Actual source code: ts.c

petsc-master 2020-10-22
Report Typos and Errors
  1: #include <petsc/private/tsimpl.h>
  2: #include <petscdmshell.h>
  3: #include <petscdmda.h>
  4: #include <petscviewer.h>
  5: #include <petscdraw.h>
  6: #include <petscconvest.h>

  8: #define SkipSmallValue(a,b,tol) if (PetscAbsScalar(a)< tol || PetscAbsScalar(b)< tol) continue;

 10: /* Logging support */
 11: PetscClassId  TS_CLASSID, DMTS_CLASSID;
 12: PetscLogEvent TS_Step, TS_PseudoComputeTimeStep, TS_FunctionEval, TS_JacobianEval;

 14: const char *const TSExactFinalTimeOptions[] = {"UNSPECIFIED","STEPOVER","INTERPOLATE","MATCHSTEP","TSExactFinalTimeOption","TS_EXACTFINALTIME_",NULL};


 17: /*@C
 18:    TSMonitorSetFromOptions - Sets a monitor function and viewer appropriate for the type indicated by the user

 20:    Collective on TS

 22:    Input Parameters:
 23: +  ts - TS object you wish to monitor
 24: .  name - the monitor type one is seeking
 25: .  help - message indicating what monitoring is done
 26: .  manual - manual page for the monitor
 27: .  monitor - the monitor function
 28: -  monitorsetup - a function that is called once ONLY if the user selected this monitor that may set additional features of the TS or PetscViewer objects

 30:    Level: developer

 32: .seealso: PetscOptionsGetViewer(), PetscOptionsGetReal(), PetscOptionsHasName(), PetscOptionsGetString(),
 33:           PetscOptionsGetIntArray(), PetscOptionsGetRealArray(), PetscOptionsBool()
 34:           PetscOptionsInt(), PetscOptionsString(), PetscOptionsReal(), PetscOptionsBool(),
 35:           PetscOptionsName(), PetscOptionsBegin(), PetscOptionsEnd(), PetscOptionsHead(),
 36:           PetscOptionsStringArray(),PetscOptionsRealArray(), PetscOptionsScalar(),
 37:           PetscOptionsBoolGroupBegin(), PetscOptionsBoolGroup(), PetscOptionsBoolGroupEnd(),
 38:           PetscOptionsFList(), PetscOptionsEList()
 39: @*/
 40: PetscErrorCode  TSMonitorSetFromOptions(TS ts,const char name[],const char help[], const char manual[],PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,PetscViewerAndFormat*),PetscErrorCode (*monitorsetup)(TS,PetscViewerAndFormat*))
 41: {
 42:   PetscErrorCode    ierr;
 43:   PetscViewer       viewer;
 44:   PetscViewerFormat format;
 45:   PetscBool         flg;

 48:   PetscOptionsGetViewer(PetscObjectComm((PetscObject)ts),((PetscObject) ts)->options,((PetscObject)ts)->prefix,name,&viewer,&format,&flg);
 49:   if (flg) {
 50:     PetscViewerAndFormat *vf;
 51:     PetscViewerAndFormatCreate(viewer,format,&vf);
 52:     PetscObjectDereference((PetscObject)viewer);
 53:     if (monitorsetup) {
 54:       (*monitorsetup)(ts,vf);
 55:     }
 56:     TSMonitorSet(ts,(PetscErrorCode (*)(TS,PetscInt,PetscReal,Vec,void*))monitor,vf,(PetscErrorCode (*)(void**))PetscViewerAndFormatDestroy);
 57:   }
 58:   return(0);
 59: }

 61: static PetscErrorCode TSAdaptSetDefaultType(TSAdapt adapt,TSAdaptType default_type)
 62: {

 68:   if (!((PetscObject)adapt)->type_name) {
 69:     TSAdaptSetType(adapt,default_type);
 70:   }
 71:   return(0);
 72: }

 74: /*@
 75:    TSSetFromOptions - Sets various TS parameters from user options.

 77:    Collective on TS

 79:    Input Parameter:
 80: .  ts - the TS context obtained from TSCreate()

 82:    Options Database Keys:
 83: +  -ts_type <type> - TSEULER, TSBEULER, TSSUNDIALS, TSPSEUDO, TSCN, TSRK, TSTHETA, TSALPHA, TSGLLE, TSSSP, TSGLEE, TSBSYMP
 84: .  -ts_save_trajectory - checkpoint the solution at each time-step
 85: .  -ts_max_time <time> - maximum time to compute to
 86: .  -ts_max_steps <steps> - maximum number of time-steps to take
 87: .  -ts_init_time <time> - initial time to start computation
 88: .  -ts_final_time <time> - final time to compute to (deprecated: use -ts_max_time)
 89: .  -ts_dt <dt> - initial time step
 90: .  -ts_exact_final_time <stepover,interpolate,matchstep> - whether to stop at the exact given final time and how to compute the solution at that ti,e
 91: .  -ts_max_snes_failures <maxfailures> - Maximum number of nonlinear solve failures allowed
 92: .  -ts_max_reject <maxrejects> - Maximum number of step rejections before step fails
 93: .  -ts_error_if_step_fails <true,false> - Error if no step succeeds
 94: .  -ts_rtol <rtol> - relative tolerance for local truncation error
 95: .  -ts_atol <atol> Absolute tolerance for local truncation error
 96: .  -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - test the Jacobian at each iteration against finite difference with RHS function
 97: .  -ts_rhs_jacobian_test_mult_transpose -mat_shell_test_mult_transpose_view - test the Jacobian at each iteration against finite difference with RHS function
 98: .  -ts_adjoint_solve <yes,no> After solving the ODE/DAE solve the adjoint problem (requires -ts_save_trajectory)
 99: .  -ts_fd_color - Use finite differences with coloring to compute IJacobian
100: .  -ts_monitor - print information at each timestep
101: .  -ts_monitor_lg_solution - Monitor solution graphically
102: .  -ts_monitor_lg_error - Monitor error graphically
103: .  -ts_monitor_error - Monitors norm of error
104: .  -ts_monitor_lg_timestep - Monitor timestep size graphically
105: .  -ts_monitor_lg_timestep_log - Monitor log timestep size graphically
106: .  -ts_monitor_lg_snes_iterations - Monitor number nonlinear iterations for each timestep graphically
107: .  -ts_monitor_lg_ksp_iterations - Monitor number nonlinear iterations for each timestep graphically
108: .  -ts_monitor_sp_eig - Monitor eigenvalues of linearized operator graphically
109: .  -ts_monitor_draw_solution - Monitor solution graphically
110: .  -ts_monitor_draw_solution_phase  <xleft,yleft,xright,yright> - Monitor solution graphically with phase diagram, requires problem with exactly 2 degrees of freedom
111: .  -ts_monitor_draw_error - Monitor error graphically, requires use to have provided TSSetSolutionFunction()
112: .  -ts_monitor_solution [ascii binary draw][:filename][:viewerformat] - monitors the solution at each timestep
113: .  -ts_monitor_solution_vtk <filename.vts,filename.vtu> - Save each time step to a binary file, use filename-%%03D.vts (filename-%%03D.vtu)
114: -  -ts_monitor_envelope - determine maximum and minimum value of each component of the solution over the solution time

116:    Notes:
117:      See SNESSetFromOptions() and KSPSetFromOptions() for how to control the nonlinear and linear solves used by the time-stepper.

119:      Certain SNES options get reset for each new nonlinear solver, for example -snes_lag_jacobian <its> and -snes_lag_preconditioner <its>, in order
120:      to retain them over the multiple nonlinear solves that TS uses you mush also provide -snes_lag_jacobian_persists true and
121:      -snes_lag_preconditioner_persists true

123:    Developer Note:
124:      We should unify all the -ts_monitor options in the way that -xxx_view has been unified

126:    Level: beginner

128: .seealso: TSGetType()
129: @*/
130: PetscErrorCode  TSSetFromOptions(TS ts)
131: {
132:   PetscBool              opt,flg,tflg;
133:   PetscErrorCode         ierr;
134:   char                   monfilename[PETSC_MAX_PATH_LEN];
135:   PetscReal              time_step;
136:   TSExactFinalTimeOption eftopt;
137:   char                   dir[16];
138:   TSIFunction            ifun;
139:   const char             *defaultType;
140:   char                   typeName[256];


145:   TSRegisterAll();
146:   TSGetIFunction(ts,NULL,&ifun,NULL);

148:   PetscObjectOptionsBegin((PetscObject)ts);
149:   if (((PetscObject)ts)->type_name) defaultType = ((PetscObject)ts)->type_name;
150:   else defaultType = ifun ? TSBEULER : TSEULER;
151:   PetscOptionsFList("-ts_type","TS method","TSSetType",TSList,defaultType,typeName,256,&opt);
152:   if (opt) {
153:     TSSetType(ts,typeName);
154:   } else {
155:     TSSetType(ts,defaultType);
156:   }

158:   /* Handle generic TS options */
159:   PetscOptionsDeprecated("-ts_final_time","-ts_max_time","3.10",NULL);
160:   PetscOptionsReal("-ts_max_time","Maximum time to run to","TSSetMaxTime",ts->max_time,&ts->max_time,NULL);
161:   PetscOptionsInt("-ts_max_steps","Maximum number of time steps","TSSetMaxSteps",ts->max_steps,&ts->max_steps,NULL);
162:   PetscOptionsReal("-ts_init_time","Initial time","TSSetTime",ts->ptime,&ts->ptime,NULL);
163:   PetscOptionsReal("-ts_dt","Initial time step","TSSetTimeStep",ts->time_step,&time_step,&flg);
164:   if (flg) {TSSetTimeStep(ts,time_step);}
165:   PetscOptionsEnum("-ts_exact_final_time","Option for handling of final time step","TSSetExactFinalTime",TSExactFinalTimeOptions,(PetscEnum)ts->exact_final_time,(PetscEnum*)&eftopt,&flg);
166:   if (flg) {TSSetExactFinalTime(ts,eftopt);}
167:   PetscOptionsInt("-ts_max_snes_failures","Maximum number of nonlinear solve failures","TSSetMaxSNESFailures",ts->max_snes_failures,&ts->max_snes_failures,NULL);
168:   PetscOptionsInt("-ts_max_reject","Maximum number of step rejections before step fails","TSSetMaxStepRejections",ts->max_reject,&ts->max_reject,NULL);
169:   PetscOptionsBool("-ts_error_if_step_fails","Error if no step succeeds","TSSetErrorIfStepFails",ts->errorifstepfailed,&ts->errorifstepfailed,NULL);
170:   PetscOptionsReal("-ts_rtol","Relative tolerance for local truncation error","TSSetTolerances",ts->rtol,&ts->rtol,NULL);
171:   PetscOptionsReal("-ts_atol","Absolute tolerance for local truncation error","TSSetTolerances",ts->atol,&ts->atol,NULL);

173:   PetscOptionsBool("-ts_rhs_jacobian_test_mult","Test the RHS Jacobian for consistency with RHS at each solve ","None",ts->testjacobian,&ts->testjacobian,NULL);
174:   PetscOptionsBool("-ts_rhs_jacobian_test_mult_transpose","Test the RHS Jacobian transpose for consistency with RHS at each solve ","None",ts->testjacobiantranspose,&ts->testjacobiantranspose,NULL);
175:   PetscOptionsBool("-ts_use_splitrhsfunction","Use the split RHS function for multirate solvers ","TSSetUseSplitRHSFunction",ts->use_splitrhsfunction,&ts->use_splitrhsfunction,NULL);
176: #if defined(PETSC_HAVE_SAWS)
177:   {
178:     PetscBool set;
179:     flg  = PETSC_FALSE;
180:     PetscOptionsBool("-ts_saws_block","Block for SAWs memory snooper at end of TSSolve","PetscObjectSAWsBlock",((PetscObject)ts)->amspublishblock,&flg,&set);
181:     if (set) {
182:       PetscObjectSAWsSetBlock((PetscObject)ts,flg);
183:     }
184:   }
185: #endif

187:   /* Monitor options */
188:   TSMonitorSetFromOptions(ts,"-ts_monitor","Monitor time and timestep size","TSMonitorDefault",TSMonitorDefault,NULL);
189:   TSMonitorSetFromOptions(ts,"-ts_monitor_extreme","Monitor extreme values of the solution","TSMonitorExtreme",TSMonitorExtreme,NULL);
190:   TSMonitorSetFromOptions(ts,"-ts_monitor_solution","View the solution at each timestep","TSMonitorSolution",TSMonitorSolution,NULL);

192:   PetscOptionsString("-ts_monitor_python","Use Python function","TSMonitorSet",NULL,monfilename,sizeof(monfilename),&flg);
193:   if (flg) {PetscPythonMonitorSet((PetscObject)ts,monfilename);}

195:   PetscOptionsName("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",&opt);
196:   if (opt) {
197:     PetscInt       howoften = 1;
198:     DM             dm;
199:     PetscBool      net;

201:     PetscOptionsInt("-ts_monitor_lg_solution","Monitor solution graphically","TSMonitorLGSolution",howoften,&howoften,NULL);
202:     TSGetDM(ts,&dm);
203:     PetscObjectTypeCompare((PetscObject)dm,DMNETWORK,&net);
204:     if (net) {
205:       TSMonitorLGCtxNetwork ctx;
206:       TSMonitorLGCtxNetworkCreate(ts,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&ctx);
207:       TSMonitorSet(ts,TSMonitorLGCtxNetworkSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxNetworkDestroy);
208:       PetscOptionsBool("-ts_monitor_lg_solution_semilogy","Plot the solution with a semi-log axis","",ctx->semilogy,&ctx->semilogy,NULL);
209:     } else {
210:       TSMonitorLGCtx ctx;
211:       TSMonitorLGCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
212:       TSMonitorSet(ts,TSMonitorLGSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
213:     }
214:   }

216:   PetscOptionsName("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",&opt);
217:   if (opt) {
218:     TSMonitorLGCtx ctx;
219:     PetscInt       howoften = 1;

221:     PetscOptionsInt("-ts_monitor_lg_error","Monitor error graphically","TSMonitorLGError",howoften,&howoften,NULL);
222:     TSMonitorLGCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
223:     TSMonitorSet(ts,TSMonitorLGError,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
224:   }
225:   TSMonitorSetFromOptions(ts,"-ts_monitor_error","View the error at each timestep","TSMonitorError",TSMonitorError,NULL);

227:   PetscOptionsName("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",&opt);
228:   if (opt) {
229:     TSMonitorLGCtx ctx;
230:     PetscInt       howoften = 1;

232:     PetscOptionsInt("-ts_monitor_lg_timestep","Monitor timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
233:     TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
234:     TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
235:   }
236:   PetscOptionsName("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",&opt);
237:   if (opt) {
238:     TSMonitorLGCtx ctx;
239:     PetscInt       howoften = 1;

241:     PetscOptionsInt("-ts_monitor_lg_timestep_log","Monitor log timestep size graphically","TSMonitorLGTimeStep",howoften,&howoften,NULL);
242:     TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
243:     TSMonitorSet(ts,TSMonitorLGTimeStep,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
244:     ctx->semilogy = PETSC_TRUE;
245:   }

247:   PetscOptionsName("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",&opt);
248:   if (opt) {
249:     TSMonitorLGCtx ctx;
250:     PetscInt       howoften = 1;

252:     PetscOptionsInt("-ts_monitor_lg_snes_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGSNESIterations",howoften,&howoften,NULL);
253:     TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
254:     TSMonitorSet(ts,TSMonitorLGSNESIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
255:   }
256:   PetscOptionsName("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",&opt);
257:   if (opt) {
258:     TSMonitorLGCtx ctx;
259:     PetscInt       howoften = 1;

261:     PetscOptionsInt("-ts_monitor_lg_ksp_iterations","Monitor number nonlinear iterations for each timestep graphically","TSMonitorLGKSPIterations",howoften,&howoften,NULL);
262:     TSMonitorLGCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,400,300,howoften,&ctx);
263:     TSMonitorSet(ts,TSMonitorLGKSPIterations,ctx,(PetscErrorCode (*)(void**))TSMonitorLGCtxDestroy);
264:   }
265:   PetscOptionsName("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",&opt);
266:   if (opt) {
267:     TSMonitorSPEigCtx ctx;
268:     PetscInt          howoften = 1;

270:     PetscOptionsInt("-ts_monitor_sp_eig","Monitor eigenvalues of linearized operator graphically","TSMonitorSPEig",howoften,&howoften,NULL);
271:     TSMonitorSPEigCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
272:     TSMonitorSet(ts,TSMonitorSPEig,ctx,(PetscErrorCode (*)(void**))TSMonitorSPEigCtxDestroy);
273:   }
274:   PetscOptionsName("-ts_monitor_sp_swarm","Display particle phase from the DMSwarm","TSMonitorSPSwarm",&opt);
275:   if (opt) {
276:     TSMonitorSPCtx  ctx;
277:     PetscInt        howoften = 1;
278:     PetscOptionsInt("-ts_monitor_sp_swarm","Display particles phase from the DMSwarm","TSMonitorSPSwarm",howoften,&howoften,NULL);
279:     TSMonitorSPCtxCreate(PETSC_COMM_SELF, NULL, NULL, PETSC_DECIDE, PETSC_DECIDE, 300, 300, howoften, &ctx);
280:     TSMonitorSet(ts, TSMonitorSPSwarmSolution, ctx, (PetscErrorCode (*)(void**))TSMonitorSPCtxDestroy);
281:   }
282:   opt  = PETSC_FALSE;
283:   PetscOptionsName("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",&opt);
284:   if (opt) {
285:     TSMonitorDrawCtx ctx;
286:     PetscInt         howoften = 1;

288:     PetscOptionsInt("-ts_monitor_draw_solution","Monitor solution graphically","TSMonitorDrawSolution",howoften,&howoften,NULL);
289:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,"Computed Solution",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
290:     TSMonitorSet(ts,TSMonitorDrawSolution,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
291:   }
292:   opt  = PETSC_FALSE;
293:   PetscOptionsName("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",&opt);
294:   if (opt) {
295:     TSMonitorDrawCtx ctx;
296:     PetscReal        bounds[4];
297:     PetscInt         n = 4;
298:     PetscDraw        draw;
299:     PetscDrawAxis    axis;

301:     PetscOptionsRealArray("-ts_monitor_draw_solution_phase","Monitor solution graphically","TSMonitorDrawSolutionPhase",bounds,&n,NULL);
302:     if (n != 4) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Must provide bounding box of phase field");
303:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,300,300,1,&ctx);
304:     PetscViewerDrawGetDraw(ctx->viewer,0,&draw);
305:     PetscViewerDrawGetDrawAxis(ctx->viewer,0,&axis);
306:     PetscDrawAxisSetLimits(axis,bounds[0],bounds[2],bounds[1],bounds[3]);
307:     PetscDrawAxisSetLabels(axis,"Phase Diagram","Variable 1","Variable 2");
308:     TSMonitorSet(ts,TSMonitorDrawSolutionPhase,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
309:   }
310:   opt  = PETSC_FALSE;
311:   PetscOptionsName("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",&opt);
312:   if (opt) {
313:     TSMonitorDrawCtx ctx;
314:     PetscInt         howoften = 1;

316:     PetscOptionsInt("-ts_monitor_draw_error","Monitor error graphically","TSMonitorDrawError",howoften,&howoften,NULL);
317:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,"Error",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
318:     TSMonitorSet(ts,TSMonitorDrawError,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
319:   }
320:   opt  = PETSC_FALSE;
321:   PetscOptionsName("-ts_monitor_draw_solution_function","Monitor solution provided by TSMonitorSetSolutionFunction() graphically","TSMonitorDrawSolutionFunction",&opt);
322:   if (opt) {
323:     TSMonitorDrawCtx ctx;
324:     PetscInt         howoften = 1;

326:     PetscOptionsInt("-ts_monitor_draw_solution_function","Monitor solution provided by TSMonitorSetSolutionFunction() graphically","TSMonitorDrawSolutionFunction",howoften,&howoften,NULL);
327:     TSMonitorDrawCtxCreate(PetscObjectComm((PetscObject)ts),NULL,"Solution provided by user function",PETSC_DECIDE,PETSC_DECIDE,300,300,howoften,&ctx);
328:     TSMonitorSet(ts,TSMonitorDrawSolutionFunction,ctx,(PetscErrorCode (*)(void**))TSMonitorDrawCtxDestroy);
329:   }

