requires: ctetgen
1451:     args: -run_type test -dim 3              -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1453:   test:
1454:     suffix: field_bc_3d_p1_1
1455:     requires: ctetgen
1456:     args: -run_type test -dim 3 -dm_refine 1 -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1458:   test:
1459:     suffix: field_bc_3d_p1_neumann_0
1460:     requires: ctetgen
1461:     args: -run_type test -dim 3              -interpolate 1 -bc_type neumann   -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1463:   test:
1464:     suffix: field_bc_3d_p1_neumann_1
1465:     requires: ctetgen
1466:     args: -run_type test -dim 3 -dm_refine 1 -interpolate 1 -bc_type neumann   -field_bc -petscspace_degree 1 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1468:   # 2D serial P2 test with field bc
1469:   test:
1470:     suffix: field_bc_2d_p2_0
1471:     requires: triangle
1472:     args: -run_type test              -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1474:   test:
1475:     suffix: field_bc_2d_p2_1
1476:     requires: triangle
1477:     args: -run_type test -dm_refine 1 -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1479:   test:
1480:     suffix: field_bc_2d_p2_neumann_0
1481:     requires: triangle
1482:     args: -run_type test              -interpolate 1 -bc_type neumann   -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1484:   test:
1485:     suffix: field_bc_2d_p2_neumann_1
1486:     requires: triangle
1487:     args: -run_type test -dm_refine 1 -interpolate 1 -bc_type neumann   -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1

1489:   # 3D serial P2 test with field bc
1490:   test:
1491:     suffix: field_bc_3d_p2_0
1492:     requires: ctetgen
1493:     args: -run_type test -dim 3              -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1495:   test:
1496:     suffix: field_bc_3d_p2_1
1497:     requires: ctetgen
1498:     args: -run_type test -dim 3 -dm_refine 1 -interpolate 1 -bc_type dirichlet -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1500:   test:
1501:     suffix: field_bc_3d_p2_neumann_0
1502:     requires: ctetgen
1503:     args: -run_type test -dim 3              -interpolate 1 -bc_type neumann   -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1505:   test:
1506:     suffix: field_bc_3d_p2_neumann_1
1507:     requires: ctetgen
1508:     args: -run_type test -dim 3 -dm_refine 1 -interpolate 1 -bc_type neumann   -field_bc -petscspace_degree 2 -bc_petscspace_degree 2 -show_initial -dm_plex_print_fem 1 -cells 1,1,1

1510:   # Full solve simplex: Convergence
1511:   test:
1512:     suffix: tet_conv_p1_r0
1513:     requires: ctetgen
1514:     args: -run_type full -dim 3 -dm_refine 0 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -dm_view -snes_converged_reason ::ascii_info_detail -pc_type lu -cells 1,1,1
1515:   test:
1516:     suffix: tet_conv_p1_r2
1517:     requires: ctetgen
1518:     args: -run_type full -dim 3 -dm_refine 2 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -dm_view -snes_converged_reason ::ascii_info_detail -pc_type lu -cells 1,1,1
1519:   test:
1520:     suffix: tet_conv_p1_r3
1521:     requires: ctetgen
1522:     args: -run_type full -dim 3 -dm_refine 3 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -dm_view -snes_converged_reason ::ascii_info_detail -pc_type lu -cells 1,1,1
1523:   test:
1524:     suffix: tet_conv_p2_r0
1525:     requires: ctetgen
1526:     args: -run_type full -dim 3 -dm_refine 0 -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -dm_view -snes_converged_reason ::ascii_info_detail -pc_type lu -cells 1,1,1
1527:   test:
1528:     suffix: tet_conv_p2_r2
1529:     requires: ctetgen
1530:     args: -run_type full -dim 3 -dm_refine 2 -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -dm_view -snes_converged_reason ::ascii_info_detail -pc_type lu -cells 1,1,1