331:   opt  = PETSC_FALSE;
332:   PetscOptionsString("-ts_monitor_solution_vtk","Save each time step to a binary file, use filename-%%03D.vts","TSMonitorSolutionVTK",NULL,monfilename,sizeof(monfilename),&flg);
333:   if (flg) {
334:     const char *ptr,*ptr2;
335:     char       *filetemplate;
336:     if (!monfilename[0]) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
337:     /* Do some cursory validation of the input. */
338:     PetscStrstr(monfilename,"%",(char**)&ptr);
339:     if (!ptr) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"-ts_monitor_solution_vtk requires a file template, e.g. filename-%%03D.vts");
340:     for (ptr++; ptr && *ptr; ptr++) {
341:       PetscStrchr("DdiouxX",*ptr,(char**)&ptr2);
342:       if (!ptr2 && (*ptr < '0' || '9' < *ptr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Invalid file template argument to -ts_monitor_solution_vtk, should look like filename-%%03D.vts");
343:       if (ptr2) break;
344:     }
345:     PetscStrallocpy(monfilename,&filetemplate);
346:     TSMonitorSet(ts,TSMonitorSolutionVTK,filetemplate,(PetscErrorCode (*)(void**))TSMonitorSolutionVTKDestroy);
347:   }

349:   PetscOptionsString("-ts_monitor_dmda_ray","Display a ray of the solution","None","y=0",dir,sizeof(dir),&flg);
350:   if (flg) {
351:     TSMonitorDMDARayCtx *rayctx;
352:     int                  ray = 0;
353:     DMDirection          ddir;
354:     DM                   da;
355:     PetscMPIInt          rank;

357:     if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
358:     if (dir[0] == 'x') ddir = DM_X;
359:     else if (dir[0] == 'y') ddir = DM_Y;
360:     else SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Unknown ray %s",dir);
361:     sscanf(dir+2,"%d",&ray);

363:     PetscInfo2(((PetscObject)ts),"Displaying DMDA ray %c = %d\n",dir[0],ray);
364:     PetscNew(&rayctx);
365:     TSGetDM(ts,&da);
366:     DMDAGetRay(da,ddir,ray,&rayctx->ray,&rayctx->scatter);
367:     MPI_Comm_rank(PetscObjectComm((PetscObject)ts),&rank);
368:     if (!rank) {
369:       PetscViewerDrawOpen(PETSC_COMM_SELF,NULL,NULL,0,0,600,300,&rayctx->viewer);
370:     }
371:     rayctx->lgctx = NULL;
372:     TSMonitorSet(ts,TSMonitorDMDARay,rayctx,TSMonitorDMDARayDestroy);
373:   }
374:   PetscOptionsString("-ts_monitor_lg_dmda_ray","Display a ray of the solution","None","x=0",dir,sizeof(dir),&flg);
375:   if (flg) {
376:     TSMonitorDMDARayCtx *rayctx;
377:     int                 ray = 0;
378:     DMDirection         ddir;
379:     DM                  da;
380:     PetscInt            howoften = 1;

382:     if (dir[1] != '=') SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Malformed ray %s", dir);
383:     if      (dir[0] == 'x') ddir = DM_X;
384:     else if (dir[0] == 'y') ddir = DM_Y;
385:     else SETERRQ1(PetscObjectComm((PetscObject) ts), PETSC_ERR_ARG_WRONG, "Unknown ray direction %s", dir);
386:     sscanf(dir+2, "%d", &ray);

388:     PetscInfo2(((PetscObject) ts),"Displaying LG DMDA ray %c = %d\n", dir[0], ray);
389:     PetscNew(&rayctx);
390:     TSGetDM(ts, &da);
391:     DMDAGetRay(da, ddir, ray, &rayctx->ray, &rayctx->scatter);
392:     TSMonitorLGCtxCreate(PETSC_COMM_SELF,NULL,NULL,PETSC_DECIDE,PETSC_DECIDE,600,400,howoften,&rayctx->lgctx);
393:     TSMonitorSet(ts, TSMonitorLGDMDARay, rayctx, TSMonitorDMDARayDestroy);
394:   }

396:   PetscOptionsName("-ts_monitor_envelope","Monitor maximum and minimum value of each component of the solution","TSMonitorEnvelope",&opt);
397:   if (opt) {
398:     TSMonitorEnvelopeCtx ctx;

400:     TSMonitorEnvelopeCtxCreate(ts,&ctx);
401:     TSMonitorSet(ts,TSMonitorEnvelope,ctx,(PetscErrorCode (*)(void**))TSMonitorEnvelopeCtxDestroy);
402:   }

404:   flg  = PETSC_FALSE;
405:   PetscOptionsBool("-ts_fd_color", "Use finite differences with coloring to compute IJacobian", "TSComputeJacobianDefaultColor", flg, &flg, NULL);
406:   if (flg) {
407:     DM   dm;
408:     DMTS tdm;

410:     TSGetDM(ts, &dm);
411:     DMGetDMTS(dm, &tdm);
412:     tdm->ijacobianctx = NULL;
413:     TSSetIJacobian(ts, NULL, NULL, TSComputeIJacobianDefaultColor, NULL);
414:     PetscInfo(ts, "Setting default finite difference coloring Jacobian matrix\n");
415:   }

417:   /* Handle specific TS options */
418:   if (ts->ops->setfromoptions) {
419:     (*ts->ops->setfromoptions)(PetscOptionsObject,ts);
420:   }

422:   /* Handle TSAdapt options */
423:   TSGetAdapt(ts,&ts->adapt);
424:   TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);
425:   TSAdaptSetFromOptions(PetscOptionsObject,ts->adapt);

427:   /* TS trajectory must be set after TS, since it may use some TS options above */
428:   tflg = ts->trajectory ? PETSC_TRUE : PETSC_FALSE;
429:   PetscOptionsBool("-ts_save_trajectory","Save the solution at each timestep","TSSetSaveTrajectory",tflg,&tflg,NULL);
430:   if (tflg) {
431:     TSSetSaveTrajectory(ts);
432:   }

434:   TSAdjointSetFromOptions(PetscOptionsObject,ts);

436:   /* process any options handlers added with PetscObjectAddOptionsHandler() */
437:   PetscObjectProcessOptionsHandlers(PetscOptionsObject,(PetscObject)ts);
438:   PetscOptionsEnd();

440:   if (ts->trajectory) {
441:     TSTrajectorySetFromOptions(ts->trajectory,ts);
442:   }

444:   /* why do we have to do this here and not during TSSetUp? */
445:   TSGetSNES(ts,&ts->snes);
446:   if (ts->problem_type == TS_LINEAR) {
447:     PetscObjectTypeCompareAny((PetscObject)ts->snes,&flg,SNESKSPONLY,SNESKSPTRANSPOSEONLY,"");
448:     if (!flg) { SNESSetType(ts->snes,SNESKSPONLY); }
449:   }
450:   SNESSetFromOptions(ts->snes);
451:   return(0);
452: }

454: /*@
455:    TSGetTrajectory - Gets the trajectory from a TS if it exists

457:    Collective on TS

459:    Input Parameters:
460: .  ts - the TS context obtained from TSCreate()

462:    Output Parameters:
463: .  tr - the TSTrajectory object, if it exists

465:    Note: This routine should be called after all TS options have been set

467:    Level: advanced

469: .seealso: TSGetTrajectory(), TSAdjointSolve(), TSTrajectory, TSTrajectoryCreate()

471: @*/
472: PetscErrorCode  TSGetTrajectory(TS ts,TSTrajectory *tr)
473: {
476:   *tr = ts->trajectory;
477:   return(0);
478: }

480: /*@
481:    TSSetSaveTrajectory - Causes the TS to save its solutions as it iterates forward in time in a TSTrajectory object

483:    Collective on TS

485:    Input Parameters:
486: .  ts - the TS context obtained from TSCreate()

488:    Options Database:
489: +  -ts_save_trajectory - saves the trajectory to a file
490: -  -ts_trajectory_type type

492: Note: This routine should be called after all TS options have been set

494:     The TSTRAJECTORYVISUALIZATION files can be loaded into Python with $PETSC_DIR/lib/petsc/bin/PetscBinaryIOTrajectory.py and
495:    MATLAB with $PETSC_DIR/share/petsc/matlab/PetscReadBinaryTrajectory.m

497:    Level: intermediate

499: .seealso: TSGetTrajectory(), TSAdjointSolve()

501: @*/
502: PetscErrorCode  TSSetSaveTrajectory(TS ts)
503: {

508:   if (!ts->trajectory) {
509:     TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
510:   }
511:   return(0);
512: }

514: /*@
515:    TSResetTrajectory - Destroys and recreates the internal TSTrajectory object

517:    Collective on TS

519:    Input Parameters:
520: .  ts - the TS context obtained from TSCreate()

522:    Level: intermediate

524: .seealso: TSGetTrajectory(), TSAdjointSolve()

526: @*/
527: PetscErrorCode  TSResetTrajectory(TS ts)
528: {

533:   if (ts->trajectory) {
534:     TSTrajectoryDestroy(&ts->trajectory);
535:     TSTrajectoryCreate(PetscObjectComm((PetscObject)ts),&ts->trajectory);
536:   }
537:   return(0);
538: }

540: /*@
541:    TSComputeRHSJacobian - Computes the Jacobian matrix that has been
542:       set with TSSetRHSJacobian().

544:    Collective on TS

546:    Input Parameters:
547: +  ts - the TS context
548: .  t - current timestep
549: -  U - input vector

551:    Output Parameters:
552: +  A - Jacobian matrix
553: .  B - optional preconditioning matrix
554: -  flag - flag indicating matrix structure

556:    Notes:
557:    Most users should not need to explicitly call this routine, as it
558:    is used internally within the nonlinear solvers.

560:    See KSPSetOperators() for important information about setting the
561:    flag parameter.

563:    Level: developer

565: .seealso:  TSSetRHSJacobian(), KSPSetOperators()
566: @*/
567: PetscErrorCode  TSComputeRHSJacobian(TS ts,PetscReal t,Vec U,Mat A,Mat B)
568: {
569:   PetscErrorCode   ierr;
570:   PetscObjectState Ustate;
571:   PetscObjectId    Uid;
572:   DM               dm;
573:   DMTS             tsdm;
574:   TSRHSJacobian    rhsjacobianfunc;
575:   void             *ctx;
576:   TSRHSFunction    rhsfunction;

582:   TSGetDM(ts,&dm);
583:   DMGetDMTS(dm,&tsdm);
584:   DMTSGetRHSFunction(dm,&rhsfunction,NULL);
585:   DMTSGetRHSJacobian(dm,&rhsjacobianfunc,&ctx);
586:   PetscObjectStateGet((PetscObject)U,&Ustate);
587:   PetscObjectGetId((PetscObject)U,&Uid);

589:   if (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.Xid == Uid && ts->rhsjacobian.Xstate == Ustate)) && (rhsfunction != TSComputeRHSFunctionLinear)) return(0);

591:   if (ts->rhsjacobian.shift && ts->rhsjacobian.reuse) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Should not call TSComputeRHSJacobian() on a shifted matrix (shift=%lf) when RHSJacobian is reusable.",ts->rhsjacobian.shift);
592:   if (rhsjacobianfunc) {
593:     PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
594:     PetscStackPush("TS user Jacobian function");
595:     (*rhsjacobianfunc)(ts,t,U,A,B,ctx);
596:     PetscStackPop;
597:     PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
598:   } else {
599:     MatZeroEntries(A);
600:     if (B && A != B) {MatZeroEntries(B);}
601:   }
602:   ts->rhsjacobian.time  = t;
603:   ts->rhsjacobian.shift = 0;
604:   ts->rhsjacobian.scale = 1.;
605:   PetscObjectGetId((PetscObject)U,&ts->rhsjacobian.Xid);
606:   PetscObjectStateGet((PetscObject)U,&ts->rhsjacobian.Xstate);
607:   return(0);
608: }

610: /*@
611:    TSComputeRHSFunction - Evaluates the right-hand-side function.

613:    Collective on TS

615:    Input Parameters:
616: +  ts - the TS context
617: .  t - current time
618: -  U - state vector

620:    Output Parameter:
621: .  y - right hand side

623:    Note:
624:    Most users should not need to explicitly call this routine, as it
625:    is used internally within the nonlinear solvers.

627:    Level: developer

629: .seealso: TSSetRHSFunction(), TSComputeIFunction()
630: @*/
631: PetscErrorCode TSComputeRHSFunction(TS ts,PetscReal t,Vec U,Vec y)
632: {
634:   TSRHSFunction  rhsfunction;
635:   TSIFunction    ifunction;
636:   void           *ctx;
637:   DM             dm;

643:   TSGetDM(ts,&dm);
644:   DMTSGetRHSFunction(dm,&rhsfunction,&ctx);
645:   DMTSGetIFunction(dm,&ifunction,NULL);

647:   if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");

649:   PetscLogEventBegin(TS_FunctionEval,ts,U,y,0);
650:   if (rhsfunction) {
651:     VecLockReadPush(U);
652:     PetscStackPush("TS user right-hand-side function");
653:     (*rhsfunction)(ts,t,U,y,ctx);
654:     PetscStackPop;
655:     VecLockReadPop(U);
656:   } else {
657:     VecZeroEntries(y);
658:   }

660:   PetscLogEventEnd(TS_FunctionEval,ts,U,y,0);
661:   return(0);
662: }

664: /*@
665:    TSComputeSolutionFunction - Evaluates the solution function.

667:    Collective on TS

669:    Input Parameters:
670: +  ts - the TS context
671: -  t - current time

673:    Output Parameter:
674: .  U - the solution

676:    Note:
677:    Most users should not need to explicitly call this routine, as it
678:    is used internally within the nonlinear solvers.

680:    Level: developer

682: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
683: @*/
684: PetscErrorCode TSComputeSolutionFunction(TS ts,PetscReal t,Vec U)
685: {
686:   PetscErrorCode     ierr;
687:   TSSolutionFunction solutionfunction;
688:   void               *ctx;
689:   DM                 dm;

694:   TSGetDM(ts,&dm);
695:   DMTSGetSolutionFunction(dm,&solutionfunction,&ctx);

697:   if (solutionfunction) {
698:     PetscStackPush("TS user solution function");
699:     (*solutionfunction)(ts,t,U,ctx);
700:     PetscStackPop;
701:   }
702:   return(0);
703: }
704: /*@
705:    TSComputeForcingFunction - Evaluates the forcing function.

707:    Collective on TS

709:    Input Parameters:
710: +  ts - the TS context
711: -  t - current time

713:    Output Parameter:
714: .  U - the function value

716:    Note:
717:    Most users should not need to explicitly call this routine, as it
718:    is used internally within the nonlinear solvers.

720:    Level: developer

722: .seealso: TSSetSolutionFunction(), TSSetRHSFunction(), TSComputeIFunction()
723: @*/
724: PetscErrorCode TSComputeForcingFunction(TS ts,PetscReal t,Vec U)
725: {
726:   PetscErrorCode     ierr, (*forcing)(TS,PetscReal,Vec,void*);
727:   void               *ctx;
728:   DM                 dm;

733:   TSGetDM(ts,&dm);
734:   DMTSGetForcingFunction(dm,&forcing,&ctx);

736:   if (forcing) {
737:     PetscStackPush("TS user forcing function");
738:     (*forcing)(ts,t,U,ctx);
739:     PetscStackPop;
740:   }
741:   return(0);
742: }

744: static PetscErrorCode TSGetRHSVec_Private(TS ts,Vec *Frhs)
745: {
746:   Vec            F;

750:   *Frhs = NULL;
751:   TSGetIFunction(ts,&F,NULL,NULL);
752:   if (!ts->Frhs) {
753:     VecDuplicate(F,&ts->Frhs);
754:   }
755:   *Frhs = ts->Frhs;
756:   return(0);
757: }

759: PetscErrorCode TSGetRHSMats_Private(TS ts,Mat *Arhs,Mat *Brhs)
760: {
761:   Mat            A,B;
763:   TSIJacobian    ijacobian;

766:   if (Arhs) *Arhs = NULL;
767:   if (Brhs) *Brhs = NULL;
768:   TSGetIJacobian(ts,&A,&B,&ijacobian,NULL);
769:   if (Arhs) {
770:     if (!ts->Arhs) {
771:       if (ijacobian) {
772:         MatDuplicate(A,MAT_DO_NOT_COPY_VALUES,&ts->Arhs);
773:       } else {
774:         ts->Arhs = A;
775:         PetscObjectReference((PetscObject)A);
776:       }
777:     } else {
778:       PetscBool flg;
779:       SNESGetUseMatrixFree(ts->snes,NULL,&flg);
780:       /* Handle case where user provided only RHSJacobian and used -snes_mf_operator */
781:       if (flg && !ijacobian && ts->Arhs == ts->Brhs){
782:         PetscObjectDereference((PetscObject)ts->Arhs);
783:         ts->Arhs = A;
784:         PetscObjectReference((PetscObject)A);
785:       }
786:     }
787:     *Arhs = ts->Arhs;
788:   }
789:   if (Brhs) {
790:     if (!ts->Brhs) {
791:       if (A != B) {
792:         if (ijacobian) {
793:           MatDuplicate(B,MAT_DO_NOT_COPY_VALUES,&ts->Brhs);
794:         } else {
795:           ts->Brhs = B;
796:           PetscObjectReference((PetscObject)B);
797:         }
798:       } else {
799:         PetscObjectReference((PetscObject)ts->Arhs);
800:         ts->Brhs = ts->Arhs;
801:       }
802:     }
803:     *Brhs = ts->Brhs;
804:   }
805:   return(0);
806: }

808: /*@
809:    TSComputeIFunction - Evaluates the DAE residual written in implicit form F(t,U,Udot)=0

811:    Collective on TS

813:    Input Parameters:
814: +  ts - the TS context
815: .  t - current time
816: .  U - state vector
817: .  Udot - time derivative of state vector
818: -  imex - flag indicates if the method is IMEX so that the RHSFunction should be kept separate

820:    Output Parameter:
821: .  Y - right hand side

823:    Note:
824:    Most users should not need to explicitly call this routine, as it
825:    is used internally within the nonlinear solvers.

827:    If the user did did not write their equations in implicit form, this
828:    function recasts them in implicit form.

830:    Level: developer

832: .seealso: TSSetIFunction(), TSComputeRHSFunction()
833: @*/
834: PetscErrorCode TSComputeIFunction(TS ts,PetscReal t,Vec U,Vec Udot,Vec Y,PetscBool imex)
835: {
837:   TSIFunction    ifunction;
838:   TSRHSFunction  rhsfunction;
839:   void           *ctx;
840:   DM             dm;


848:   TSGetDM(ts,&dm);
849:   DMTSGetIFunction(dm,&ifunction,&ctx);
850:   DMTSGetRHSFunction(dm,&rhsfunction,NULL);

852:   if (!rhsfunction && !ifunction) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSFunction() and / or TSSetIFunction()");

854:   PetscLogEventBegin(TS_FunctionEval,ts,U,Udot,Y);
855:   if (ifunction) {
856:     PetscStackPush("TS user implicit function");
857:     (*ifunction)(ts,t,U,Udot,Y,ctx);
858:     PetscStackPop;
859:   }
860:   if (imex) {
861:     if (!ifunction) {
862:       VecCopy(Udot,Y);
863:     }
864:   } else if (rhsfunction) {
865:     if (ifunction) {
866:       Vec Frhs;
867:       TSGetRHSVec_Private(ts,&Frhs);
868:       TSComputeRHSFunction(ts,t,U,Frhs);
869:       VecAXPY(Y,-1,Frhs);
870:     } else {
871:       TSComputeRHSFunction(ts,t,U,Y);
872:       VecAYPX(Y,-1,Udot);
873:     }
874:   }
875:   PetscLogEventEnd(TS_FunctionEval,ts,U,Udot,Y);
876:   return(0);
877: }

879: /*
880:    TSRecoverRHSJacobian - Recover the Jacobian matrix so that one can call TSComputeRHSJacobian() on it.