1532:   # Full solve simplex: PCBDDC
1533:   test:
1534:     suffix: tri_bddc
1535:     requires: triangle !single
1536:     nsize: 5
1537:     args: -run_type full -petscpartitioner_type simple -dm_refine 2 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -dm_mat_type is -pc_type bddc -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0

1539:   # Full solve simplex: PCBDDC
1540:   test:
1541:     suffix: tri_parmetis_bddc
1542:     requires: triangle !single parmetis
1543:     nsize: 4
1544:     args: -run_type full -petscpartitioner_type parmetis -dm_refine 2 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -dm_mat_type is -pc_type bddc -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0

1546:   testset:
1547:     args: -run_type full -petscpartitioner_type simple -dm_refine 2 -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -dm_mat_type is -pc_type bddc -ksp_type gmres -snes_monitor_short -ksp_monitor_short -snes_view -simplex 0 -petscspace_poly_tensor -pc_bddc_corner_selection -cells 3,3 -ksp_rtol 1.e-9 -pc_bddc_use_edges 0
1548:     nsize: 5
1549:     output_file: output/ex12_quad_bddc.out
1550:     filter: sed -e "s/aijcusparse/aij/g" -e "s/aijviennacl/aij/g" -e "s/factorization: cusparse/factorization: petsc/g"
1551:     test:
1552:       requires: !single
1553:       suffix: quad_bddc
1554:     test:
1555:       requires: !single cuda
1556:       suffix: quad_bddc_cuda
1557:       args: -matis_localmat_type aijcusparse -pc_bddc_dirichlet_pc_factor_mat_solver_type cusparse -pc_bddc_neumann_pc_factor_mat_solver_type cusparse
1558:     test:
1559:       requires: !single viennacl
1560:       suffix: quad_bddc_viennacl
1561:       args: -matis_localmat_type aijviennacl

1563:   # Full solve simplex: ASM
1564:   test:
1565:     suffix: tri_q2q1_asm_lu
1566:     requires: triangle !single
1567:     args: -run_type full -dm_refine 3 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -pc_type asm -pc_asm_type restrict -pc_asm_blocks 4 -sub_pc_type lu -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0

1569:   test:
1570:     suffix: tri_q2q1_msm_lu
1571:     requires: triangle !single
1572:     args: -run_type full -dm_refine 3 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -pc_type asm -pc_asm_type restrict -pc_asm_local_type multiplicative -pc_asm_blocks 4 -sub_pc_type lu -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0

1574:   test:
1575:     suffix: tri_q2q1_asm_sor
1576:     requires: triangle !single
1577:     args: -run_type full -dm_refine 3 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -pc_type asm -pc_asm_type restrict -pc_asm_blocks 4 -sub_pc_type sor -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0

1579:   test:
1580:     suffix: tri_q2q1_msm_sor
1581:     requires: triangle !single
1582:     args: -run_type full -dm_refine 3 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -ksp_rtol 1.0e-9 -pc_type asm -pc_asm_type restrict -pc_asm_local_type multiplicative -pc_asm_blocks 4 -sub_pc_type sor -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0

1584:   # Full solve simplex: FAS
1585:   test:
1586:     suffix: fas_newton_0
1587:     requires: triangle !single
1588:     args: -run_type full -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 1 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short

1590:   test:
1591:     suffix: fas_newton_1
1592:     requires: triangle !single
1593:     args: -run_type full -dm_refine_hierarchy 3 -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type lu -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_snes_linesearch_type basic -fas_levels_ksp_rtol 1.0e-10 -fas_levels_snes_monitor_short

1595:   test:
1596:     suffix: fas_ngs_0
1597:     requires: triangle !single
1598:     args: -run_type full -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_refine_hierarchy 1 -snes_view -fas_levels_1_snes_type ngs -fas_levels_1_snes_monitor_short

1600:   test:
1601:     suffix: fas_newton_coarse_0
1602:     requires: pragmatic triangle
1603:     TODO: broken
1604:     args: -run_type full -dm_refine 2 -dm_plex_hash_location -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -pc_type svd -ksp_rtol 1.0e-10 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -dm_coarsen_hierarchy 1 -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short

1606:   test:
1607:     suffix: mg_newton_coarse_0
1608:     requires: triangle pragmatic
1609:     TODO: broken
1610:     args: -run_type full -dm_refine 3 -interpolate 1 -petscspace_degree 1 -snes_monitor_short -ksp_monitor_true_residual -snes_converged_reason ::ascii_info_detail -dm_coarsen_hierarchy 3 -dm_plex_hash_location -snes_view -dm_view -ksp_type richardson -pc_type mg  -pc_mg_levels 4 -snes_atol 1.0e-8 -ksp_atol 1.0e-8 -snes_rtol 0.0 -ksp_rtol 0.0 -ksp_norm_type unpreconditioned -mg_levels_ksp_type gmres -mg_levels_pc_type ilu -mg_levels_ksp_max_it 10

1612:   test:
1613:     suffix: mg_newton_coarse_1
1614:     requires: triangle pragmatic
1615:     TODO: broken
1616:     args: -run_type full -dm_refine 5 -interpolate 1 -petscspace_degree 1 -dm_coarsen_hierarchy 5 -dm_plex_hash_location -dm_plex_separate_marker -dm_plex_coarsen_bd_label marker -dm_plex_remesh_bd -ksp_type richardson -ksp_rtol 1.0e-12 -pc_type mg -pc_mg_levels 3 -mg_levels_ksp_max_it 2 -snes_converged_reason ::ascii_info_detail -snes_monitor -ksp_monitor_true_residual -mg_levels_ksp_monitor_true_residual -dm_view -ksp_view

1618:   test:
1619:     suffix: mg_newton_coarse_2
1620:     requires: triangle pragmatic
1621:     TODO: broken
1622:     args: -run_type full -dm_refine 5 -interpolate 1 -petscspace_degree 1 -dm_coarsen_hierarchy 5 -dm_plex_hash_location -dm_plex_separate_marker -dm_plex_remesh_bd -ksp_type richardson -ksp_rtol 1.0e-12 -pc_type mg -pc_mg_levels 3 -mg_levels_ksp_max_it 2 -snes_converged_reason ::ascii_info_detail -snes_monitor -ksp_monitor_true_residual -mg_levels_ksp_monitor_true_residual -dm_view -ksp_view

1624:   # Full solve tensor
1625:   test:
1626:     suffix: tensor_plex_2d
1627:     args: -run_type test -refinement_limit 0.0 -simplex 0 -interpolate -bc_type dirichlet -petscspace_degree 1 -dm_refine_hierarchy 2 -cells 2,2

1629:   test:
1630:     suffix: tensor_p4est_2d
1631:     requires: p4est
1632:     args: -run_type test -refinement_limit 0.0 -simplex 0 -interpolate -bc_type dirichlet -petscspace_degree 1 -dm_forest_initial_refinement 2 -dm_forest_minimum_refinement 0 -dm_plex_convert_type p4est -cells 2,2

1634:   test:
1635:     suffix: tensor_plex_3d
1636:     args: -run_type test -refinement_limit 0.0 -simplex 0 -interpolate -bc_type dirichlet -petscspace_degree 1 -dim 3 -dm_refine_hierarchy 1 -cells 2,2,2

1638:   test:
1639:     suffix: tensor_p4est_3d
1640:     requires: p4est
1641:     args: -run_type test -refinement_limit 0.0 -simplex 0 -interpolate -bc_type dirichlet -petscspace_degree 1 -dm_forest_initial_refinement 1 -dm_forest_minimum_refinement 0 -dim 3 -dm_plex_convert_type p8est -cells 2,2,2

1643:   test:
1644:     suffix: p4est_test_q2_conformal_serial
1645:     requires: p4est
1646:     args: -run_type test -interpolate 1 -petscspace_degree 2 -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -cells 2,2