882:    Note:
883:    This routine is needed when one switches from TSComputeIJacobian() to TSComputeRHSJacobian() because the Jacobian matrix may be shifted or scaled in TSComputeIJacobian().

885: */
886: static PetscErrorCode TSRecoverRHSJacobian(TS ts,Mat A,Mat B)
887: {
888:   PetscErrorCode   ierr;

892:   if (A != ts->Arhs) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Invalid Amat");
893:   if (B != ts->Brhs) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Invalid Bmat");

895:   if (ts->rhsjacobian.shift) {
896:     MatShift(A,-ts->rhsjacobian.shift);
897:   }
898:   if (ts->rhsjacobian.scale == -1.) {
899:     MatScale(A,-1);
900:   }
901:   if (B && B == ts->Brhs && A != B) {
902:     if (ts->rhsjacobian.shift) {
903:       MatShift(B,-ts->rhsjacobian.shift);
904:     }
905:     if (ts->rhsjacobian.scale == -1.) {
906:       MatScale(B,-1);
907:     }
908:   }
909:   ts->rhsjacobian.shift = 0;
910:   ts->rhsjacobian.scale = 1.;
911:   return(0);
912: }

914: /*@
915:    TSComputeIJacobian - Evaluates the Jacobian of the DAE

917:    Collective on TS

919:    Input
920:       Input Parameters:
921: +  ts - the TS context
922: .  t - current timestep
923: .  U - state vector
924: .  Udot - time derivative of state vector
925: .  shift - shift to apply, see note below
926: -  imex - flag indicates if the method is IMEX so that the RHSJacobian should be kept separate

928:    Output Parameters:
929: +  A - Jacobian matrix
930: -  B - matrix from which the preconditioner is constructed; often the same as A

932:    Notes:
933:    If F(t,U,Udot)=0 is the DAE, the required Jacobian is

935:    dF/dU + shift*dF/dUdot

937:    Most users should not need to explicitly call this routine, as it
938:    is used internally within the nonlinear solvers.

940:    Level: developer

942: .seealso:  TSSetIJacobian()
943: @*/
944: PetscErrorCode TSComputeIJacobian(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,PetscBool imex)
945: {
947:   TSIJacobian    ijacobian;
948:   TSRHSJacobian  rhsjacobian;
949:   DM             dm;
950:   void           *ctx;


961:   TSGetDM(ts,&dm);
962:   DMTSGetIJacobian(dm,&ijacobian,&ctx);
963:   DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);

965:   if (!rhsjacobian && !ijacobian) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_USER,"Must call TSSetRHSJacobian() and / or TSSetIJacobian()");

967:   PetscLogEventBegin(TS_JacobianEval,ts,U,A,B);
968:   if (ijacobian) {
969:     PetscStackPush("TS user implicit Jacobian");
970:     (*ijacobian)(ts,t,U,Udot,shift,A,B,ctx);
971:     PetscStackPop;
972:   }
973:   if (imex) {
974:     if (!ijacobian) {  /* system was written as Udot = G(t,U) */
975:       PetscBool assembled;
976:       if (rhsjacobian) {
977:         Mat Arhs = NULL;
978:         TSGetRHSMats_Private(ts,&Arhs,NULL);
979:         if (A == Arhs) {
980:           if (rhsjacobian == TSComputeRHSJacobianConstant) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Unsupported operation! cannot use TSComputeRHSJacobianConstant"); /* there is no way to reconstruct shift*M-J since J cannot be reevaluated */
981:           ts->rhsjacobian.time = PETSC_MIN_REAL;
982:         }
983:       }
984:       MatZeroEntries(A);
985:       MatAssembled(A,&assembled);
986:       if (!assembled) {
987:         MatAssemblyBegin(A,MAT_FINAL_ASSEMBLY);
988:         MatAssemblyEnd(A,MAT_FINAL_ASSEMBLY);
989:       }
990:       MatShift(A,shift);
991:       if (A != B) {
992:         MatZeroEntries(B);
993:         MatAssembled(B,&assembled);
994:         if (!assembled) {
995:           MatAssemblyBegin(B,MAT_FINAL_ASSEMBLY);
996:           MatAssemblyEnd(B,MAT_FINAL_ASSEMBLY);
997:         }
998:         MatShift(B,shift);
999:       }
1000:     }
1001:   } else {
1002:     Mat Arhs = NULL,Brhs = NULL;
1003:     if (rhsjacobian) { /* RHSJacobian needs to be converted to part of IJacobian if exists */
1004:       TSGetRHSMats_Private(ts,&Arhs,&Brhs);
1005:     }
1006:     if (Arhs == A) { /* No IJacobian matrix, so we only have the RHS matrix */
1007:       PetscObjectState Ustate;
1008:       PetscObjectId    Uid;
1009:       TSRHSFunction    rhsfunction;

1011:       DMTSGetRHSFunction(dm,&rhsfunction,NULL);
1012:       PetscObjectStateGet((PetscObject)U,&Ustate);
1013:       PetscObjectGetId((PetscObject)U,&Uid);
1014:       if ((rhsjacobian == TSComputeRHSJacobianConstant || (ts->rhsjacobian.time == t && (ts->problem_type == TS_LINEAR || (ts->rhsjacobian.Xid == Uid && ts->rhsjacobian.Xstate == Ustate)) && rhsfunction != TSComputeRHSFunctionLinear)) && ts->rhsjacobian.scale == -1.) { /* No need to recompute RHSJacobian */
1015:         MatShift(A,shift-ts->rhsjacobian.shift); /* revert the old shift and add the new shift with a single call to MatShift */
1016:         if (A != B) {
1017:           MatShift(B,shift-ts->rhsjacobian.shift);
1018:         }
1019:       } else {
1020:         PetscBool flg;

1022:         if (ts->rhsjacobian.reuse) { /* Undo the damage */
1023:           /* MatScale has a short path for this case.
1024:              However, this code path is taken the first time TSComputeRHSJacobian is called
1025:              and the matrices have not been assembled yet */
1026:           TSRecoverRHSJacobian(ts,A,B);
1027:         }
1028:         TSComputeRHSJacobian(ts,t,U,A,B);
1029:         SNESGetUseMatrixFree(ts->snes,NULL,&flg);
1030:         /* since -snes_mf_operator uses the full SNES function it does not need to be shifted or scaled here */
1031:         if (!flg) {
1032:           MatScale(A,-1);
1033:           MatShift(A,shift);
1034:         }
1035:         if (A != B) {
1036:           MatScale(B,-1);
1037:           MatShift(B,shift);
1038:         }
1039:       }
1040:       ts->rhsjacobian.scale = -1;
1041:       ts->rhsjacobian.shift = shift;
1042:     } else if (Arhs) {  /* Both IJacobian and RHSJacobian exist or the RHS matrix provided (A) is different from the internal RHS matrix (Arhs) */
1043:       MatStructure axpy = DIFFERENT_NONZERO_PATTERN;

1045:       if (!ijacobian) { /* No IJacobian provided, but we have a separate RHS matrix */
1046:         MatZeroEntries(A);
1047:         MatShift(A,shift);
1048:         if (A != B) {
1049:           MatZeroEntries(B);
1050:           MatShift(B,shift);
1051:         }
1052:       }
1053:       TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
1054:       MatAXPY(A,-1,Arhs,axpy);
1055:       if (A != B) {
1056:         MatAXPY(B,-1,Brhs,axpy);
1057:       }
1058:     }
1059:   }
1060:   PetscLogEventEnd(TS_JacobianEval,ts,U,A,B);
1061:   return(0);
1062: }

1064: /*@C
1065:     TSSetRHSFunction - Sets the routine for evaluating the function,
1066:     where U_t = G(t,u).

1068:     Logically Collective on TS

1070:     Input Parameters:
1071: +   ts - the TS context obtained from TSCreate()
1072: .   r - vector to put the computed right hand side (or NULL to have it created)
1073: .   f - routine for evaluating the right-hand-side function
1074: -   ctx - [optional] user-defined context for private data for the
1075:           function evaluation routine (may be NULL)

1077:     Calling sequence of f:
1078: $     PetscErrorCode f(TS ts,PetscReal t,Vec u,Vec F,void *ctx);

1080: +   ts - timestep context
1081: .   t - current timestep
1082: .   u - input vector
1083: .   F - function vector
1084: -   ctx - [optional] user-defined function context

1086:     Level: beginner

1088:     Notes:
1089:     You must call this function or TSSetIFunction() to define your ODE. You cannot use this function when solving a DAE.

1091: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSSetIFunction()
1092: @*/
1093: PetscErrorCode  TSSetRHSFunction(TS ts,Vec r,PetscErrorCode (*f)(TS,PetscReal,Vec,Vec,void*),void *ctx)
1094: {
1096:   SNES           snes;
1097:   Vec            ralloc = NULL;
1098:   DM             dm;


1104:   TSGetDM(ts,&dm);
1105:   DMTSSetRHSFunction(dm,f,ctx);
1106:   TSGetSNES(ts,&snes);
1107:   if (!r && !ts->dm && ts->vec_sol) {
1108:     VecDuplicate(ts->vec_sol,&ralloc);
1109:     r = ralloc;
1110:   }
1111:   SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1112:   VecDestroy(&ralloc);
1113:   return(0);
1114: }

1116: /*@C
1117:     TSSetSolutionFunction - Provide a function that computes the solution of the ODE or DAE

1119:     Logically Collective on TS

1121:     Input Parameters:
1122: +   ts - the TS context obtained from TSCreate()
1123: .   f - routine for evaluating the solution
1124: -   ctx - [optional] user-defined context for private data for the
1125:           function evaluation routine (may be NULL)

1127:     Calling sequence of f:
1128: $     PetscErrorCode f(TS ts,PetscReal t,Vec u,void *ctx);

1130: +   t - current timestep
1131: .   u - output vector
1132: -   ctx - [optional] user-defined function context

1134:     Options Database:
1135: +  -ts_monitor_lg_error - create a graphical monitor of error history, requires user to have provided TSSetSolutionFunction()
1136: -  -ts_monitor_draw_error - Monitor error graphically, requires user to have provided TSSetSolutionFunction()

1138:     Notes:
1139:     This routine is used for testing accuracy of time integration schemes when you already know the solution.
1140:     If analytic solutions are not known for your system, consider using the Method of Manufactured Solutions to
1141:     create closed-form solutions with non-physical forcing terms.

1143:     For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.

1145:     Level: beginner

1147: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetForcingFunction(), TSSetSolution(), TSGetSolution(), TSMonitorLGError(), TSMonitorDrawError()
1148: @*/
1149: PetscErrorCode  TSSetSolutionFunction(TS ts,PetscErrorCode (*f)(TS,PetscReal,Vec,void*),void *ctx)
1150: {
1152:   DM             dm;

1156:   TSGetDM(ts,&dm);
1157:   DMTSSetSolutionFunction(dm,f,ctx);
1158:   return(0);
1159: }

1161: /*@C
1162:     TSSetForcingFunction - Provide a function that computes a forcing term for a ODE or PDE

1164:     Logically Collective on TS

1166:     Input Parameters:
1167: +   ts - the TS context obtained from TSCreate()
1168: .   func - routine for evaluating the forcing function
1169: -   ctx - [optional] user-defined context for private data for the
1170:           function evaluation routine (may be NULL)

1172:     Calling sequence of func:
1173: $     PetscErrorCode func (TS ts,PetscReal t,Vec f,void *ctx);

1175: +   t - current timestep
1176: .   f - output vector
1177: -   ctx - [optional] user-defined function context

1179:     Notes:
1180:     This routine is useful for testing accuracy of time integration schemes when using the Method of Manufactured Solutions to
1181:     create closed-form solutions with a non-physical forcing term. It allows you to use the Method of Manufactored Solution without directly editing the
1182:     definition of the problem you are solving and hence possibly introducing bugs.

1184:     This replaces the ODE F(u,u_t,t) = 0 the TS is solving with F(u,u_t,t) - func(t) = 0

1186:     This forcing function does not depend on the solution to the equations, it can only depend on spatial location, time, and possibly parameters, the
1187:     parameters can be passed in the ctx variable.

1189:     For low-dimensional problems solved in serial, such as small discrete systems, TSMonitorLGError() can be used to monitor the error history.

1191:     Level: beginner

1193: .seealso: TSSetRHSJacobian(), TSSetIJacobian(), TSComputeSolutionFunction(), TSSetSolutionFunction()
1194: @*/
1195: PetscErrorCode  TSSetForcingFunction(TS ts,TSForcingFunction func,void *ctx)
1196: {
1198:   DM             dm;

1202:   TSGetDM(ts,&dm);
1203:   DMTSSetForcingFunction(dm,func,ctx);
1204:   return(0);
1205: }

1207: /*@C
1208:    TSSetRHSJacobian - Sets the function to compute the Jacobian of G,
1209:    where U_t = G(U,t), as well as the location to store the matrix.

1211:    Logically Collective on TS

1213:    Input Parameters:
1214: +  ts  - the TS context obtained from TSCreate()
1215: .  Amat - (approximate) Jacobian matrix
1216: .  Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1217: .  f   - the Jacobian evaluation routine
1218: -  ctx - [optional] user-defined context for private data for the
1219:          Jacobian evaluation routine (may be NULL)

1221:    Calling sequence of f:
1222: $     PetscErrorCode f(TS ts,PetscReal t,Vec u,Mat A,Mat B,void *ctx);

1224: +  t - current timestep
1225: .  u - input vector
1226: .  Amat - (approximate) Jacobian matrix
1227: .  Pmat - matrix from which preconditioner is to be constructed (usually the same as Amat)
1228: -  ctx - [optional] user-defined context for matrix evaluation routine

1230:    Notes:
1231:    You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value

1233:    The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1234:    You should not assume the values are the same in the next call to f() as you set them in the previous call.

1236:    Level: beginner

1238: .seealso: SNESComputeJacobianDefaultColor(), TSSetRHSFunction(), TSRHSJacobianSetReuse(), TSSetIJacobian()

1240: @*/
1241: PetscErrorCode  TSSetRHSJacobian(TS ts,Mat Amat,Mat Pmat,TSRHSJacobian f,void *ctx)
1242: {
1244:   SNES           snes;
1245:   DM             dm;
1246:   TSIJacobian    ijacobian;


1255:   TSGetDM(ts,&dm);
1256:   DMTSSetRHSJacobian(dm,f,ctx);
1257:   DMTSGetIJacobian(dm,&ijacobian,NULL);
1258:   TSGetSNES(ts,&snes);
1259:   if (!ijacobian) {
1260:     SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1261:   }
1262:   if (Amat) {
1263:     PetscObjectReference((PetscObject)Amat);
1264:     MatDestroy(&ts->Arhs);
1265:     ts->Arhs = Amat;
1266:   }
1267:   if (Pmat) {
1268:     PetscObjectReference((PetscObject)Pmat);
1269:     MatDestroy(&ts->Brhs);
1270:     ts->Brhs = Pmat;
1271:   }
1272:   return(0);
1273: }

1275: /*@C
1276:    TSSetIFunction - Set the function to compute F(t,U,U_t) where F() = 0 is the DAE to be solved.

1278:    Logically Collective on TS

1280:    Input Parameters:
1281: +  ts  - the TS context obtained from TSCreate()
1282: .  r   - vector to hold the residual (or NULL to have it created internally)
1283: .  f   - the function evaluation routine
1284: -  ctx - user-defined context for private data for the function evaluation routine (may be NULL)

1286:    Calling sequence of f:
1287: $     PetscErrorCode f(TS ts,PetscReal t,Vec u,Vec u_t,Vec F,ctx);

1289: +  t   - time at step/stage being solved
1290: .  u   - state vector
1291: .  u_t - time derivative of state vector
1292: .  F   - function vector
1293: -  ctx - [optional] user-defined context for matrix evaluation routine

1295:    Important:
1296:    The user MUST call either this routine or TSSetRHSFunction() to define the ODE.  When solving DAEs you must use this function.

1298:    Level: beginner

1300: .seealso: TSSetRHSJacobian(), TSSetRHSFunction(), TSSetIJacobian()
1301: @*/
1302: PetscErrorCode  TSSetIFunction(TS ts,Vec r,TSIFunction f,void *ctx)
1303: {
1305:   SNES           snes;
1306:   Vec            ralloc = NULL;
1307:   DM             dm;


1313:   TSGetDM(ts,&dm);
1314:   DMTSSetIFunction(dm,f,ctx);

1316:   TSGetSNES(ts,&snes);
1317:   if (!r && !ts->dm && ts->vec_sol) {
1318:     VecDuplicate(ts->vec_sol,&ralloc);
1319:     r  = ralloc;
1320:   }
1321:   SNESSetFunction(snes,r,SNESTSFormFunction,ts);
1322:   VecDestroy(&ralloc);
1323:   return(0);
1324: }

1326: /*@C
1327:    TSGetIFunction - Returns the vector where the implicit residual is stored and the function/contex to compute it.

1329:    Not Collective

1331:    Input Parameter:
1332: .  ts - the TS context

1334:    Output Parameter:
1335: +  r - vector to hold residual (or NULL)
1336: .  func - the function to compute residual (or NULL)
1337: -  ctx - the function context (or NULL)

1339:    Level: advanced

1341: .seealso: TSSetIFunction(), SNESGetFunction()
1342: @*/
1343: PetscErrorCode TSGetIFunction(TS ts,Vec *r,TSIFunction *func,void **ctx)
1344: {
1346:   SNES           snes;
1347:   DM             dm;

1351:   TSGetSNES(ts,&snes);
1352:   SNESGetFunction(snes,r,NULL,NULL);
1353:   TSGetDM(ts,&dm);
1354:   DMTSGetIFunction(dm,func,ctx);
1355:   return(0);
1356: }

1358: /*@C
1359:    TSGetRHSFunction - Returns the vector where the right hand side is stored and the function/context to compute it.

1361:    Not Collective

1363:    Input Parameter:
1364: .  ts - the TS context

1366:    Output Parameter:
1367: +  r - vector to hold computed right hand side (or NULL)
1368: .  func - the function to compute right hand side (or NULL)
1369: -  ctx - the function context (or NULL)

1371:    Level: advanced

1373: .seealso: TSSetRHSFunction(), SNESGetFunction()
1374: @*/
1375: PetscErrorCode TSGetRHSFunction(TS ts,Vec *r,TSRHSFunction *func,void **ctx)
1376: {
1378:   SNES           snes;
1379:   DM             dm;

1383:   TSGetSNES(ts,&snes);
1384:   SNESGetFunction(snes,r,NULL,NULL);
1385:   TSGetDM(ts,&dm);
1386:   DMTSGetRHSFunction(dm,func,ctx);
1387:   return(0);
1388: }

1390: /*@C
1391:    TSSetIJacobian - Set the function to compute the matrix dF/dU + a*dF/dU_t where F(t,U,U_t) is the function
1392:         provided with TSSetIFunction().

1394:    Logically Collective on TS

1396:    Input Parameters:
1397: +  ts  - the TS context obtained from TSCreate()
1398: .  Amat - (approximate) Jacobian matrix
1399: .  Pmat - matrix used to compute preconditioner (usually the same as Amat)
1400: .  f   - the Jacobian evaluation routine
1401: -  ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)

1403:    Calling sequence of f:
1404: $    PetscErrorCode f(TS ts,PetscReal t,Vec U,Vec U_t,PetscReal a,Mat Amat,Mat Pmat,void *ctx);

1406: +  t    - time at step/stage being solved
1407: .  U    - state vector
1408: .  U_t  - time derivative of state vector
1409: .  a    - shift
1410: .  Amat - (approximate) Jacobian of F(t,U,W+a*U), equivalent to dF/dU + a*dF/dU_t
1411: .  Pmat - matrix used for constructing preconditioner, usually the same as Amat
1412: -  ctx  - [optional] user-defined context for matrix evaluation routine

1414:    Notes:
1415:    The matrices Amat and Pmat are exactly the matrices that are used by SNES for the nonlinear solve.

1417:    If you know the operator Amat has a null space you can use MatSetNullSpace() and MatSetTransposeNullSpace() to supply the null
1418:    space to Amat and the KSP solvers will automatically use that null space as needed during the solution process.