1648:   test:
1649:     suffix: p4est_test_q2_conformal_parallel
1650:     requires: p4est
1651:     nsize: 7
1652:     args: -run_type test -interpolate 1 -petscspace_degree 2 -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -petscpartitioner_type simple -cells 2,2

1654:   test:
1655:     suffix: p4est_test_q2_conformal_parallel_parmetis
1656:     requires: parmetis p4est
1657:     nsize: 4
1658:     args: -run_type test -interpolate 1 -petscspace_degree 2 -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -petscpartitioner_type parmetis -cells 2,2

1660:   test:
1661:     suffix: p4est_test_q2_nonconformal_serial
1662:     requires: p4est
1663:     filter: grep -v "CG or CGNE: variant"
1664:     args: -run_type test -interpolate 1 -petscspace_degree 2 -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -cells 2,2

1666:   test:
1667:     suffix: p4est_test_q2_nonconformal_parallel
1668:     requires: p4est
1669:     filter: grep -v "CG or CGNE: variant"
1670:     nsize: 7
1671:     args: -run_type test -interpolate 1 -petscspace_degree 2 -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple -cells 2,2

1673:   test:
1674:     suffix: p4est_test_q2_nonconformal_parallel_parmetis
1675:     requires: parmetis p4est
1676:     nsize: 4
1677:     args: -run_type test -interpolate 1 -petscspace_degree 2 -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type parmetis -cells 2,2

1679:   test:
1680:     suffix: p4est_exact_q2_conformal_serial
1681:     requires: p4est !single !complex !__float128
1682:     args: -run_type exact -interpolate 1 -petscspace_degree 2 -fas_levels_snes_atol 1.e-10 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -cells 2,2

1684:   test:
1685:     suffix: p4est_exact_q2_conformal_parallel
1686:     requires: p4est !single !complex !__float128
1687:     nsize: 4
1688:     args: -run_type exact -interpolate 1 -petscspace_degree 2 -fas_levels_snes_atol 1.e-10 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -cells 2,2

1690:   test:
1691:     suffix: p4est_exact_q2_conformal_parallel_parmetis
1692:     requires: parmetis p4est !single
1693:     nsize: 4
1694:     args: -run_type exact -interpolate 1 -petscspace_degree 2 -fas_levels_snes_atol 1.e-10 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -petscpartitioner_type parmetis  -cells 2,2

1696:   test:
1697:     suffix: p4est_exact_q2_nonconformal_serial
1698:     requires: p4est
1699:     args: -run_type exact -interpolate 1 -petscspace_degree 2 -fas_levels_snes_atol 1.e-10 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -cells 2,2

1701:   test:
1702:     suffix: p4est_exact_q2_nonconformal_parallel
1703:     requires: p4est
1704:     nsize: 7
1705:     args: -run_type exact -interpolate 1 -petscspace_degree 2 -fas_levels_snes_atol 1.e-10 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple -cells 2,2

1707:   test:
1708:     suffix: p4est_exact_q2_nonconformal_parallel_parmetis
1709:     requires: parmetis p4est
1710:     nsize: 4
1711:     args: -run_type exact -interpolate 1 -petscspace_degree 2 -fas_levels_snes_atol 1.e-10 -snes_max_it 1 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type none -fas_coarse_ksp_type preonly -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type none -fas_levels_ksp_type preonly -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type parmetis -cells 2,2

1713:   test:
1714:     suffix: p4est_full_q2_nonconformal_serial
1715:     requires: p4est !single
1716:     filter: grep -v "variant HERMITIAN"
1717:     args: -run_type full -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type jacobi -fas_coarse_ksp_type cg -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type jacobi -fas_levels_ksp_type cg -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -cells 2,2

1719:   test:
1720:     suffix: p4est_full_q2_nonconformal_parallel
1721:     requires: p4est !single
1722:     filter: grep -v "variant HERMITIAN"
1723:     nsize: 7
1724:     args: -run_type full -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -fas_coarse_pc_type jacobi -fas_coarse_ksp_type cg -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type jacobi -fas_levels_ksp_type cg -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple -cells 2,2

1726:   test:
1727:     suffix: p4est_full_q2_nonconformal_parallel_bddcfas
1728:     requires: p4est !single
1729:     filter: grep -v "variant HERMITIAN"
1730:     nsize: 7
1731:     args: -run_type full -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -dm_mat_type is -fas_coarse_pc_type bddc -fas_coarse_ksp_type cg -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type bddc -fas_levels_ksp_type cg -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple -cells 2,2

1733:   test:
1734:     suffix: p4est_full_q2_nonconformal_parallel_bddc
1735:     requires: p4est !single
1736:     filter: grep -v "variant HERMITIAN"
1737:     nsize: 7
1738:     args: -run_type full -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type newtonls -dm_mat_type is -pc_type bddc -ksp_type cg -snes_monitor_short -snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple -cells 2,2

1740:   test:
1741:     TODO: broken
1742:     suffix: p4est_fas_q2_conformal_serial
1743:     requires: p4est !complex !__float128
1744:     args: -run_type full -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -pc_type jacobi -ksp_type gmres -fas_coarse_pc_type svd -fas_coarse_ksp_type gmres -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type svd -fas_levels_ksp_type gmres -fas_levels_snes_monitor_short -simplex 0 -dm_refine_hierarchy 3 -cells 2,2

1746:   test:
1747:     TODO: broken
1748:     suffix: p4est_fas_q2_nonconformal_serial
1749:     requires: p4est
1750:     args: -run_type full -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type fas -snes_fas_levels 3 -pc_type jacobi -ksp_type gmres -fas_coarse_pc_type jacobi -fas_coarse_ksp_type gmres -fas_coarse_ksp_monitor_true_residual -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_snes_type newtonls -fas_levels_pc_type jacobi -fas_levels_ksp_type gmres -fas_levels_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -cells 2,2

1752:   test:
1753:     suffix: fas_newton_0_p4est
1754:     requires: p4est !single !__float128
1755:     args: -run_type full -variable_coefficient nonlinear -interpolate 1 -petscspace_degree 1 -snes_type fas -snes_fas_levels 2 -fas_coarse_pc_type svd -fas_coarse_ksp_rtol 1.0e-10 -fas_coarse_snes_monitor_short -snes_monitor_short -fas_coarse_snes_linesearch_type basic -snes_converged_reason ::ascii_info_detail -snes_view -fas_levels_1_snes_type newtonls -fas_levels_1_pc_type svd -fas_levels_1_ksp_rtol 1.0e-10 -fas_levels_1_snes_monitor_short -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -cells 2,2

1757:   # Full solve simplicial AMR
1758:   test:
1759:     suffix: tri_p1_adapt_0
1760:     requires: pragmatic
1761:     TODO: broken
1762:     args: -run_type exact -dim 2 -dm_refine 5 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -variable_coefficient circle -snes_converged_reason ::ascii_info_detail -pc_type lu -adaptor_refinement_factor 1.0 -dm_view -dm_adapt_view -snes_adapt_initial 1

1764:   test:
1765:     suffix: tri_p1_adapt_1
1766:     requires: pragmatic
1767:     TODO: broken
1768:     args: -run_type exact -dim 2 -dm_refine 5 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -variable_coefficient circle -snes_converged_reason ::ascii_info_detail -pc_type lu -adaptor_refinement_factor 1.0 -dm_view -dm_adapt_iter_view -dm_adapt_view -snes_adapt_sequence 2

1770:   test:
1771:     suffix: tri_p1_adapt_analytic_0
1772:     requires: pragmatic
1773:     TODO: broken
1774:     args: -run_type exact -dim 2 -dm_refine 3 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -variable_coefficient cross -snes_adapt_initial 4 -adaptor_target_num 500 -adaptor_monitor -dm_view -dm_adapt_iter_view