1420:    The matrix dF/dU + a*dF/dU_t you provide turns out to be
1421:    the Jacobian of F(t,U,W+a*U) where F(t,U,U_t) = 0 is the DAE to be solved.
1422:    The time integrator internally approximates U_t by W+a*U where the positive "shift"
1423:    a and vector W depend on the integration method, step size, and past states. For example with
1424:    the backward Euler method a = 1/dt and W = -a*U(previous timestep) so
1425:    W + a*U = a*(U - U(previous timestep)) = (U - U(previous timestep))/dt

1427:    You must set all the diagonal entries of the matrices, if they are zero you must still set them with a zero value

1429:    The TS solver may modify the nonzero structure and the entries of the matrices Amat and Pmat between the calls to f()
1430:    You should not assume the values are the same in the next call to f() as you set them in the previous call.

1432:    Level: beginner

1434: .seealso: TSSetIFunction(), TSSetRHSJacobian(), SNESComputeJacobianDefaultColor(), SNESComputeJacobianDefault(), TSSetRHSFunction()

1436: @*/
1437: PetscErrorCode  TSSetIJacobian(TS ts,Mat Amat,Mat Pmat,TSIJacobian f,void *ctx)
1438: {
1440:   SNES           snes;
1441:   DM             dm;


1450:   TSGetDM(ts,&dm);
1451:   DMTSSetIJacobian(dm,f,ctx);

1453:   TSGetSNES(ts,&snes);
1454:   SNESSetJacobian(snes,Amat,Pmat,SNESTSFormJacobian,ts);
1455:   return(0);
1456: }

1458: /*@
1459:    TSRHSJacobianSetReuse - restore RHS Jacobian before re-evaluating.  Without this flag, TS will change the sign and
1460:    shift the RHS Jacobian for a finite-time-step implicit solve, in which case the user function will need to recompute
1461:    the entire Jacobian.  The reuse flag must be set if the evaluation function will assume that the matrix entries have
1462:    not been changed by the TS.

1464:    Logically Collective

1466:    Input Arguments:
1467: +  ts - TS context obtained from TSCreate()
1468: -  reuse - PETSC_TRUE if the RHS Jacobian

1470:    Level: intermediate

1472: .seealso: TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
1473: @*/
1474: PetscErrorCode TSRHSJacobianSetReuse(TS ts,PetscBool reuse)
1475: {
1477:   ts->rhsjacobian.reuse = reuse;
1478:   return(0);
1479: }

1481: /*@C
1482:    TSSetI2Function - Set the function to compute F(t,U,U_t,U_tt) where F = 0 is the DAE to be solved.

1484:    Logically Collective on TS

1486:    Input Parameters:
1487: +  ts  - the TS context obtained from TSCreate()
1488: .  F   - vector to hold the residual (or NULL to have it created internally)
1489: .  fun - the function evaluation routine
1490: -  ctx - user-defined context for private data for the function evaluation routine (may be NULL)

1492:    Calling sequence of fun:
1493: $     PetscErrorCode fun(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,Vec F,ctx);

1495: +  t    - time at step/stage being solved
1496: .  U    - state vector
1497: .  U_t  - time derivative of state vector
1498: .  U_tt - second time derivative of state vector
1499: .  F    - function vector
1500: -  ctx  - [optional] user-defined context for matrix evaluation routine (may be NULL)

1502:    Level: beginner

1504: .seealso: TSSetI2Jacobian(), TSSetIFunction(), TSCreate(), TSSetRHSFunction()
1505: @*/
1506: PetscErrorCode TSSetI2Function(TS ts,Vec F,TSI2Function fun,void *ctx)
1507: {
1508:   DM             dm;

1514:   TSSetIFunction(ts,F,NULL,NULL);
1515:   TSGetDM(ts,&dm);
1516:   DMTSSetI2Function(dm,fun,ctx);
1517:   return(0);
1518: }

1520: /*@C
1521:   TSGetI2Function - Returns the vector where the implicit residual is stored and the function/contex to compute it.

1523:   Not Collective

1525:   Input Parameter:
1526: . ts - the TS context

1528:   Output Parameter:
1529: + r - vector to hold residual (or NULL)
1530: . fun - the function to compute residual (or NULL)
1531: - ctx - the function context (or NULL)

1533:   Level: advanced

1535: .seealso: TSSetIFunction(), SNESGetFunction(), TSCreate()
1536: @*/
1537: PetscErrorCode TSGetI2Function(TS ts,Vec *r,TSI2Function *fun,void **ctx)
1538: {
1540:   SNES           snes;
1541:   DM             dm;

1545:   TSGetSNES(ts,&snes);
1546:   SNESGetFunction(snes,r,NULL,NULL);
1547:   TSGetDM(ts,&dm);
1548:   DMTSGetI2Function(dm,fun,ctx);
1549:   return(0);
1550: }

1552: /*@C
1553:    TSSetI2Jacobian - Set the function to compute the matrix dF/dU + v*dF/dU_t  + a*dF/dU_tt
1554:         where F(t,U,U_t,U_tt) is the function you provided with TSSetI2Function().

1556:    Logically Collective on TS

1558:    Input Parameters:
1559: +  ts  - the TS context obtained from TSCreate()
1560: .  J   - Jacobian matrix
1561: .  P   - preconditioning matrix for J (may be same as J)
1562: .  jac - the Jacobian evaluation routine
1563: -  ctx - user-defined context for private data for the Jacobian evaluation routine (may be NULL)

1565:    Calling sequence of jac:
1566: $    PetscErrorCode jac(TS ts,PetscReal t,Vec U,Vec U_t,Vec U_tt,PetscReal v,PetscReal a,Mat J,Mat P,void *ctx);

1568: +  t    - time at step/stage being solved
1569: .  U    - state vector
1570: .  U_t  - time derivative of state vector
1571: .  U_tt - second time derivative of state vector
1572: .  v    - shift for U_t
1573: .  a    - shift for U_tt
1574: .  J    - Jacobian of G(U) = F(t,U,W+v*U,W'+a*U), equivalent to dF/dU + v*dF/dU_t  + a*dF/dU_tt
1575: .  P    - preconditioning matrix for J, may be same as J
1576: -  ctx  - [optional] user-defined context for matrix evaluation routine

1578:    Notes:
1579:    The matrices J and P are exactly the matrices that are used by SNES for the nonlinear solve.

1581:    The matrix dF/dU + v*dF/dU_t + a*dF/dU_tt you provide turns out to be
1582:    the Jacobian of G(U) = F(t,U,W+v*U,W'+a*U) where F(t,U,U_t,U_tt) = 0 is the DAE to be solved.
1583:    The time integrator internally approximates U_t by W+v*U and U_tt by W'+a*U  where the positive "shift"
1584:    parameters 'v' and 'a' and vectors W, W' depend on the integration method, step size, and past states.

1586:    Level: beginner

1588: .seealso: TSSetI2Function(), TSGetI2Jacobian()
1589: @*/
1590: PetscErrorCode TSSetI2Jacobian(TS ts,Mat J,Mat P,TSI2Jacobian jac,void *ctx)
1591: {
1592:   DM             dm;

1599:   TSSetIJacobian(ts,J,P,NULL,NULL);
1600:   TSGetDM(ts,&dm);
1601:   DMTSSetI2Jacobian(dm,jac,ctx);
1602:   return(0);
1603: }

1605: /*@C
1606:   TSGetI2Jacobian - Returns the implicit Jacobian at the present timestep.

1608:   Not Collective, but parallel objects are returned if TS is parallel

1610:   Input Parameter:
1611: . ts  - The TS context obtained from TSCreate()

1613:   Output Parameters:
1614: + J  - The (approximate) Jacobian of F(t,U,U_t,U_tt)
1615: . P - The matrix from which the preconditioner is constructed, often the same as J
1616: . jac - The function to compute the Jacobian matrices
1617: - ctx - User-defined context for Jacobian evaluation routine

1619:   Notes:
1620:     You can pass in NULL for any return argument you do not need.

1622:   Level: advanced

1624: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber(), TSSetI2Jacobian(), TSGetI2Function(), TSCreate()

1626: @*/
1627: PetscErrorCode  TSGetI2Jacobian(TS ts,Mat *J,Mat *P,TSI2Jacobian *jac,void **ctx)
1628: {
1630:   SNES           snes;
1631:   DM             dm;

1634:   TSGetSNES(ts,&snes);
1635:   SNESSetUpMatrices(snes);
1636:   SNESGetJacobian(snes,J,P,NULL,NULL);
1637:   TSGetDM(ts,&dm);
1638:   DMTSGetI2Jacobian(dm,jac,ctx);
1639:   return(0);
1640: }

1642: /*@
1643:   TSComputeI2Function - Evaluates the DAE residual written in implicit form F(t,U,U_t,U_tt) = 0

1645:   Collective on TS

1647:   Input Parameters:
1648: + ts - the TS context
1649: . t - current time
1650: . U - state vector
1651: . V - time derivative of state vector (U_t)
1652: - A - second time derivative of state vector (U_tt)

1654:   Output Parameter:
1655: . F - the residual vector

1657:   Note:
1658:   Most users should not need to explicitly call this routine, as it
1659:   is used internally within the nonlinear solvers.

1661:   Level: developer

1663: .seealso: TSSetI2Function(), TSGetI2Function()
1664: @*/
1665: PetscErrorCode TSComputeI2Function(TS ts,PetscReal t,Vec U,Vec V,Vec A,Vec F)
1666: {
1667:   DM             dm;
1668:   TSI2Function   I2Function;
1669:   void           *ctx;
1670:   TSRHSFunction  rhsfunction;


1680:   TSGetDM(ts,&dm);
1681:   DMTSGetI2Function(dm,&I2Function,&ctx);
1682:   DMTSGetRHSFunction(dm,&rhsfunction,NULL);

1684:   if (!I2Function) {
1685:     TSComputeIFunction(ts,t,U,A,F,PETSC_FALSE);
1686:     return(0);
1687:   }

1689:   PetscLogEventBegin(TS_FunctionEval,ts,U,V,F);

1691:   PetscStackPush("TS user implicit function");
1692:   I2Function(ts,t,U,V,A,F,ctx);
1693:   PetscStackPop;

1695:   if (rhsfunction) {
1696:     Vec Frhs;
1697:     TSGetRHSVec_Private(ts,&Frhs);
1698:     TSComputeRHSFunction(ts,t,U,Frhs);
1699:     VecAXPY(F,-1,Frhs);
1700:   }

1702:   PetscLogEventEnd(TS_FunctionEval,ts,U,V,F);
1703:   return(0);
1704: }

1706: /*@
1707:   TSComputeI2Jacobian - Evaluates the Jacobian of the DAE

1709:   Collective on TS

1711:   Input Parameters:
1712: + ts - the TS context
1713: . t - current timestep
1714: . U - state vector
1715: . V - time derivative of state vector
1716: . A - second time derivative of state vector
1717: . shiftV - shift to apply, see note below
1718: - shiftA - shift to apply, see note below

1720:   Output Parameters:
1721: + J - Jacobian matrix
1722: - P - optional preconditioning matrix

1724:   Notes:
1725:   If F(t,U,V,A)=0 is the DAE, the required Jacobian is

1727:   dF/dU + shiftV*dF/dV + shiftA*dF/dA

1729:   Most users should not need to explicitly call this routine, as it
1730:   is used internally within the nonlinear solvers.

1732:   Level: developer

1734: .seealso:  TSSetI2Jacobian()
1735: @*/
1736: PetscErrorCode TSComputeI2Jacobian(TS ts,PetscReal t,Vec U,Vec V,Vec A,PetscReal shiftV,PetscReal shiftA,Mat J,Mat P)
1737: {
1738:   DM             dm;
1739:   TSI2Jacobian   I2Jacobian;
1740:   void           *ctx;
1741:   TSRHSJacobian  rhsjacobian;


1752:   TSGetDM(ts,&dm);
1753:   DMTSGetI2Jacobian(dm,&I2Jacobian,&ctx);
1754:   DMTSGetRHSJacobian(dm,&rhsjacobian,NULL);

1756:   if (!I2Jacobian) {
1757:     TSComputeIJacobian(ts,t,U,A,shiftA,J,P,PETSC_FALSE);
1758:     return(0);
1759:   }

1761:   PetscLogEventBegin(TS_JacobianEval,ts,U,J,P);

1763:   PetscStackPush("TS user implicit Jacobian");
1764:   I2Jacobian(ts,t,U,V,A,shiftV,shiftA,J,P,ctx);
1765:   PetscStackPop;

1767:   if (rhsjacobian) {
1768:     Mat Jrhs,Prhs; MatStructure axpy = DIFFERENT_NONZERO_PATTERN;
1769:     TSGetRHSMats_Private(ts,&Jrhs,&Prhs);
1770:     TSComputeRHSJacobian(ts,t,U,Jrhs,Prhs);
1771:     MatAXPY(J,-1,Jrhs,axpy);
1772:     if (P != J) {MatAXPY(P,-1,Prhs,axpy);}
1773:   }

1775:   PetscLogEventEnd(TS_JacobianEval,ts,U,J,P);
1776:   return(0);
1777: }

1779: /*@C
1780:    TSSetTransientVariable - sets function to transform from state to transient variables

1782:    Logically Collective

1784:    Input Arguments:
1785: +  ts - time stepping context on which to change the transient variable
1786: .  tvar - a function that transforms to transient variables
1787: -  ctx - a context for tvar

1789:     Calling sequence of tvar:
1790: $     PetscErrorCode tvar(TS ts,Vec p,Vec c,void *ctx);

1792: +   ts - timestep context
1793: .   p - input vector (primative form)
1794: .   c - output vector, transient variables (conservative form)
1795: -   ctx - [optional] user-defined function context

1797:    Level: advanced

1799:    Notes:
1800:    This is typically used to transform from primitive to conservative variables so that a time integrator (e.g., TSBDF)
1801:    can be conservative.  In this context, primitive variables P are used to model the state (e.g., because they lead to
1802:    well-conditioned formulations even in limiting cases such as low-Mach or zero porosity).  The transient variable is
1803:    C(P), specified by calling this function.  An IFunction thus receives arguments (P, Cdot) and the IJacobian must be
1804:    evaluated via the chain rule, as in

1806:      dF/dP + shift * dF/dCdot dC/dP.

1808: .seealso: DMTSSetTransientVariable(), DMTSGetTransientVariable(), TSSetIFunction(), TSSetIJacobian()
1809: @*/
1810: PetscErrorCode TSSetTransientVariable(TS ts,TSTransientVariable tvar,void *ctx)
1811: {
1813:   DM             dm;

1817:   TSGetDM(ts,&dm);
1818:   DMTSSetTransientVariable(dm,tvar,ctx);
1819:   return(0);
1820: }

1822: /*@
1823:    TSComputeTransientVariable - transforms state (primitive) variables to transient (conservative) variables

1825:    Logically Collective

1827:    Input Parameters:
1828: +  ts - TS on which to compute
1829: -  U - state vector to be transformed to transient variables

1831:    Output Parameters:
1832: .  C - transient (conservative) variable

1834:    Developer Notes:
1835:    If DMTSSetTransientVariable() has not been called, then C is not modified in this routine and C=NULL is allowed.
1836:    This makes it safe to call without a guard.  One can use TSHasTransientVariable() to check if transient variables are
1837:    being used.

1839:    Level: developer

1841: .seealso: DMTSSetTransientVariable(), TSComputeIFunction(), TSComputeIJacobian()
1842: @*/
1843: PetscErrorCode TSComputeTransientVariable(TS ts,Vec U,Vec C)
1844: {
1846:   DM             dm;
1847:   DMTS           dmts;

1852:   TSGetDM(ts,&dm);
1853:   DMGetDMTS(dm,&dmts);
1854:   if (dmts->ops->transientvar) {
1856:     (*dmts->ops->transientvar)(ts,U,C,dmts->transientvarctx);
1857:   }
1858:   return(0);
1859: }

1861: /*@
1862:    TSHasTransientVariable - determine whether transient variables have been set

1864:    Logically Collective

1866:    Input Parameters:
1867: .  ts - TS on which to compute

1869:    Output Parameters:
1870: .  has - PETSC_TRUE if transient variables have been set

1872:    Level: developer

1874: .seealso: DMTSSetTransientVariable(), TSComputeTransientVariable()
1875: @*/
1876: PetscErrorCode TSHasTransientVariable(TS ts,PetscBool *has)
1877: {
1879:   DM             dm;
1880:   DMTS           dmts;

1884:   TSGetDM(ts,&dm);
1885:   DMGetDMTS(dm,&dmts);
1886:   *has = dmts->ops->transientvar ? PETSC_TRUE : PETSC_FALSE;
1887:   return(0);
1888: }

1890: /*@
1891:    TS2SetSolution - Sets the initial solution and time derivative vectors
1892:    for use by the TS routines handling second order equations.

1894:    Logically Collective on TS

1896:    Input Parameters:
1897: +  ts - the TS context obtained from TSCreate()
1898: .  u - the solution vector
1899: -  v - the time derivative vector

1901:    Level: beginner

1903: @*/
1904: PetscErrorCode  TS2SetSolution(TS ts,Vec u,Vec v)
1905: {

1912:   TSSetSolution(ts,u);
1913:   PetscObjectReference((PetscObject)v);
1914:   VecDestroy(&ts->vec_dot);
1915:   ts->vec_dot = v;
1916:   return(0);
1917: }

1919: /*@
1920:    TS2GetSolution - Returns the solution and time derivative at the present timestep
1921:    for second order equations. It is valid to call this routine inside the function
1922:    that you are evaluating in order to move to the new timestep. This vector not
1923:    changed until the solution at the next timestep has been calculated.

1925:    Not Collective, but Vec returned is parallel if TS is parallel

1927:    Input Parameter:
1928: .  ts - the TS context obtained from TSCreate()

1930:    Output Parameter:
1931: +  u - the vector containing the solution
1932: -  v - the vector containing the time derivative

1934:    Level: intermediate

1936: .seealso: TS2SetSolution(), TSGetTimeStep(), TSGetTime()

1938: @*/
1939: PetscErrorCode  TS2GetSolution(TS ts,Vec *u,Vec *v)
1940: {
1945:   if (u) *u = ts->vec_sol;
1946:   if (v) *v = ts->vec_dot;
1947:   return(0);
1948: }

1950: /*@C
1951:   TSLoad - Loads a KSP that has been stored in binary  with KSPView().

1953:   Collective on PetscViewer

1955:   Input Parameters:
1956: + newdm - the newly loaded TS, this needs to have been created with TSCreate() or
1957:            some related function before a call to TSLoad().
1958: - viewer - binary file viewer, obtained from PetscViewerBinaryOpen()

1960:    Level: intermediate

1962:   Notes:
1963:    The type is determined by the data in the file, any type set into the TS before this call is ignored.

1965:   Notes for advanced users:
1966:   Most users should not need to know the details of the binary storage
1967:   format, since TSLoad() and TSView() completely hide these details.
1968:   But for anyone who's interested, the standard binary matrix storage
1969:   format is
1970: .vb
1971:      has not yet been determined
1972: .ve

1974: .seealso: PetscViewerBinaryOpen(), TSView(), MatLoad(), VecLoad()
1975: @*/
1976: PetscErrorCode  TSLoad(TS ts, PetscViewer viewer)
1977: {
1979:   PetscBool      isbinary;
1980:   PetscInt       classid;
1981:   char           type[256];
1982:   DMTS           sdm;
1983:   DM             dm;

1988:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
1989:   if (!isbinary) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Invalid viewer; open viewer with PetscViewerBinaryOpen()");

1991:   PetscViewerBinaryRead(viewer,&classid,1,NULL,PETSC_INT);
1992:   if (classid != TS_FILE_CLASSID) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONG,"Not TS next in file");
1993:   PetscViewerBinaryRead(viewer,type,256,NULL,PETSC_CHAR);
1994:   TSSetType(ts, type);
1995:   if (ts->ops->load) {
1996:     (*ts->ops->load)(ts,viewer);
1997:   }
1998:   DMCreate(PetscObjectComm((PetscObject)ts),&dm);
1999:   DMLoad(dm,viewer);
2000:   TSSetDM(ts,dm);
2001:   DMCreateGlobalVector(ts->dm,&ts->vec_sol);
2002:   VecLoad(ts->vec_sol,viewer);
2003:   DMGetDMTS(ts->dm,&sdm);
2004:   DMTSLoad(sdm,viewer);
2005:   return(0);
2006: }

2008: #include <petscdraw.h>
2009: #if defined(PETSC_HAVE_SAWS)
2010: #include <petscviewersaws.h>
2011: #endif

2013: /*@C
2014:    TSViewFromOptions - View from Options

2016:    Collective on TS

2018:    Input Parameters:
2019: +  A - the application ordering context
2020: .  obj - Optional object
2021: -  name - command line option

2023:    Level: intermediate
2024: .seealso:  TS, TSView, PetscObjectViewFromOptions(), TSCreate()
2025: @*/
2026: PetscErrorCode  TSViewFromOptions(TS A,PetscObject obj,const char name[])
2027: {

2032:   PetscObjectViewFromOptions((PetscObject)A,obj,name);
2033:   return(0);
2034: }

2036: /*@C
2037:     TSView - Prints the TS data structure.

2039:     Collective on TS

2041:     Input Parameters:
2042: +   ts - the TS context obtained from TSCreate()
2043: -   viewer - visualization context

2045:     Options Database Key:
2046: .   -ts_view - calls TSView() at end of TSStep()

2048:     Notes:
2049:     The available visualization contexts include
2050: +     PETSC_VIEWER_STDOUT_SELF - standard output (default)
2051: -     PETSC_VIEWER_STDOUT_WORLD - synchronized standard
2052:          output where only the first processor opens
2053:          the file.  All other processors send their
2054:          data to the first processor to print.

2056:     The user can open an alternative visualization context with
2057:     PetscViewerASCIIOpen() - output to a specified file.

2059:     Level: beginner

2061: .seealso: PetscViewerASCIIOpen()
2062: @*/
2063: PetscErrorCode  TSView(TS ts,PetscViewer viewer)
2064: {
2066:   TSType         type;
2067:   PetscBool      iascii,isstring,isundials,isbinary,isdraw;
2068:   DMTS           sdm;
2069: #if defined(PETSC_HAVE_SAWS)
2070:   PetscBool      issaws;
2071: #endif

2075:   if (!viewer) {
2076:     PetscViewerASCIIGetStdout(PetscObjectComm((PetscObject)ts),&viewer);
2077:   }

2081:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
2082:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSTRING,&isstring);
2083:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&isbinary);
2084:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERDRAW,&isdraw);
2085: #if defined(PETSC_HAVE_SAWS)
2086:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERSAWS,&issaws);
2087: #endif
2088:   if (iascii) {
2089:     PetscObjectPrintClassNamePrefixType((PetscObject)ts,viewer);
2090:     if (ts->ops->view) {
2091:       PetscViewerASCIIPushTab(viewer);
2092:       (*ts->ops->view)(ts,viewer);
2093:       PetscViewerASCIIPopTab(viewer);
2094:     }
2095:     if (ts->max_steps < PETSC_MAX_INT) {
2096:       PetscViewerASCIIPrintf(viewer,"  maximum steps=%D\n",ts->max_steps);
2097:     }
2098:     if (ts->max_time < PETSC_MAX_REAL) {
2099:       PetscViewerASCIIPrintf(viewer,"  maximum time=%g\n",(double)ts->max_time);
2100:     }
2101:     if (ts->usessnes) {
2102:       PetscBool lin;
2103:       if (ts->problem_type == TS_NONLINEAR) {
2104:         PetscViewerASCIIPrintf(viewer,"  total number of nonlinear solver iterations=%D\n",ts->snes_its);
2105:       }
2106:       PetscViewerASCIIPrintf(viewer,"  total number of linear solver iterations=%D\n",ts->ksp_its);
2107:       PetscObjectTypeCompareAny((PetscObject)ts->snes,&lin,SNESKSPONLY,SNESKSPTRANSPOSEONLY,"");
2108:       PetscViewerASCIIPrintf(viewer,"  total number of %slinear solve failures=%D\n",lin ? "" : "non",ts->num_snes_failures);
2109:     }
2110:     PetscViewerASCIIPrintf(viewer,"  total number of rejected steps=%D\n",ts->reject);
2111:     if (ts->vrtol) {
2112:       PetscViewerASCIIPrintf(viewer,"  using vector of relative error tolerances, ");
2113:     } else {
2114:       PetscViewerASCIIPrintf(viewer,"  using relative error tolerance of %g, ",(double)ts->rtol);
2115:     }
2116:     if (ts->vatol) {
2117:       PetscViewerASCIIPrintf(viewer,"  using vector of absolute error tolerances\n");
2118:     } else {
2119:       PetscViewerASCIIPrintf(viewer,"  using absolute error tolerance of %g\n",(double)ts->atol);
2120:     }
2121:     PetscViewerASCIIPushTab(viewer);
2122:     TSAdaptView(ts->adapt,viewer);
2123:     PetscViewerASCIIPopTab(viewer);
2124:   } else if (isstring) {
2125:     TSGetType(ts,&type);
2126:     PetscViewerStringSPrintf(viewer," TSType: %-7.7s",type);
2127:     if (ts->ops->view) {(*ts->ops->view)(ts,viewer);}
2128:   } else if (isbinary) {
2129:     PetscInt    classid = TS_FILE_CLASSID;
2130:     MPI_Comm    comm;
2131:     PetscMPIInt rank;
2132:     char        type[256];

2134:     PetscObjectGetComm((PetscObject)ts,&comm);
2135:     MPI_Comm_rank(comm,&rank);
2136:     if (!rank) {
2137:       PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT);
2138:       PetscStrncpy(type,((PetscObject)ts)->type_name,256);
2139:       PetscViewerBinaryWrite(viewer,type,256,PETSC_CHAR);
2140:     }
2141:     if (ts->ops->view) {
2142:       (*ts->ops->view)(ts,viewer);
2143:     }
2144:     if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
2145:     DMView(ts->dm,viewer);
2146:     VecView(ts->vec_sol,viewer);
2147:     DMGetDMTS(ts->dm,&sdm);
2148:     DMTSView(sdm,viewer);
2149:   } else if (isdraw) {
2150:     PetscDraw draw;
2151:     char      str[36];
2152:     PetscReal x,y,bottom,h;

2154:     PetscViewerDrawGetDraw(viewer,0,&draw);
2155:     PetscDrawGetCurrentPoint(draw,&x,&y);
2156:     PetscStrcpy(str,"TS: ");
2157:     PetscStrcat(str,((PetscObject)ts)->type_name);
2158:     PetscDrawStringBoxed(draw,x,y,PETSC_DRAW_BLACK,PETSC_DRAW_BLACK,str,NULL,&h);
2159:     bottom = y - h;
2160:     PetscDrawPushCurrentPoint(draw,x,bottom);
2161:     if (ts->ops->view) {
2162:       (*ts->ops->view)(ts,viewer);
2163:     }
2164:     if (ts->adapt) {TSAdaptView(ts->adapt,viewer);}
2165:     if (ts->snes)  {SNESView(ts->snes,viewer);}
2166:     PetscDrawPopCurrentPoint(draw);
2167: #if defined(PETSC_HAVE_SAWS)
2168:   } else if (issaws) {
2169:     PetscMPIInt rank;
2170:     const char  *name;

2172:     PetscObjectGetName((PetscObject)ts,&name);
2173:     MPI_Comm_rank(PETSC_COMM_WORLD,&rank);
2174:     if (!((PetscObject)ts)->amsmem && !rank) {
2175:       char       dir[1024];

2177:       PetscObjectViewSAWs((PetscObject)ts,viewer);
2178:       PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time_step",name);
2179:       PetscStackCallSAWs(SAWs_Register,(dir,&ts->steps,1,SAWs_READ,SAWs_INT));
2180:       PetscSNPrintf(dir,1024,"/PETSc/Objects/%s/time",name);
2181:       PetscStackCallSAWs(SAWs_Register,(dir,&ts->ptime,1,SAWs_READ,SAWs_DOUBLE));
2182:     }
2183:     if (ts->ops->view) {
2184:       (*ts->ops->view)(ts,viewer);
2185:     }
2186: #endif
2187:   }
2188:   if (ts->snes && ts->usessnes)  {
2189:     PetscViewerASCIIPushTab(viewer);
2190:     SNESView(ts->snes,viewer);
2191:     PetscViewerASCIIPopTab(viewer);
2192:   }
2193:   DMGetDMTS(ts->dm,&sdm);
2194:   DMTSView(sdm,viewer);

2196:   PetscViewerASCIIPushTab(viewer);
2197:   PetscObjectTypeCompare((PetscObject)ts,TSSUNDIALS,&isundials);
2198:   PetscViewerASCIIPopTab(viewer);
2199:   return(0);
2200: }

2202: /*@
2203:    TSSetApplicationContext - Sets an optional user-defined context for
2204:    the timesteppers.

2206:    Logically Collective on TS

2208:    Input Parameters:
2209: +  ts - the TS context obtained from TSCreate()
2210: -  usrP - optional user context

2212:    Fortran Notes:
2213:     To use this from Fortran you must write a Fortran interface definition for this
2214:     function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.

2216:    Level: intermediate

2218: .seealso: TSGetApplicationContext()
2219: @*/
2220: PetscErrorCode  TSSetApplicationContext(TS ts,void *usrP)
2221: {
2224:   ts->user = usrP;
2225:   return(0);
2226: }

2228: /*@
2229:     TSGetApplicationContext - Gets the user-defined context for the
2230:     timestepper.

2232:     Not Collective

2234:     Input Parameter:
2235: .   ts - the TS context obtained from TSCreate()

2237:     Output Parameter:
2238: .   usrP - user context

2240:    Fortran Notes:
2241:     To use this from Fortran you must write a Fortran interface definition for this
2242:     function that tells Fortran the Fortran derived data type that you are passing in as the ctx argument.

2244:     Level: intermediate

2246: .seealso: TSSetApplicationContext()
2247: @*/
2248: PetscErrorCode  TSGetApplicationContext(TS ts,void *usrP)
2249: {
2252:   *(void**)usrP = ts->user;
2253:   return(0);
2254: }

2256: /*@
2257:    TSGetStepNumber - Gets the number of steps completed.

2259:    Not Collective

2261:    Input Parameter:
2262: .  ts - the TS context obtained from TSCreate()

2264:    Output Parameter:
2265: .  steps - number of steps completed so far

2267:    Level: intermediate

2269: .seealso: TSGetTime(), TSGetTimeStep(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSSetPostStep()
2270: @*/
2271: PetscErrorCode TSGetStepNumber(TS ts,PetscInt *steps)
2272: {
2276:   *steps = ts->steps;
2277:   return(0);
2278: }

2280: /*@
2281:    TSSetStepNumber - Sets the number of steps completed.

2283:    Logically Collective on TS

2285:    Input Parameters:
2286: +  ts - the TS context
2287: -  steps - number of steps completed so far

2289:    Notes:
2290:    For most uses of the TS solvers the user need not explicitly call
2291:    TSSetStepNumber(), as the step counter is appropriately updated in
2292:    TSSolve()/TSStep()/TSRollBack(). Power users may call this routine to
2293:    reinitialize timestepping by setting the step counter to zero (and time
2294:    to the initial time) to solve a similar problem with different initial
2295:    conditions or parameters. Other possible use case is to continue
2296:    timestepping from a previously interrupted run in such a way that TS
2297:    monitors will be called with a initial nonzero step counter.

2299:    Level: advanced

2301: .seealso: TSGetStepNumber(), TSSetTime(), TSSetTimeStep(), TSSetSolution()
2302: @*/
2303: PetscErrorCode TSSetStepNumber(TS ts,PetscInt steps)
2304: {
2308:   if (steps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Step number must be non-negative");
2309:   ts->steps = steps;
2310:   return(0);
2311: }

2313: /*@
2314:    TSSetTimeStep - Allows one to reset the timestep at any time,
2315:    useful for simple pseudo-timestepping codes.

2317:    Logically Collective on TS

2319:    Input Parameters:
2320: +  ts - the TS context obtained from TSCreate()
2321: -  time_step - the size of the timestep

2323:    Level: intermediate

2325: .seealso: TSGetTimeStep(), TSSetTime()

2327: @*/
2328: PetscErrorCode  TSSetTimeStep(TS ts,PetscReal time_step)
2329: {
2333:   ts->time_step = time_step;
2334:   return(0);
2335: }

2337: /*@
2338:    TSSetExactFinalTime - Determines whether to adapt the final time step to
2339:      match the exact final time, interpolate solution to the exact final time,
2340:      or just return at the final time TS computed.

2342:   Logically Collective on TS

2344:    Input Parameter:
2345: +   ts - the time-step context
2346: -   eftopt - exact final time option

2348: $  TS_EXACTFINALTIME_STEPOVER    - Don't do anything if final time is exceeded
2349: $  TS_EXACTFINALTIME_INTERPOLATE - Interpolate back to final time
2350: $  TS_EXACTFINALTIME_MATCHSTEP - Adapt final time step to match the final time

2352:    Options Database:
2353: .   -ts_exact_final_time <stepover,interpolate,matchstep> - select the final step at runtime

2355:    Warning: If you use the option TS_EXACTFINALTIME_STEPOVER the solution may be at a very different time
2356:     then the final time you selected.

2358:    Level: beginner

2360: .seealso: TSExactFinalTimeOption, TSGetExactFinalTime()
2361: @*/
2362: PetscErrorCode TSSetExactFinalTime(TS ts,TSExactFinalTimeOption eftopt)
2363: {
2367:   ts->exact_final_time = eftopt;
2368:   return(0);
2369: }

2371: /*@
2372:    TSGetExactFinalTime - Gets the exact final time option.

2374:    Not Collective

2376:    Input Parameter:
2377: .  ts - the TS context

2379:    Output Parameter:
2380: .  eftopt - exact final time option

2382:    Level: beginner

2384: .seealso: TSExactFinalTimeOption, TSSetExactFinalTime()
2385: @*/
2386: PetscErrorCode TSGetExactFinalTime(TS ts,TSExactFinalTimeOption *eftopt)
2387: {
2391:   *eftopt = ts->exact_final_time;
2392:   return(0);
2393: }

2395: /*@
2396:    TSGetTimeStep - Gets the current timestep size.

2398:    Not Collective

2400:    Input Parameter:
2401: .  ts - the TS context obtained from TSCreate()

2403:    Output Parameter:
2404: .  dt - the current timestep size

2406:    Level: intermediate

2408: .seealso: TSSetTimeStep(), TSGetTime()

2410: @*/
2411: PetscErrorCode  TSGetTimeStep(TS ts,PetscReal *dt)
2412: {
2416:   *dt = ts->time_step;
2417:   return(0);
2418: }

2420: /*@
2421:    TSGetSolution - Returns the solution at the present timestep. It
2422:    is valid to call this routine inside the function that you are evaluating
2423:    in order to move to the new timestep. This vector not changed until
2424:    the solution at the next timestep has been calculated.

2426:    Not Collective, but Vec returned is parallel if TS is parallel

2428:    Input Parameter:
2429: .  ts - the TS context obtained from TSCreate()

2431:    Output Parameter:
2432: .  v - the vector containing the solution

2434:    Note: If you used TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP); this does not return the solution at the requested
2435:    final time. It returns the solution at the next timestep.

2437:    Level: intermediate

2439: .seealso: TSGetTimeStep(), TSGetTime(), TSGetSolveTime(), TSGetSolutionComponents(), TSSetSolutionFunction()

2441: @*/
2442: PetscErrorCode  TSGetSolution(TS ts,Vec *v)
2443: {
2447:   *v = ts->vec_sol;
2448:   return(0);
2449: }

2451: /*@
2452:    TSGetSolutionComponents - Returns any solution components at the present
2453:    timestep, if available for the time integration method being used.
2454:    Solution components are quantities that share the same size and
2455:    structure as the solution vector.

2457:    Not Collective, but Vec returned is parallel if TS is parallel

2459:    Parameters :
2460: +  ts - the TS context obtained from TSCreate() (input parameter).
2461: .  n - If v is PETSC_NULL, then the number of solution components is
2462:        returned through n, else the n-th solution component is
2463:        returned in v.
2464: -  v - the vector containing the n-th solution component
2465:        (may be PETSC_NULL to use this function to find out
2466:         the number of solutions components).

2468:    Level: advanced

2470: .seealso: TSGetSolution()

2472: @*/
2473: PetscErrorCode  TSGetSolutionComponents(TS ts,PetscInt *n,Vec *v)
2474: {

2479:   if (!ts->ops->getsolutioncomponents) *n = 0;
2480:   else {
2481:     (*ts->ops->getsolutioncomponents)(ts,n,v);
2482:   }
2483:   return(0);
2484: }

2486: /*@
2487:    TSGetAuxSolution - Returns an auxiliary solution at the present
2488:    timestep, if available for the time integration method being used.

2490:    Not Collective, but Vec returned is parallel if TS is parallel

2492:    Parameters :
2493: +  ts - the TS context obtained from TSCreate() (input parameter).
2494: -  v - the vector containing the auxiliary solution

2496:    Level: intermediate

2498: .seealso: TSGetSolution()

2500: @*/
2501: PetscErrorCode  TSGetAuxSolution(TS ts,Vec *v)
2502: {

2507:   if (ts->ops->getauxsolution) {
2508:     (*ts->ops->getauxsolution)(ts,v);
2509:   } else {
2510:     VecZeroEntries(*v);
2511:   }
2512:   return(0);
2513: }

2515: /*@
2516:    TSGetTimeError - Returns the estimated error vector, if the chosen
2517:    TSType has an error estimation functionality.

2519:    Not Collective, but Vec returned is parallel if TS is parallel

2521:    Note: MUST call after TSSetUp()

2523:    Parameters :
2524: +  ts - the TS context obtained from TSCreate() (input parameter).
2525: .  n - current estimate (n=0) or previous one (n=-1)
2526: -  v - the vector containing the error (same size as the solution).

2528:    Level: intermediate

2530: .seealso: TSGetSolution(), TSSetTimeError()

2532: @*/
2533: PetscErrorCode  TSGetTimeError(TS ts,PetscInt n,Vec *v)
2534: {

2539:   if (ts->ops->gettimeerror) {
2540:     (*ts->ops->gettimeerror)(ts,n,v);
2541:   } else {
2542:     VecZeroEntries(*v);
2543:   }
2544:   return(0);
2545: }

2547: /*@
2548:    TSSetTimeError - Sets the estimated error vector, if the chosen
2549:    TSType has an error estimation functionality. This can be used
2550:    to restart such a time integrator with a given error vector.

2552:    Not Collective, but Vec returned is parallel if TS is parallel

2554:    Parameters :
2555: +  ts - the TS context obtained from TSCreate() (input parameter).
2556: -  v - the vector containing the error (same size as the solution).

2558:    Level: intermediate

2560: .seealso: TSSetSolution(), TSGetTimeError)

2562: @*/
2563: PetscErrorCode  TSSetTimeError(TS ts,Vec v)
2564: {

2569:   if (!ts->setupcalled) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetUp() first");
2570:   if (ts->ops->settimeerror) {
2571:     (*ts->ops->settimeerror)(ts,v);
2572:   }
2573:   return(0);
2574: }

2576: /* ----- Routines to initialize and destroy a timestepper ---- */
2577: /*@
2578:   TSSetProblemType - Sets the type of problem to be solved.

2580:   Not collective

2582:   Input Parameters:
2583: + ts   - The TS
2584: - type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2585: .vb
2586:          U_t - A U = 0      (linear)
2587:          U_t - A(t) U = 0   (linear)
2588:          F(t,U,U_t) = 0     (nonlinear)
2589: .ve

2591:    Level: beginner

2593: .seealso: TSSetUp(), TSProblemType, TS
2594: @*/
2595: PetscErrorCode  TSSetProblemType(TS ts, TSProblemType type)
2596: {

2601:   ts->problem_type = type;
2602:   if (type == TS_LINEAR) {
2603:     SNES snes;
2604:     TSGetSNES(ts,&snes);
2605:     SNESSetType(snes,SNESKSPONLY);
2606:   }
2607:   return(0);
2608: }

2610: /*@C
2611:   TSGetProblemType - Gets the type of problem to be solved.