1776:   # Full solve tensor AMR
1777:   test:
1778:     suffix: quad_q1_adapt_0
1779:     requires: p4est
1780:     args: -run_type exact -dim 2 -simplex 0 -dm_plex_convert_type p4est -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -variable_coefficient circle -snes_converged_reason ::ascii_info_detail -pc_type lu -dm_forest_initial_refinement 4   -snes_adapt_initial 1 -dm_view
1781:     filter: grep -v DM_

1783:   test:
1784:     suffix: amr_0
1785:     nsize: 5
1786:     args: -run_type test -petscpartitioner_type simple -refinement_limit 0.0 -simplex 0 -interpolate -bc_type dirichlet -petscspace_degree 1 -dm_refine 1 -cells 2,2

1788:   test:
1789:     suffix: amr_1
1790:     requires: p4est !complex
1791:     args: -run_type test -refinement_limit 0.0 -simplex 0 -interpolate -bc_type dirichlet -petscspace_degree 1 -dm_plex_convert_type p4est -dm_p4est_refine_pattern center -dm_forest_maximum_refinement 5 -dm_view vtk:amr.vtu:vtk_vtu -vec_view vtk:amr.vtu:vtk_vtu:append -cells 2,2

1793:   test:
1794:     suffix: p4est_solve_bddc
1795:     requires: p4est !complex
1796:     args: -run_type full -variable_coefficient nonlinear -nonzero_initial_guess 1 -interpolate 1 -petscspace_degree 2 -snes_max_it 20 -snes_type newtonls -dm_mat_type is -pc_type bddc -ksp_type cg -snes_monitor_short -ksp_monitor -snes_linesearch_type bt -snes_converged_reason -snes_view -simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -petscpartitioner_type simple -pc_bddc_detect_disconnected
1797:     nsize: 4

1799:   test:
1800:     suffix: p4est_solve_fas
1801:     requires: p4est
1802:     args: -run_type full -variable_coefficient nonlinear -nonzero_initial_guess 1 -interpolate 1 -petscspace_degree 2 -snes_max_it 10 -snes_type fas -snes_linesearch_type bt -snes_fas_levels 3 -fas_coarse_snes_type newtonls -fas_coarse_snes_linesearch_type basic -fas_coarse_ksp_type cg -fas_coarse_pc_type jacobi -fas_coarse_snes_monitor_short -fas_levels_snes_max_it 4 -fas_levels_snes_type newtonls -fas_levels_snes_linesearch_type bt -fas_levels_ksp_type cg -fas_levels_pc_type jacobi -fas_levels_snes_monitor_short -fas_levels_cycle_snes_linesearch_type bt -snes_monitor_short -snes_converged_reason -snes_view -simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash
1803:     nsize: 4
1804:     TODO: identical machine two runs produce slightly different solver trackers

1806:   test:
1807:     suffix: p4est_convergence_test_1
1808:     requires: p4est
1809:     args:  -quiet -run_type test -interpolate 1 -petscspace_degree 1 -simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 2 -dm_forest_initial_refinement 2 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash
1810:     nsize: 4

1812:   test:
1813:     suffix: p4est_convergence_test_2
1814:     requires: p4est
1815:     args: -quiet -run_type test -interpolate 1 -petscspace_degree 1 -simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 3 -dm_forest_initial_refinement 3 -dm_forest_maximum_refinement 5 -dm_p4est_refine_pattern hash

1817:   test:
1818:     suffix: p4est_convergence_test_3
1819:     requires: p4est
1820:     args: -quiet -run_type test -interpolate 1 -petscspace_degree 1 -simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 4 -dm_forest_initial_refinement 4 -dm_forest_maximum_refinement 6 -dm_p4est_refine_pattern hash