2613:   Not collective

2615:   Input Parameter:
2616: . ts   - The TS

2618:   Output Parameter:
2619: . type - One of TS_LINEAR, TS_NONLINEAR where these types refer to problems of the forms
2620: .vb
2621:          M U_t = A U
2622:          M(t) U_t = A(t) U
2623:          F(t,U,U_t)
2624: .ve

2626:    Level: beginner

2628: .seealso: TSSetUp(), TSProblemType, TS
2629: @*/
2630: PetscErrorCode  TSGetProblemType(TS ts, TSProblemType *type)
2631: {
2635:   *type = ts->problem_type;
2636:   return(0);
2637: }

2639: /*
2640:     Attempt to check/preset a default value for the exact final time option. This is needed at the beginning of TSSolve() and in TSSetUp()
2641: */
2642: static PetscErrorCode TSSetExactFinalTimeDefault(TS ts)
2643: {
2645:   PetscBool      isnone;

2648:   TSGetAdapt(ts,&ts->adapt);
2649:   TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);

2651:   PetscObjectTypeCompare((PetscObject)ts->adapt,TSADAPTNONE,&isnone);
2652:   if (!isnone && ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) {
2653:     ts->exact_final_time = TS_EXACTFINALTIME_MATCHSTEP;
2654:   } else if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) {
2655:     ts->exact_final_time = TS_EXACTFINALTIME_INTERPOLATE;
2656:   }
2657:   return(0);
2658: }


2661: /*@
2662:    TSSetUp - Sets up the internal data structures for the later use of a timestepper.

2664:    Collective on TS

2666:    Input Parameter:
2667: .  ts - the TS context obtained from TSCreate()

2669:    Notes:
2670:    For basic use of the TS solvers the user need not explicitly call
2671:    TSSetUp(), since these actions will automatically occur during
2672:    the call to TSStep() or TSSolve().  However, if one wishes to control this
2673:    phase separately, TSSetUp() should be called after TSCreate()
2674:    and optional routines of the form TSSetXXX(), but before TSStep() and TSSolve().

2676:    Level: advanced

2678: .seealso: TSCreate(), TSStep(), TSDestroy(), TSSolve()
2679: @*/
2680: PetscErrorCode  TSSetUp(TS ts)
2681: {
2683:   DM             dm;
2684:   PetscErrorCode (*func)(SNES,Vec,Vec,void*);
2685:   PetscErrorCode (*jac)(SNES,Vec,Mat,Mat,void*);
2686:   TSIFunction    ifun;
2687:   TSIJacobian    ijac;
2688:   TSI2Jacobian   i2jac;
2689:   TSRHSJacobian  rhsjac;

2693:   if (ts->setupcalled) return(0);

2695:   if (!((PetscObject)ts)->type_name) {
2696:     TSGetIFunction(ts,NULL,&ifun,NULL);
2697:     TSSetType(ts,ifun ? TSBEULER : TSEULER);
2698:   }

2700:   if (!ts->vec_sol) {
2701:     if (ts->dm) {
2702:       DMCreateGlobalVector(ts->dm,&ts->vec_sol);
2703:     } else SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONGSTATE,"Must call TSSetSolution() first");
2704:   }

2706:   if (!ts->Jacp && ts->Jacprhs) { /* IJacobianP shares the same matrix with RHSJacobianP if only RHSJacobianP is provided */
2707:     PetscObjectReference((PetscObject)ts->Jacprhs);
2708:     ts->Jacp = ts->Jacprhs;
2709:   }

2711:   if (ts->quadraturets) {
2712:     TSSetUp(ts->quadraturets);
2713:     VecDestroy(&ts->vec_costintegrand);
2714:     VecDuplicate(ts->quadraturets->vec_sol,&ts->vec_costintegrand);
2715:   }

2717:   TSGetRHSJacobian(ts,NULL,NULL,&rhsjac,NULL);
2718:   if (rhsjac == TSComputeRHSJacobianConstant) {
2719:     Mat Amat,Pmat;
2720:     SNES snes;
2721:     TSGetSNES(ts,&snes);
2722:     SNESGetJacobian(snes,&Amat,&Pmat,NULL,NULL);
2723:     /* Matching matrices implies that an IJacobian is NOT set, because if it had been set, the IJacobian's matrix would
2724:      * have displaced the RHS matrix */
2725:     if (Amat && Amat == ts->Arhs) {
2726:       /* we need to copy the values of the matrix because for the constant Jacobian case the user will never set the numerical values in this new location */
2727:       MatDuplicate(ts->Arhs,MAT_COPY_VALUES,&Amat);
2728:       SNESSetJacobian(snes,Amat,NULL,NULL,NULL);
2729:       MatDestroy(&Amat);
2730:     }
2731:     if (Pmat && Pmat == ts->Brhs) {
2732:       MatDuplicate(ts->Brhs,MAT_COPY_VALUES,&Pmat);
2733:       SNESSetJacobian(snes,NULL,Pmat,NULL,NULL);
2734:       MatDestroy(&Pmat);
2735:     }
2736:   }

2738:   TSGetAdapt(ts,&ts->adapt);
2739:   TSAdaptSetDefaultType(ts->adapt,ts->default_adapt_type);

2741:   if (ts->ops->setup) {
2742:     (*ts->ops->setup)(ts);
2743:   }

2745:   TSSetExactFinalTimeDefault(ts);

2747:   /* In the case where we've set a DMTSFunction or what have you, we need the default SNESFunction
2748:      to be set right but can't do it elsewhere due to the overreliance on ctx=ts.
2749:    */
2750:   TSGetDM(ts,&dm);
2751:   DMSNESGetFunction(dm,&func,NULL);
2752:   if (!func) {
2753:     DMSNESSetFunction(dm,SNESTSFormFunction,ts);
2754:   }
2755:   /* If the SNES doesn't have a jacobian set and the TS has an ijacobian or rhsjacobian set, set the SNES to use it.
2756:      Otherwise, the SNES will use coloring internally to form the Jacobian.
2757:    */
2758:   DMSNESGetJacobian(dm,&jac,NULL);
2759:   DMTSGetIJacobian(dm,&ijac,NULL);
2760:   DMTSGetI2Jacobian(dm,&i2jac,NULL);
2761:   DMTSGetRHSJacobian(dm,&rhsjac,NULL);
2762:   if (!jac && (ijac || i2jac || rhsjac)) {
2763:     DMSNESSetJacobian(dm,SNESTSFormJacobian,ts);
2764:   }

2766:   /* if time integration scheme has a starting method, call it */
2767:   if (ts->ops->startingmethod) {
2768:     (*ts->ops->startingmethod)(ts);
2769:   }

2771:   ts->setupcalled = PETSC_TRUE;
2772:   return(0);
2773: }

2775: /*@
2776:    TSReset - Resets a TS context and removes any allocated Vecs and Mats.

2778:    Collective on TS

2780:    Input Parameter:
2781: .  ts - the TS context obtained from TSCreate()

2783:    Level: beginner

2785: .seealso: TSCreate(), TSSetup(), TSDestroy()
2786: @*/
2787: PetscErrorCode  TSReset(TS ts)
2788: {
2789:   TS_RHSSplitLink ilink = ts->tsrhssplit,next;
2790:   PetscErrorCode  ierr;


2795:   if (ts->ops->reset) {
2796:     (*ts->ops->reset)(ts);
2797:   }
2798:   if (ts->snes) {SNESReset(ts->snes);}
2799:   if (ts->adapt) {TSAdaptReset(ts->adapt);}

2801:   MatDestroy(&ts->Arhs);
2802:   MatDestroy(&ts->Brhs);
2803:   VecDestroy(&ts->Frhs);
2804:   VecDestroy(&ts->vec_sol);
2805:   VecDestroy(&ts->vec_dot);
2806:   VecDestroy(&ts->vatol);
2807:   VecDestroy(&ts->vrtol);
2808:   VecDestroyVecs(ts->nwork,&ts->work);

2810:   MatDestroy(&ts->Jacprhs);
2811:   MatDestroy(&ts->Jacp);
2812:   if (ts->forward_solve) {
2813:     TSForwardReset(ts);
2814:   }
2815:   if (ts->quadraturets) {
2816:     TSReset(ts->quadraturets);
2817:     VecDestroy(&ts->vec_costintegrand);
2818:   }
2819:   while (ilink) {
2820:     next = ilink->next;
2821:     TSDestroy(&ilink->ts);
2822:     PetscFree(ilink->splitname);
2823:     ISDestroy(&ilink->is);
2824:     PetscFree(ilink);
2825:     ilink = next;
2826:   }
2827:   ts->num_rhs_splits = 0;
2828:   ts->setupcalled = PETSC_FALSE;
2829:   return(0);
2830: }

2832: /*@
2833:    TSDestroy - Destroys the timestepper context that was created
2834:    with TSCreate().

2836:    Collective on TS

2838:    Input Parameter:
2839: .  ts - the TS context obtained from TSCreate()

2841:    Level: beginner

2843: .seealso: TSCreate(), TSSetUp(), TSSolve()
2844: @*/
2845: PetscErrorCode  TSDestroy(TS *ts)
2846: {

2850:   if (!*ts) return(0);
2852:   if (--((PetscObject)(*ts))->refct > 0) {*ts = NULL; return(0);}

2854:   TSReset(*ts);
2855:   TSAdjointReset(*ts);
2856:   if ((*ts)->forward_solve) {
2857:     TSForwardReset(*ts);
2858:   }
2859:   /* if memory was published with SAWs then destroy it */
2860:   PetscObjectSAWsViewOff((PetscObject)*ts);
2861:   if ((*ts)->ops->destroy) {(*(*ts)->ops->destroy)((*ts));}

2863:   TSTrajectoryDestroy(&(*ts)->trajectory);

2865:   TSAdaptDestroy(&(*ts)->adapt);
2866:   TSEventDestroy(&(*ts)->event);

2868:   SNESDestroy(&(*ts)->snes);
2869:   DMDestroy(&(*ts)->dm);
2870:   TSMonitorCancel((*ts));
2871:   TSAdjointMonitorCancel((*ts));

2873:   TSDestroy(&(*ts)->quadraturets);
2874:   PetscHeaderDestroy(ts);
2875:   return(0);
2876: }

2878: /*@
2879:    TSGetSNES - Returns the SNES (nonlinear solver) associated with
2880:    a TS (timestepper) context. Valid only for nonlinear problems.

2882:    Not Collective, but SNES is parallel if TS is parallel

2884:    Input Parameter:
2885: .  ts - the TS context obtained from TSCreate()

2887:    Output Parameter:
2888: .  snes - the nonlinear solver context

2890:    Notes:
2891:    The user can then directly manipulate the SNES context to set various
2892:    options, etc.  Likewise, the user can then extract and manipulate the
2893:    KSP, KSP, and PC contexts as well.

2895:    TSGetSNES() does not work for integrators that do not use SNES; in
2896:    this case TSGetSNES() returns NULL in snes.

2898:    Level: beginner

2900: @*/
2901: PetscErrorCode  TSGetSNES(TS ts,SNES *snes)
2902: {

2908:   if (!ts->snes) {
2909:     SNESCreate(PetscObjectComm((PetscObject)ts),&ts->snes);
2910:     PetscObjectSetOptions((PetscObject)ts->snes,((PetscObject)ts)->options);
2911:     SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2912:     PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->snes);
2913:     PetscObjectIncrementTabLevel((PetscObject)ts->snes,(PetscObject)ts,1);
2914:     if (ts->dm) {SNESSetDM(ts->snes,ts->dm);}
2915:     if (ts->problem_type == TS_LINEAR) {
2916:       SNESSetType(ts->snes,SNESKSPONLY);
2917:     }
2918:   }
2919:   *snes = ts->snes;
2920:   return(0);
2921: }

2923: /*@
2924:    TSSetSNES - Set the SNES (nonlinear solver) to be used by the timestepping context

2926:    Collective

2928:    Input Parameter:
2929: +  ts - the TS context obtained from TSCreate()
2930: -  snes - the nonlinear solver context

2932:    Notes:
2933:    Most users should have the TS created by calling TSGetSNES()

2935:    Level: developer

2937: @*/
2938: PetscErrorCode TSSetSNES(TS ts,SNES snes)
2939: {
2941:   PetscErrorCode (*func)(SNES,Vec,Mat,Mat,void*);

2946:   PetscObjectReference((PetscObject)snes);
2947:   SNESDestroy(&ts->snes);

2949:   ts->snes = snes;

2951:   SNESSetFunction(ts->snes,NULL,SNESTSFormFunction,ts);
2952:   SNESGetJacobian(ts->snes,NULL,NULL,&func,NULL);
2953:   if (func == SNESTSFormJacobian) {
2954:     SNESSetJacobian(ts->snes,NULL,NULL,SNESTSFormJacobian,ts);
2955:   }
2956:   return(0);
2957: }

2959: /*@
2960:    TSGetKSP - Returns the KSP (linear solver) associated with
2961:    a TS (timestepper) context.

2963:    Not Collective, but KSP is parallel if TS is parallel

2965:    Input Parameter:
2966: .  ts - the TS context obtained from TSCreate()

2968:    Output Parameter:
2969: .  ksp - the nonlinear solver context

2971:    Notes:
2972:    The user can then directly manipulate the KSP context to set various
2973:    options, etc.  Likewise, the user can then extract and manipulate the
2974:    KSP and PC contexts as well.

2976:    TSGetKSP() does not work for integrators that do not use KSP;
2977:    in this case TSGetKSP() returns NULL in ksp.

2979:    Level: beginner

2981: @*/
2982: PetscErrorCode  TSGetKSP(TS ts,KSP *ksp)
2983: {
2985:   SNES           snes;

2990:   if (!((PetscObject)ts)->type_name) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_NULL,"KSP is not created yet. Call TSSetType() first");
2991:   if (ts->problem_type != TS_LINEAR) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_WRONG,"Linear only; use TSGetSNES()");
2992:   TSGetSNES(ts,&snes);
2993:   SNESGetKSP(snes,ksp);
2994:   return(0);
2995: }

2997: /* ----------- Routines to set solver parameters ---------- */

2999: /*@
3000:    TSSetMaxSteps - Sets the maximum number of steps to use.

3002:    Logically Collective on TS

3004:    Input Parameters:
3005: +  ts - the TS context obtained from TSCreate()
3006: -  maxsteps - maximum number of steps to use

3008:    Options Database Keys:
3009: .  -ts_max_steps <maxsteps> - Sets maxsteps

3011:    Notes:
3012:    The default maximum number of steps is 5000

3014:    Level: intermediate

3016: .seealso: TSGetMaxSteps(), TSSetMaxTime(), TSSetExactFinalTime()
3017: @*/
3018: PetscErrorCode TSSetMaxSteps(TS ts,PetscInt maxsteps)
3019: {
3023:   if (maxsteps < 0) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Maximum number of steps must be non-negative");
3024:   ts->max_steps = maxsteps;
3025:   return(0);
3026: }

3028: /*@
3029:    TSGetMaxSteps - Gets the maximum number of steps to use.

3031:    Not Collective

3033:    Input Parameters:
3034: .  ts - the TS context obtained from TSCreate()

3036:    Output Parameter:
3037: .  maxsteps - maximum number of steps to use

3039:    Level: advanced

3041: .seealso: TSSetMaxSteps(), TSGetMaxTime(), TSSetMaxTime()
3042: @*/
3043: PetscErrorCode TSGetMaxSteps(TS ts,PetscInt *maxsteps)
3044: {
3048:   *maxsteps = ts->max_steps;
3049:   return(0);
3050: }

3052: /*@
3053:    TSSetMaxTime - Sets the maximum (or final) time for timestepping.

3055:    Logically Collective on TS

3057:    Input Parameters:
3058: +  ts - the TS context obtained from TSCreate()
3059: -  maxtime - final time to step to

3061:    Options Database Keys:
3062: .  -ts_max_time <maxtime> - Sets maxtime

3064:    Notes:
3065:    The default maximum time is 5.0

3067:    Level: intermediate

3069: .seealso: TSGetMaxTime(), TSSetMaxSteps(), TSSetExactFinalTime()
3070: @*/
3071: PetscErrorCode TSSetMaxTime(TS ts,PetscReal maxtime)
3072: {
3076:   ts->max_time = maxtime;
3077:   return(0);
3078: }

3080: /*@
3081:    TSGetMaxTime - Gets the maximum (or final) time for timestepping.

3083:    Not Collective

3085:    Input Parameters:
3086: .  ts - the TS context obtained from TSCreate()

3088:    Output Parameter:
3089: .  maxtime - final time to step to

3091:    Level: advanced

3093: .seealso: TSSetMaxTime(), TSGetMaxSteps(), TSSetMaxSteps()
3094: @*/
3095: PetscErrorCode TSGetMaxTime(TS ts,PetscReal *maxtime)
3096: {
3100:   *maxtime = ts->max_time;
3101:   return(0);
3102: }

3104: /*@
3105:    TSSetInitialTimeStep - Deprecated, use TSSetTime() and TSSetTimeStep().

3107:    Level: deprecated

3109: @*/
3110: PetscErrorCode  TSSetInitialTimeStep(TS ts,PetscReal initial_time,PetscReal time_step)
3111: {
3115:   TSSetTime(ts,initial_time);
3116:   TSSetTimeStep(ts,time_step);
3117:   return(0);
3118: }

3120: /*@
3121:    TSGetDuration - Deprecated, use TSGetMaxSteps() and TSGetMaxTime().

3123:    Level: deprecated

3125: @*/
3126: PetscErrorCode TSGetDuration(TS ts, PetscInt *maxsteps, PetscReal *maxtime)
3127: {
3130:   if (maxsteps) {
3132:     *maxsteps = ts->max_steps;
3133:   }
3134:   if (maxtime) {
3136:     *maxtime = ts->max_time;
3137:   }
3138:   return(0);
3139: }

3141: /*@
3142:    TSSetDuration - Deprecated, use TSSetMaxSteps() and TSSetMaxTime().

3144:    Level: deprecated

3146: @*/
3147: PetscErrorCode TSSetDuration(TS ts,PetscInt maxsteps,PetscReal maxtime)
3148: {
3153:   if (maxsteps >= 0) ts->max_steps = maxsteps;
3154:   if (maxtime != PETSC_DEFAULT) ts->max_time = maxtime;
3155:   return(0);
3156: }

3158: /*@
3159:    TSGetTimeStepNumber - Deprecated, use TSGetStepNumber().

3161:    Level: deprecated

3163: @*/
3164: PetscErrorCode TSGetTimeStepNumber(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }

3166: /*@
3167:    TSGetTotalSteps - Deprecated, use TSGetStepNumber().

3169:    Level: deprecated

3171: @*/
3172: PetscErrorCode TSGetTotalSteps(TS ts,PetscInt *steps) { return TSGetStepNumber(ts,steps); }

3174: /*@
3175:    TSSetSolution - Sets the initial solution vector
3176:    for use by the TS routines.

3178:    Logically Collective on TS

3180:    Input Parameters:
3181: +  ts - the TS context obtained from TSCreate()
3182: -  u - the solution vector

3184:    Level: beginner

3186: .seealso: TSSetSolutionFunction(), TSGetSolution(), TSCreate()
3187: @*/
3188: PetscErrorCode  TSSetSolution(TS ts,Vec u)
3189: {
3191:   DM             dm;

3196:   PetscObjectReference((PetscObject)u);
3197:   VecDestroy(&ts->vec_sol);
3198:   ts->vec_sol = u;

3200:   TSGetDM(ts,&dm);
3201:   DMShellSetGlobalVector(dm,u);
3202:   return(0);
3203: }

3205: /*@C
3206:   TSSetPreStep - Sets the general-purpose function
3207:   called once at the beginning of each time step.

3209:   Logically Collective on TS

3211:   Input Parameters:
3212: + ts   - The TS context obtained from TSCreate()
3213: - func - The function

3215:   Calling sequence of func:
3216: .   PetscErrorCode func (TS ts);

3218:   Level: intermediate

3220: .seealso: TSSetPreStage(), TSSetPostStage(), TSSetPostStep(), TSStep(), TSRestartStep()
3221: @*/
3222: PetscErrorCode  TSSetPreStep(TS ts, PetscErrorCode (*func)(TS))
3223: {
3226:   ts->prestep = func;
3227:   return(0);
3228: }

3230: /*@
3231:   TSPreStep - Runs the user-defined pre-step function.

3233:   Collective on TS

3235:   Input Parameters:
3236: . ts   - The TS context obtained from TSCreate()

3238:   Notes:
3239:   TSPreStep() is typically used within time stepping implementations,
3240:   so most users would not generally call this routine themselves.

3242:   Level: developer

3244: .seealso: TSSetPreStep(), TSPreStage(), TSPostStage(), TSPostStep()
3245: @*/
3246: PetscErrorCode  TSPreStep(TS ts)
3247: {

3252:   if (ts->prestep) {
3253:     Vec              U;
3254:     PetscObjectState sprev,spost;

3256:     TSGetSolution(ts,&U);
3257:     PetscObjectStateGet((PetscObject)U,&sprev);
3258:     PetscStackCallStandard((*ts->prestep),(ts));
3259:     PetscObjectStateGet((PetscObject)U,&spost);
3260:     if (sprev != spost) {TSRestartStep(ts);}
3261:   }
3262:   return(0);
3263: }

3265: /*@C
3266:   TSSetPreStage - Sets the general-purpose function
3267:   called once at the beginning of each stage.

3269:   Logically Collective on TS

3271:   Input Parameters:
3272: + ts   - The TS context obtained from TSCreate()
3273: - func - The function

3275:   Calling sequence of func:
3276: .    PetscErrorCode func(TS ts, PetscReal stagetime);

3278:   Level: intermediate

3280:   Note:
3281:   There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3282:   The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3283:   attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().

3285: .seealso: TSSetPostStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3286: @*/
3287: PetscErrorCode  TSSetPreStage(TS ts, PetscErrorCode (*func)(TS,PetscReal))
3288: {
3291:   ts->prestage = func;
3292:   return(0);
3293: }

3295: /*@C
3296:   TSSetPostStage - Sets the general-purpose function
3297:   called once at the end of each stage.

3299:   Logically Collective on TS

3301:   Input Parameters:
3302: + ts   - The TS context obtained from TSCreate()
3303: - func - The function

3305:   Calling sequence of func:
3306: . PetscErrorCode func(TS ts, PetscReal stagetime, PetscInt stageindex, Vec* Y);

3308:   Level: intermediate

3310:   Note:
3311:   There may be several stages per time step. If the solve for a given stage fails, the step may be rejected and retried.
3312:   The time step number being computed can be queried using TSGetStepNumber() and the total size of the step being
3313:   attempted can be obtained using TSGetTimeStep(). The time at the start of the step is available via TSGetTime().

3315: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3316: @*/
3317: PetscErrorCode  TSSetPostStage(TS ts, PetscErrorCode (*func)(TS,PetscReal,PetscInt,Vec*))
3318: {
3321:   ts->poststage = func;
3322:   return(0);
3323: }

3325: /*@C
3326:   TSSetPostEvaluate - Sets the general-purpose function
3327:   called once at the end of each step evaluation.

3329:   Logically Collective on TS

3331:   Input Parameters:
3332: + ts   - The TS context obtained from TSCreate()
3333: - func - The function

3335:   Calling sequence of func:
3336: . PetscErrorCode func(TS ts);

3338:   Level: intermediate

3340:   Note:
3341:   Semantically, TSSetPostEvaluate() differs from TSSetPostStep() since the function it sets is called before event-handling
3342:   thus guaranteeing the same solution (computed by the time-stepper) will be passed to it. On the other hand, TSPostStep()
3343:   may be passed a different solution, possibly changed by the event handler. TSPostEvaluate() is called after the next step
3344:   solution is evaluated allowing to modify it, if need be. The solution can be obtained with TSGetSolution(), the time step
3345:   with TSGetTimeStep(), and the time at the start of the step is available via TSGetTime()

3347: .seealso: TSSetPreStage(), TSSetPreStep(), TSSetPostStep(), TSGetApplicationContext()
3348: @*/
3349: PetscErrorCode  TSSetPostEvaluate(TS ts, PetscErrorCode (*func)(TS))
3350: {
3353:   ts->postevaluate = func;
3354:   return(0);
3355: }

3357: /*@
3358:   TSPreStage - Runs the user-defined pre-stage function set using TSSetPreStage()

3360:   Collective on TS

3362:   Input Parameters:
3363: . ts          - The TS context obtained from TSCreate()
3364:   stagetime   - The absolute time of the current stage

3366:   Notes:
3367:   TSPreStage() is typically used within time stepping implementations,
3368:   most users would not generally call this routine themselves.

3370:   Level: developer

3372: .seealso: TSPostStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3373: @*/
3374: PetscErrorCode  TSPreStage(TS ts, PetscReal stagetime)
3375: {
3378:   if (ts->prestage) {
3379:     PetscStackCallStandard((*ts->prestage),(ts,stagetime));
3380:   }
3381:   return(0);
3382: }

3384: /*@
3385:   TSPostStage - Runs the user-defined post-stage function set using TSSetPostStage()

3387:   Collective on TS

3389:   Input Parameters:
3390: . ts          - The TS context obtained from TSCreate()
3391:   stagetime   - The absolute time of the current stage
3392:   stageindex  - Stage number
3393:   Y           - Array of vectors (of size = total number
3394:                 of stages) with the stage solutions

3396:   Notes:
3397:   TSPostStage() is typically used within time stepping implementations,
3398:   most users would not generally call this routine themselves.

3400:   Level: developer

3402: .seealso: TSPreStage(), TSSetPreStep(), TSPreStep(), TSPostStep()
3403: @*/
3404: PetscErrorCode  TSPostStage(TS ts, PetscReal stagetime, PetscInt stageindex, Vec *Y)
3405: {
3408:   if (ts->poststage) {
3409:     PetscStackCallStandard((*ts->poststage),(ts,stagetime,stageindex,Y));
3410:   }
3411:   return(0);
3412: }

3414: /*@
3415:   TSPostEvaluate - Runs the user-defined post-evaluate function set using TSSetPostEvaluate()

3417:   Collective on TS

3419:   Input Parameters:
3420: . ts          - The TS context obtained from TSCreate()

3422:   Notes:
3423:   TSPostEvaluate() is typically used within time stepping implementations,
3424:   most users would not generally call this routine themselves.

3426:   Level: developer

3428: .seealso: TSSetPostEvaluate(), TSSetPreStep(), TSPreStep(), TSPostStep()
3429: @*/
3430: PetscErrorCode  TSPostEvaluate(TS ts)
3431: {

3436:   if (ts->postevaluate) {
3437:     Vec              U;
3438:     PetscObjectState sprev,spost;

3440:     TSGetSolution(ts,&U);
3441:     PetscObjectStateGet((PetscObject)U,&sprev);
3442:     PetscStackCallStandard((*ts->postevaluate),(ts));
3443:     PetscObjectStateGet((PetscObject)U,&spost);
3444:     if (sprev != spost) {TSRestartStep(ts);}
3445:   }
3446:   return(0);
3447: }

3449: /*@C
3450:   TSSetPostStep - Sets the general-purpose function
3451:   called once at the end of each time step.

3453:   Logically Collective on TS

3455:   Input Parameters:
3456: + ts   - The TS context obtained from TSCreate()
3457: - func - The function

3459:   Calling sequence of func:
3460: $ func (TS ts);

3462:   Notes:
3463:   The function set by TSSetPostStep() is called after each successful step. The solution vector X
3464:   obtained by TSGetSolution() may be different than that computed at the step end if the event handler
3465:   locates an event and TSPostEvent() modifies it. Use TSSetPostEvaluate() if an unmodified solution is needed instead.

3467:   Level: intermediate

3469: .seealso: TSSetPreStep(), TSSetPreStage(), TSSetPostEvaluate(), TSGetTimeStep(), TSGetStepNumber(), TSGetTime(), TSRestartStep()
3470: @*/
3471: PetscErrorCode  TSSetPostStep(TS ts, PetscErrorCode (*func)(TS))
3472: {
3475:   ts->poststep = func;
3476:   return(0);
3477: }

3479: /*@
3480:   TSPostStep - Runs the user-defined post-step function.

3482:   Collective on TS

3484:   Input Parameters:
3485: . ts   - The TS context obtained from TSCreate()

3487:   Notes:
3488:   TSPostStep() is typically used within time stepping implementations,
3489:   so most users would not generally call this routine themselves.

3491:   Level: developer

3493: @*/
3494: PetscErrorCode  TSPostStep(TS ts)
3495: {

3500:   if (ts->poststep) {
3501:     Vec              U;
3502:     PetscObjectState sprev,spost;

3504:     TSGetSolution(ts,&U);
3505:     PetscObjectStateGet((PetscObject)U,&sprev);
3506:     PetscStackCallStandard((*ts->poststep),(ts));
3507:     PetscObjectStateGet((PetscObject)U,&spost);
3508:     if (sprev != spost) {TSRestartStep(ts);}
3509:   }
3510:   return(0);
3511: }

3513: /* ------------ Routines to set performance monitoring options ----------- */

3515: /*@C
3516:    TSMonitorSet - Sets an ADDITIONAL function that is to be used at every
3517:    timestep to display the iteration's  progress.

3519:    Logically Collective on TS

3521:    Input Parameters:
3522: +  ts - the TS context obtained from TSCreate()
3523: .  monitor - monitoring routine
3524: .  mctx - [optional] user-defined context for private data for the
3525:              monitor routine (use NULL if no context is desired)
3526: -  monitordestroy - [optional] routine that frees monitor context
3527:           (may be NULL)

3529:    Calling sequence of monitor:
3530: $    PetscErrorCode monitor(TS ts,PetscInt steps,PetscReal time,Vec u,void *mctx)

3532: +    ts - the TS context
3533: .    steps - iteration number (after the final time step the monitor routine may be called with a step of -1, this indicates the solution has been interpolated to this time)
3534: .    time - current time
3535: .    u - current iterate
3536: -    mctx - [optional] monitoring context

3538:    Notes:
3539:    This routine adds an additional monitor to the list of monitors that
3540:    already has been loaded.

3542:    Fortran Notes:
3543:     Only a single monitor function can be set for each TS object

3545:    Level: intermediate

3547: .seealso: TSMonitorDefault(), TSMonitorCancel()
3548: @*/
3549: PetscErrorCode  TSMonitorSet(TS ts,PetscErrorCode (*monitor)(TS,PetscInt,PetscReal,Vec,void*),void *mctx,PetscErrorCode (*mdestroy)(void**))
3550: {
3552:   PetscInt       i;
3553:   PetscBool      identical;

3557:   for (i=0; i<ts->numbermonitors;i++) {
3558:     PetscMonitorCompare((PetscErrorCode (*)(void))monitor,mctx,mdestroy,(PetscErrorCode (*)(void))ts->monitor[i],ts->monitorcontext[i],ts->monitordestroy[i],&identical);
3559:     if (identical) return(0);
3560:   }
3561:   if (ts->numbermonitors >= MAXTSMONITORS) SETERRQ(PETSC_COMM_SELF,PETSC_ERR_ARG_OUTOFRANGE,"Too many monitors set");
3562:   ts->monitor[ts->numbermonitors]          = monitor;
3563:   ts->monitordestroy[ts->numbermonitors]   = mdestroy;
3564:   ts->monitorcontext[ts->numbermonitors++] = (void*)mctx;
3565:   return(0);
3566: }

3568: /*@C
3569:    TSMonitorCancel - Clears all the monitors that have been set on a time-step object.

3571:    Logically Collective on TS

3573:    Input Parameters:
3574: .  ts - the TS context obtained from TSCreate()

3576:    Notes:
3577:    There is no way to remove a single, specific monitor.

3579:    Level: intermediate

3581: .seealso: TSMonitorDefault(), TSMonitorSet()
3582: @*/
3583: PetscErrorCode  TSMonitorCancel(TS ts)
3584: {
3586:   PetscInt       i;

3590:   for (i=0; i<ts->numbermonitors; i++) {
3591:     if (ts->monitordestroy[i]) {
3592:       (*ts->monitordestroy[i])(&ts->monitorcontext[i]);
3593:     }
3594:   }
3595:   ts->numbermonitors = 0;
3596:   return(0);
3597: }

3599: /*@C
3600:    TSMonitorDefault - The Default monitor, prints the timestep and time for each step

3602:    Level: intermediate

3604: .seealso:  TSMonitorSet()
3605: @*/
3606: PetscErrorCode TSMonitorDefault(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscViewerAndFormat *vf)
3607: {
3609:   PetscViewer    viewer =  vf->viewer;
3610:   PetscBool      iascii,ibinary;

3614:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
3615:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERBINARY,&ibinary);
3616:   PetscViewerPushFormat(viewer,vf->format);
3617:   if (iascii) {
3618:     PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
3619:     if (step == -1){ /* this indicates it is an interpolated solution */
3620:       PetscViewerASCIIPrintf(viewer,"Interpolated solution at time %g between steps %D and %D\n",(double)ptime,ts->steps-1,ts->steps);
3621:     } else {
3622:       PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)\n" : "\n");
3623:     }
3624:     PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
3625:   } else if (ibinary) {
3626:     PetscMPIInt rank;
3627:     MPI_Comm_rank(PetscObjectComm((PetscObject)viewer),&rank);
3628:     if (!rank) {
3629:       PetscBool skipHeader;
3630:       PetscInt  classid = REAL_FILE_CLASSID;

3632:       PetscViewerBinaryGetSkipHeader(viewer,&skipHeader);
3633:       if (!skipHeader) {
3634:          PetscViewerBinaryWrite(viewer,&classid,1,PETSC_INT);
3635:        }
3636:       PetscRealView(1,&ptime,viewer);
3637:     } else {
3638:       PetscRealView(0,&ptime,viewer);
3639:     }
3640:   }
3641:   PetscViewerPopFormat(viewer);
3642:   return(0);
3643: }

3645: /*@C
3646:    TSMonitorExtreme - Prints the extreme values of the solution at each timestep

3648:    Level: intermediate

3650: .seealso:  TSMonitorSet()
3651: @*/
3652: PetscErrorCode TSMonitorExtreme(TS ts,PetscInt step,PetscReal ptime,Vec v,PetscViewerAndFormat *vf)
3653: {
3655:   PetscViewer    viewer =  vf->viewer;
3656:   PetscBool      iascii;
3657:   PetscReal      max,min;


3662:   PetscObjectTypeCompare((PetscObject)viewer,PETSCVIEWERASCII,&iascii);
3663:   PetscViewerPushFormat(viewer,vf->format);
3664:   if (iascii) {
3665:     VecMax(v,NULL,&max);
3666:     VecMin(v,NULL,&min);
3667:     PetscViewerASCIIAddTab(viewer,((PetscObject)ts)->tablevel);
3668:     PetscViewerASCIIPrintf(viewer,"%D TS dt %g time %g%s max %g min %g\n",step,(double)ts->time_step,(double)ptime,ts->steprollback ? " (r)" : "",(double)max,(double)min);
3669:     PetscViewerASCIISubtractTab(viewer,((PetscObject)ts)->tablevel);
3670:   }
3671:   PetscViewerPopFormat(viewer);
3672:   return(0);
3673: }

3675: /*@
3676:    TSInterpolate - Interpolate the solution computed during the previous step to an arbitrary location in the interval

3678:    Collective on TS

3680:    Input Argument:
3681: +  ts - time stepping context
3682: -  t - time to interpolate to

3684:    Output Argument:
3685: .  U - state at given time

3687:    Level: intermediate

3689:    Developer Notes:
3690:    TSInterpolate() and the storing of previous steps/stages should be generalized to support delay differential equations and continuous adjoints.

3692: .seealso: TSSetExactFinalTime(), TSSolve()
3693: @*/
3694: PetscErrorCode TSInterpolate(TS ts,PetscReal t,Vec U)
3695: {

3701:   if (t < ts->ptime_prev || t > ts->ptime) SETERRQ3(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_OUTOFRANGE,"Requested time %g not in last time steps [%g,%g]",t,(double)ts->ptime_prev,(double)ts->ptime);
3702:   if (!ts->ops->interpolate) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"%s does not provide interpolation",((PetscObject)ts)->type_name);
3703:   (*ts->ops->interpolate)(ts,t,U);
3704:   return(0);
3705: }

3707: /*@
3708:    TSStep - Steps one time step

3710:    Collective on TS

3712:    Input Parameter:
3713: .  ts - the TS context obtained from TSCreate()

3715:    Level: developer

3717:    Notes:
3718:    The public interface for the ODE/DAE solvers is TSSolve(), you should almost for sure be using that routine and not this routine.

3720:    The hook set using TSSetPreStep() is called before each attempt to take the step. In general, the time step size may
3721:    be changed due to adaptive error controller or solve failures. Note that steps may contain multiple stages.

3723:    This may over-step the final time provided in TSSetMaxTime() depending on the time-step used. TSSolve() interpolates to exactly the
3724:    time provided in TSSetMaxTime(). One can use TSInterpolate() to determine an interpolated solution within the final timestep.

3726: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSSetPostStage(), TSInterpolate()
3727: @*/
3728: PetscErrorCode  TSStep(TS ts)
3729: {
3730:   PetscErrorCode   ierr;
3731:   static PetscBool cite = PETSC_FALSE;
3732:   PetscReal        ptime;

3736:   PetscCitationsRegister("@article{tspaper,\n"
3737:                                 "  title         = {{PETSc/TS}: A Modern Scalable {DAE/ODE} Solver Library},\n"
3738:                                 "  author        = {Abhyankar, Shrirang and Brown, Jed and Constantinescu, Emil and Ghosh, Debojyoti and Smith, Barry F. and Zhang, Hong},\n"
3739:                                 "  journal       = {arXiv e-preprints},\n"
3740:                                 "  eprint        = {1806.01437},\n"
3741:                                 "  archivePrefix = {arXiv},\n"
3742:                                 "  year          = {2018}\n}\n",&cite);

3744:   TSSetUp(ts);
3745:   TSTrajectorySetUp(ts->trajectory,ts);

3747:   if (!ts->ops->step) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3748:   if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
3749:   if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSStep()");
3750:   if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");

3752:   if (!ts->steps) ts->ptime_prev = ts->ptime;
3753:   ptime = ts->ptime; ts->ptime_prev_rollback = ts->ptime_prev;
3754:   ts->reason = TS_CONVERGED_ITERATING;

3756:   PetscLogEventBegin(TS_Step,ts,0,0,0);
3757:   (*ts->ops->step)(ts);
3758:   PetscLogEventEnd(TS_Step,ts,0,0,0);

3760:   if (ts->reason >= 0) {
3761:     ts->ptime_prev = ptime;
3762:     ts->steps++;
3763:     ts->steprollback = PETSC_FALSE;
3764:     ts->steprestart  = PETSC_FALSE;
3765:   }

3767:   if (!ts->reason) {
3768:     if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
3769:     else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;
3770:   }

3772:   if (ts->reason < 0 && ts->errorifstepfailed && ts->reason == TS_DIVERGED_NONLINEAR_SOLVE) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s, increase -ts_max_snes_failures or make negative to attempt recovery",TSConvergedReasons[ts->reason]);
3773:   if (ts->reason < 0 && ts->errorifstepfailed) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_NOT_CONVERGED,"TSStep has failed due to %s",TSConvergedReasons[ts->reason]);
3774:   return(0);
3775: }

3777: /*@
3778:    TSEvaluateWLTE - Evaluate the weighted local truncation error norm
3779:    at the end of a time step with a given order of accuracy.

3781:    Collective on TS

3783:    Input Arguments:
3784: +  ts - time stepping context
3785: .  wnormtype - norm type, either NORM_2 or NORM_INFINITY
3786: -  order - optional, desired order for the error evaluation or PETSC_DECIDE

3788:    Output Arguments:
3789: +  order - optional, the actual order of the error evaluation
3790: -  wlte - the weighted local truncation error norm

3792:    Level: advanced

3794:    Notes:
3795:    If the timestepper cannot evaluate the error in a particular step
3796:    (eg. in the first step or restart steps after event handling),
3797:    this routine returns wlte=-1.0 .