1822:   test:
1823:     suffix: p4est_convergence_test_4
1824:     requires: p4est
1825:     args: -quiet -run_type test -interpolate 1 -petscspace_degree 1 -simplex 0 -petscspace_poly_tensor -dm_plex_convert_type p4est -dm_forest_minimum_refinement 5 -dm_forest_initial_refinement 5 -dm_forest_maximum_refinement 7 -dm_p4est_refine_pattern hash
1826:     timeoutfactor: 5

1828:   # Serial tests with GLVis visualization
1829:   test:
1830:     suffix: glvis_2d_tet_p1
1831:     args: -quiet -run_type test -interpolate 1 -bc_type dirichlet -petscspace_degree 1 -vec_view glvis: -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/square_periodic.msh -dm_plex_gmsh_periodic 0
1832:   test:
1833:     suffix: glvis_2d_tet_p2
1834:     args: -quiet -run_type test -interpolate 1 -bc_type dirichlet -petscspace_degree 2 -vec_view glvis: -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/square_periodic.msh -dm_plex_gmsh_periodic 0
1835:   test:
1836:     suffix: glvis_2d_hex_p1
1837:     args: -quiet -run_type test -interpolate 1 -bc_type dirichlet -petscspace_degree 1 -vec_view glvis: -simplex 0 -dm_refine 1
1838:   test:
1839:     suffix: glvis_2d_hex_p2
1840:     args: -quiet -run_type test -interpolate 1 -bc_type dirichlet -petscspace_degree 2 -vec_view glvis: -simplex 0 -dm_refine 1
1841:   test:
1842:     suffix: glvis_2d_hex_p2_p4est
1843:     requires: p4est
1844:     args: -quiet -run_type test -interpolate 1 -bc_type dirichlet -petscspace_degree 2 -vec_view glvis: -simplex 0 -dm_plex_convert_type p4est -dm_forest_minimum_refinement 0 -dm_forest_initial_refinement 1 -dm_forest_maximum_refinement 4 -dm_p4est_refine_pattern hash -cells 2,2 -viewer_glvis_dm_plex_enable_ncmesh
1845:   test:
1846:     suffix: glvis_2d_tet_p0
1847:     args: -run_type exact  -interpolate 1 -guess_vec_view glvis: -nonzero_initial_guess 1 -f ${wPETSC_DIR}/share/petsc/datafiles/meshes/square_periodic.msh -petscspace_degree 0
1848:   test:
1849:     suffix: glvis_2d_hex_p0
1850:     args: -run_type exact  -interpolate 1 -guess_vec_view glvis: -nonzero_initial_guess 1 -cells 5,7  -simplex 0 -petscspace_degree 0

1852:   # PCHPDDM tests
1853:   testset:
1854:     nsize: 4
1855:     requires: hpddm slepc !single
1856:     args: -run_type test -run_test_check_ksp -quiet -petscspace_degree 1 -interpolate 1 -petscpartitioner_type simple -bc_type none -simplex 0 -pc_type hpddm -pc_hpddm_levels_1_sub_pc_type lu -pc_hpddm_levels_1_eps_nev 2 -pc_hpddm_coarse_p 1 -pc_hpddm_coarse_pc_type svd -ksp_rtol 1.e-10 -pc_hpddm_levels_1_st_pc_factor_shift_type INBLOCKS -ksp_converged_reason
1857:     test:
1858:       suffix: quad_singular_hpddm
1859:       args: -cells 6,7
1860:     test:
1861:       requires: p4est
1862:       suffix: p4est_singular_2d_hpddm
1863:       args: -dm_plex_convert_type p4est -dm_forest_minimum_refinement 1 -dm_forest_initial_refinement 3 -dm_forest_maximum_refinement 3
1864:     test:
1865:       requires: p4est
1866:       suffix: p4est_nc_singular_2d_hpddm
1867:       args: -dm_plex_convert_type p4est -dm_forest_minimum_refinement 1 -dm_forest_initial_refinement 1 -dm_forest_maximum_refinement 3 -dm_p4est_refine_pattern hash
1868:   testset:
1869:     nsize: 4
1870:     requires: hpddm slepc triangle !single
1871:     args: -run_type full -petscpartitioner_type simple -dm_refine 2 -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -ksp_type gmres -ksp_gmres_restart 100 -pc_type hpddm -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0 -pc_type hpddm -pc_hpddm_levels_1_sub_pc_type lu -pc_hpddm_levels_1_eps_nev 4 -pc_hpddm_coarse_p 2 -pc_hpddm_coarse_pc_type redundant -ksp_rtol 1.e-1
1872:     test:
1873:       args: -pc_hpddm_coarse_mat_type baij -options_left no
1874:       suffix: tri_hpddm_reuse_baij
1875:     test:
1876:       requires: !complex
1877:       suffix: tri_hpddm_reuse
1878:   testset:
1879:     nsize: 4
1880:     requires: hpddm slepc !single
1881:     args: -run_type full -petscpartitioner_type simple -cells 7,5 -dm_refine 2 -simplex 0 -bc_type dirichlet -interpolate 1 -petscspace_degree 2 -ksp_type gmres -ksp_gmres_restart 100 -pc_type hpddm -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0 -pc_type hpddm -pc_hpddm_levels_1_sub_pc_type lu -pc_hpddm_levels_1_eps_nev 4 -pc_hpddm_coarse_p 2 -pc_hpddm_coarse_pc_type redundant -ksp_rtol 1.e-1
1882:     test:
1883:       args: -pc_hpddm_coarse_mat_type baij -options_left no
1884:       suffix: quad_hpddm_reuse_baij
1885:     test:
1886:       requires: !complex
1887:       suffix: quad_hpddm_reuse
1888:   testset:
1889:     nsize: 4
1890:     requires: hpddm slepc !single
1891:     args: -run_type full -petscpartitioner_type simple -cells 7,5 -dm_refine 2 -simplex 0 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -pc_type hpddm -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0 -pc_type hpddm -pc_hpddm_levels_1_sub_pc_type lu -pc_hpddm_levels_1_eps_threshold 0.1 -pc_hpddm_coarse_p 2 -pc_hpddm_coarse_pc_type redundant -ksp_rtol 1.e-1
1892:     test:
1893:       args: -pc_hpddm_coarse_mat_type baij -options_left no
1894:       suffix: quad_hpddm_reuse_threshold_baij
1895:     test:
1896:       requires: !complex
1897:       suffix: quad_hpddm_reuse_threshold
1898:   testset:
1899:     nsize: 4
1900:     requires: hpddm slepc parmetis !single
1901:     args: -run_type full -petscpartitioner_type parmetis -dm_refine 3 -bc_type dirichlet -interpolate 1 -petscspace_degree 1 -ksp_type gmres -ksp_gmres_restart 100 -pc_type hpddm -snes_monitor_short -ksp_monitor_short -snes_converged_reason ::ascii_info_detail -ksp_converged_reason -snes_view -show_solution 0 -pc_type hpddm -pc_hpddm_levels_1_sub_pc_type icc -pc_hpddm_levels_1_eps_nev 20 -pc_hpddm_coarse_p 2 -pc_hpddm_coarse_pc_type redundant -ksp_rtol 1.e-10 -f ${PETSC_DIR}/share/petsc/datafiles/meshes/square_periodic.msh -pc_hpddm_levels_1_sub_pc_factor_levels 3 -variable_coefficient circle -dm_plex_gmsh_periodic 0
1902:     test:
1903:       args: -pc_hpddm_coarse_mat_type baij -options_left no
1904:       suffix: tri_parmetis_hpddm_baij
1905:     test:
1906:       requires: !complex
1907:       suffix: tri_parmetis_hpddm
1908: TEST*/