3799: .seealso: TSStep(), TSAdapt, TSErrorWeightedNorm()
3800: @*/
3801: PetscErrorCode TSEvaluateWLTE(TS ts,NormType wnormtype,PetscInt *order,PetscReal *wlte)
3802: {

3812:   if (wnormtype != NORM_2 && wnormtype != NORM_INFINITY) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
3813:   if (!ts->ops->evaluatewlte) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateWLTE not implemented for type '%s'",((PetscObject)ts)->type_name);
3814:   (*ts->ops->evaluatewlte)(ts,wnormtype,order,wlte);
3815:   return(0);
3816: }

3818: /*@
3819:    TSEvaluateStep - Evaluate the solution at the end of a time step with a given order of accuracy.

3821:    Collective on TS

3823:    Input Arguments:
3824: +  ts - time stepping context
3825: .  order - desired order of accuracy
3826: -  done - whether the step was evaluated at this order (pass NULL to generate an error if not available)

3828:    Output Arguments:
3829: .  U - state at the end of the current step

3831:    Level: advanced

3833:    Notes:
3834:    This function cannot be called until all stages have been evaluated.
3835:    It is normally called by adaptive controllers before a step has been accepted and may also be called by the user after TSStep() has returned.

3837: .seealso: TSStep(), TSAdapt
3838: @*/
3839: PetscErrorCode TSEvaluateStep(TS ts,PetscInt order,Vec U,PetscBool *done)
3840: {

3847:   if (!ts->ops->evaluatestep) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSEvaluateStep not implemented for type '%s'",((PetscObject)ts)->type_name);
3848:   (*ts->ops->evaluatestep)(ts,order,U,done);
3849:   return(0);
3850: }

3852: /*@C
3853:   TSGetComputeInitialCondition - Get the function used to automatically compute an initial condition for the timestepping.

3855:   Not collective

3857:   Input Argument:
3858: . ts        - time stepping context

3860:   Output Argument:
3861: . initConditions - The function which computes an initial condition

3863:    Level: advanced

3865:    Notes:
3866:    The calling sequence for the function is
3867: $ initCondition(TS ts, Vec u)
3868: $ ts - The timestepping context
3869: $ u  - The input vector in which the initial condition is stored

3871: .seealso: TSSetComputeInitialCondition(), TSComputeInitialCondition()
3872: @*/
3873: PetscErrorCode TSGetComputeInitialCondition(TS ts, PetscErrorCode (**initCondition)(TS, Vec))
3874: {
3878:   *initCondition = ts->ops->initcondition;
3879:   return(0);
3880: }

3882: /*@C
3883:   TSSetComputeInitialCondition - Set the function used to automatically compute an initial condition for the timestepping.

3885:   Logically collective on ts

3887:   Input Arguments:
3888: + ts        - time stepping context
3889: - initCondition - The function which computes an initial condition

3891:   Level: advanced

3893:   Calling sequence for initCondition:
3894: $ PetscErrorCode initCondition(TS ts, Vec u)

3896: + ts - The timestepping context
3897: - u  - The input vector in which the initial condition is to be stored

3899: .seealso: TSGetComputeInitialCondition(), TSComputeInitialCondition()
3900: @*/
3901: PetscErrorCode TSSetComputeInitialCondition(TS ts, PetscErrorCode (*initCondition)(TS, Vec))
3902: {
3906:   ts->ops->initcondition = initCondition;
3907:   return(0);
3908: }

3910: /*@
3911:   TSComputeInitialCondition - Compute an initial condition for the timestepping using the function previously set.

3913:   Collective on ts

3915:   Input Arguments:
3916: + ts - time stepping context
3917: - u  - The Vec to store the condition in which will be used in TSSolve()

3919:   Level: advanced

3921: .seealso: TSGetComputeInitialCondition(), TSSetComputeInitialCondition(), TSSolve()
3922: @*/
3923: PetscErrorCode TSComputeInitialCondition(TS ts, Vec u)
3924: {

3930:   if (ts->ops->initcondition) {(*ts->ops->initcondition)(ts, u);}
3931:   return(0);
3932: }

3934: /*@C
3935:   TSGetComputeExactError - Get the function used to automatically compute the exact error for the timestepping.

3937:   Not collective

3939:   Input Argument:
3940: . ts         - time stepping context

3942:   Output Argument:
3943: . exactError - The function which computes the solution error

3945:   Level: advanced

3947:   Calling sequence for exactError:
3948: $ PetscErrorCode exactError(TS ts, Vec u)

3950: + ts - The timestepping context
3951: . u  - The approximate solution vector
3952: - e  - The input vector in which the error is stored

3954: .seealso: TSGetComputeExactError(), TSComputeExactError()
3955: @*/
3956: PetscErrorCode TSGetComputeExactError(TS ts, PetscErrorCode (**exactError)(TS, Vec, Vec))
3957: {
3961:   *exactError = ts->ops->exacterror;
3962:   return(0);
3963: }

3965: /*@C
3966:   TSSetComputeExactError - Set the function used to automatically compute the exact error for the timestepping.

3968:   Logically collective on ts

3970:   Input Arguments:
3971: + ts         - time stepping context
3972: - exactError - The function which computes the solution error

3974:   Level: advanced

3976:   Calling sequence for exactError:
3977: $ PetscErrorCode exactError(TS ts, Vec u)

3979: + ts - The timestepping context
3980: . u  - The approximate solution vector
3981: - e  - The input vector in which the error is stored

3983: .seealso: TSGetComputeExactError(), TSComputeExactError()
3984: @*/
3985: PetscErrorCode TSSetComputeExactError(TS ts, PetscErrorCode (*exactError)(TS, Vec, Vec))
3986: {
3990:   ts->ops->exacterror = exactError;
3991:   return(0);
3992: }

3994: /*@
3995:   TSComputeExactError - Compute the solution error for the timestepping using the function previously set.

3997:   Collective on ts

3999:   Input Arguments:
4000: + ts - time stepping context
4001: . u  - The approximate solution
4002: - e  - The Vec used to store the error

4004:   Level: advanced

4006: .seealso: TSGetComputeInitialCondition(), TSSetComputeInitialCondition(), TSSolve()
4007: @*/
4008: PetscErrorCode TSComputeExactError(TS ts, Vec u, Vec e)
4009: {

4016:   if (ts->ops->exacterror) {(*ts->ops->exacterror)(ts, u, e);}
4017:   return(0);
4018: }

4020: /*@
4021:    TSSolve - Steps the requested number of timesteps.

4023:    Collective on TS

4025:    Input Parameter:
4026: +  ts - the TS context obtained from TSCreate()
4027: -  u - the solution vector  (can be null if TSSetSolution() was used and TSSetExactFinalTime(ts,TS_EXACTFINALTIME_MATCHSTEP) was not used,
4028:                              otherwise must contain the initial conditions and will contain the solution at the final requested time

4030:    Level: beginner

4032:    Notes:
4033:    The final time returned by this function may be different from the time of the internally
4034:    held state accessible by TSGetSolution() and TSGetTime() because the method may have
4035:    stepped over the final time.

4037: .seealso: TSCreate(), TSSetSolution(), TSStep(), TSGetTime(), TSGetSolveTime()
4038: @*/
4039: PetscErrorCode TSSolve(TS ts,Vec u)
4040: {
4041:   Vec               solution;
4042:   PetscErrorCode    ierr;


4048:   TSSetExactFinalTimeDefault(ts);
4049:   if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && u) {   /* Need ts->vec_sol to be distinct so it is not overwritten when we interpolate at the end */
4050:     if (!ts->vec_sol || u == ts->vec_sol) {
4051:       VecDuplicate(u,&solution);
4052:       TSSetSolution(ts,solution);
4053:       VecDestroy(&solution); /* grant ownership */
4054:     }
4055:     VecCopy(u,ts->vec_sol);
4056:     if (ts->forward_solve) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Sensitivity analysis does not support the mode TS_EXACTFINALTIME_INTERPOLATE");
4057:   } else if (u) {
4058:     TSSetSolution(ts,u);
4059:   }
4060:   TSSetUp(ts);
4061:   TSTrajectorySetUp(ts->trajectory,ts);

4063:   if (ts->max_time >= PETSC_MAX_REAL && ts->max_steps == PETSC_MAX_INT) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetMaxTime() or TSSetMaxSteps(), or use -ts_max_time <time> or -ts_max_steps <steps>");
4064:   if (ts->exact_final_time == TS_EXACTFINALTIME_UNSPECIFIED) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"You must call TSSetExactFinalTime() or use -ts_exact_final_time <stepover,interpolate,matchstep> before calling TSSolve()");
4065:   if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP && !ts->adapt) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Since TS is not adaptive you cannot use TS_EXACTFINALTIME_MATCHSTEP, suggest TS_EXACTFINALTIME_INTERPOLATE");

4067:   if (ts->forward_solve) {
4068:     TSForwardSetUp(ts);
4069:   }

4071:   /* reset number of steps only when the step is not restarted. ARKIMEX
4072:      restarts the step after an event. Resetting these counters in such case causes
4073:      TSTrajectory to incorrectly save the output files
4074:   */
4075:   /* reset time step and iteration counters */
4076:   if (!ts->steps) {
4077:     ts->ksp_its           = 0;
4078:     ts->snes_its          = 0;
4079:     ts->num_snes_failures = 0;
4080:     ts->reject            = 0;
4081:     ts->steprestart       = PETSC_TRUE;
4082:     ts->steprollback      = PETSC_FALSE;
4083:     ts->rhsjacobian.time  = PETSC_MIN_REAL;
4084:   }

4086:   /* make sure initial time step does not overshoot final time */
4087:   if (ts->exact_final_time == TS_EXACTFINALTIME_MATCHSTEP) {
4088:     PetscReal maxdt = ts->max_time-ts->ptime;
4089:     PetscReal dt = ts->time_step;

4091:     ts->time_step = dt >= maxdt ? maxdt : (PetscIsCloseAtTol(dt,maxdt,10*PETSC_MACHINE_EPSILON,0) ? maxdt : dt);
4092:   }
4093:   ts->reason = TS_CONVERGED_ITERATING;

4095:   {
4096:     PetscViewer       viewer;
4097:     PetscViewerFormat format;
4098:     PetscBool         flg;
4099:     static PetscBool  incall = PETSC_FALSE;

4101:     if (!incall) {
4102:       /* Estimate the convergence rate of the time discretization */
4103:       PetscOptionsGetViewer(PetscObjectComm((PetscObject) ts),((PetscObject)ts)->options, ((PetscObject) ts)->prefix, "-ts_convergence_estimate", &viewer, &format, &flg);
4104:       if (flg) {
4105:         PetscConvEst conv;
4106:         DM           dm;
4107:         PetscReal   *alpha; /* Convergence rate of the solution error for each field in the L_2 norm */
4108:         PetscInt     Nf;
4109:         PetscBool    checkTemporal = PETSC_TRUE;

4111:         incall = PETSC_TRUE;
4112:         PetscOptionsGetBool(((PetscObject)ts)->options, ((PetscObject) ts)->prefix, "-ts_convergence_temporal", &checkTemporal, &flg);
4113:         TSGetDM(ts, &dm);
4114:         DMGetNumFields(dm, &Nf);
4115:         PetscCalloc1(PetscMax(Nf, 1), &alpha);
4116:         PetscConvEstCreate(PetscObjectComm((PetscObject) ts), &conv);
4117:         PetscConvEstUseTS(conv, checkTemporal);
4118:         PetscConvEstSetSolver(conv, (PetscObject) ts);
4119:         PetscConvEstSetFromOptions(conv);
4120:         PetscConvEstSetUp(conv);
4121:         PetscConvEstGetConvRate(conv, alpha);
4122:         PetscViewerPushFormat(viewer, format);
4123:         PetscConvEstRateView(conv, alpha, viewer);
4124:         PetscViewerPopFormat(viewer);
4125:         PetscViewerDestroy(&viewer);
4126:         PetscConvEstDestroy(&conv);
4127:         PetscFree(alpha);
4128:         incall = PETSC_FALSE;
4129:       }
4130:     }
4131:   }

4133:   TSViewFromOptions(ts,NULL,"-ts_view_pre");

4135:   if (ts->ops->solve) { /* This private interface is transitional and should be removed when all implementations are updated. */
4136:     (*ts->ops->solve)(ts);
4137:     if (u) {VecCopy(ts->vec_sol,u);}
4138:     ts->solvetime = ts->ptime;
4139:     solution = ts->vec_sol;
4140:   } else { /* Step the requested number of timesteps. */
4141:     if (ts->steps >= ts->max_steps) ts->reason = TS_CONVERGED_ITS;
4142:     else if (ts->ptime >= ts->max_time) ts->reason = TS_CONVERGED_TIME;

4144:     if (!ts->steps) {
4145:       TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
4146:       TSEventInitialize(ts->event,ts,ts->ptime,ts->vec_sol);
4147:     }

4149:     while (!ts->reason) {
4150:       TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);
4151:       if (!ts->steprollback) {
4152:         TSPreStep(ts);
4153:       }
4154:       TSStep(ts);
4155:       if (ts->testjacobian) {
4156:         TSRHSJacobianTest(ts,NULL);
4157:       }
4158:       if (ts->testjacobiantranspose) {
4159:         TSRHSJacobianTestTranspose(ts,NULL);
4160:       }
4161:       if (ts->quadraturets && ts->costintegralfwd) { /* Must evaluate the cost integral before event is handled. The cost integral value can also be rolled back. */
4162:         if (ts->reason >= 0) ts->steps--; /* Revert the step number changed by TSStep() */
4163:         TSForwardCostIntegral(ts);
4164:         if (ts->reason >= 0) ts->steps++;
4165:       }
4166:       if (ts->forward_solve) { /* compute forward sensitivities before event handling because postevent() may change RHS and jump conditions may have to be applied */
4167:         if (ts->reason >= 0) ts->steps--; /* Revert the step number changed by TSStep() */
4168:         TSForwardStep(ts);
4169:         if (ts->reason >= 0) ts->steps++;
4170:       }
4171:       TSPostEvaluate(ts);
4172:       TSEventHandler(ts); /* The right-hand side may be changed due to event. Be careful with Any computation using the RHS information after this point. */
4173:       if (ts->steprollback) {
4174:         TSPostEvaluate(ts);
4175:       }
4176:       if (!ts->steprollback) {
4177:         TSTrajectorySet(ts->trajectory,ts,ts->steps,ts->ptime,ts->vec_sol);
4178:         TSPostStep(ts);
4179:       }
4180:     }
4181:     TSMonitor(ts,ts->steps,ts->ptime,ts->vec_sol);

4183:     if (ts->exact_final_time == TS_EXACTFINALTIME_INTERPOLATE && ts->ptime > ts->max_time) {
4184:       TSInterpolate(ts,ts->max_time,u);
4185:       ts->solvetime = ts->max_time;
4186:       solution = u;
4187:       TSMonitor(ts,-1,ts->solvetime,solution);
4188:     } else {
4189:       if (u) {VecCopy(ts->vec_sol,u);}
4190:       ts->solvetime = ts->ptime;
4191:       solution = ts->vec_sol;
4192:     }
4193:   }

4195:   TSViewFromOptions(ts,NULL,"-ts_view");
4196:   VecViewFromOptions(solution,NULL,"-ts_view_solution");
4197:   PetscObjectSAWsBlock((PetscObject)ts);
4198:   if (ts->adjoint_solve) {
4199:     TSAdjointSolve(ts);
4200:   }
4201:   return(0);
4202: }

4204: /*@C
4205:    TSMonitor - Runs all user-provided monitor routines set using TSMonitorSet()

4207:    Collective on TS

4209:    Input Parameters:
4210: +  ts - time stepping context obtained from TSCreate()
4211: .  step - step number that has just completed
4212: .  ptime - model time of the state
4213: -  u - state at the current model time

4215:    Notes:
4216:    TSMonitor() is typically used automatically within the time stepping implementations.
4217:    Users would almost never call this routine directly.

4219:    A step of -1 indicates that the monitor is being called on a solution obtained by interpolating from computed solutions

4221:    Level: developer

4223: @*/
4224: PetscErrorCode TSMonitor(TS ts,PetscInt step,PetscReal ptime,Vec u)
4225: {
4226:   DM             dm;
4227:   PetscInt       i,n = ts->numbermonitors;


4234:   TSGetDM(ts,&dm);
4235:   DMSetOutputSequenceNumber(dm,step,ptime);

4237:   VecLockReadPush(u);
4238:   for (i=0; i<n; i++) {
4239:     (*ts->monitor[i])(ts,step,ptime,u,ts->monitorcontext[i]);
4240:   }
4241:   VecLockReadPop(u);
4242:   return(0);
4243: }

4245: /* ------------------------------------------------------------------------*/
4246: /*@C
4247:    TSMonitorLGCtxCreate - Creates a TSMonitorLGCtx context for use with
4248:    TS to monitor the solution process graphically in various ways

4250:    Collective on TS

4252:    Input Parameters:
4253: +  host - the X display to open, or null for the local machine
4254: .  label - the title to put in the title bar
4255: .  x, y - the screen coordinates of the upper left coordinate of the window
4256: .  m, n - the screen width and height in pixels
4257: -  howoften - if positive then determines the frequency of the plotting, if -1 then only at the final time

4259:    Output Parameter:
4260: .  ctx - the context

4262:    Options Database Key:
4263: +  -ts_monitor_lg_timestep - automatically sets line graph monitor
4264: +  -ts_monitor_lg_timestep_log - automatically sets line graph monitor
4265: .  -ts_monitor_lg_solution - monitor the solution (or certain values of the solution by calling TSMonitorLGSetDisplayVariables() or TSMonitorLGCtxSetDisplayVariables())
4266: .  -ts_monitor_lg_error -  monitor the error
4267: .  -ts_monitor_lg_ksp_iterations - monitor the number of KSP iterations needed for each timestep
4268: .  -ts_monitor_lg_snes_iterations - monitor the number of SNES iterations needed for each timestep
4269: -  -lg_use_markers <true,false> - mark the data points (at each time step) on the plot; default is true

4271:    Notes:
4272:    Use TSMonitorLGCtxDestroy() to destroy.

4274:    One can provide a function that transforms the solution before plotting it with TSMonitorLGCtxSetTransform() or TSMonitorLGSetTransform()

4276:    Many of the functions that control the monitoring have two forms: TSMonitorLGSet/GetXXXX() and TSMonitorLGCtxSet/GetXXXX() the first take a TS object as the
4277:    first argument (if that TS object does not have a TSMonitorLGCtx associated with it the function call is ignored) and the second takes a TSMonitorLGCtx object
4278:    as the first argument.

4280:    One can control the names displayed for each solution or error variable with TSMonitorLGCtxSetVariableNames() or TSMonitorLGSetVariableNames()

4282:    Level: intermediate

4284: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError(), TSMonitorDefault(), VecView(),
4285:            TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
4286:            TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
4287:            TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
4288:            TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()

4290: @*/
4291: PetscErrorCode  TSMonitorLGCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorLGCtx *ctx)
4292: {
4293:   PetscDraw      draw;

4297:   PetscNew(ctx);
4298:   PetscDrawCreate(comm,host,label,x,y,m,n,&draw);
4299:   PetscDrawSetFromOptions(draw);
4300:   PetscDrawLGCreate(draw,1,&(*ctx)->lg);
4301:   PetscDrawLGSetFromOptions((*ctx)->lg);
4302:   PetscDrawDestroy(&draw);
4303:   (*ctx)->howoften = howoften;
4304:   return(0);
4305: }

4307: PetscErrorCode TSMonitorLGTimeStep(TS ts,PetscInt step,PetscReal ptime,Vec v,void *monctx)
4308: {
4309:   TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
4310:   PetscReal      x   = ptime,y;

4314:   if (step < 0) return(0); /* -1 indicates an interpolated solution */
4315:   if (!step) {
4316:     PetscDrawAxis axis;
4317:     const char *ylabel = ctx->semilogy ? "Log Time Step" : "Time Step";
4318:     PetscDrawLGGetAxis(ctx->lg,&axis);
4319:     PetscDrawAxisSetLabels(axis,"Timestep as function of time","Time",ylabel);
4320:     PetscDrawLGReset(ctx->lg);
4321:   }
4322:   TSGetTimeStep(ts,&y);
4323:   if (ctx->semilogy) y = PetscLog10Real(y);
4324:   PetscDrawLGAddPoint(ctx->lg,&x,&y);
4325:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
4326:     PetscDrawLGDraw(ctx->lg);
4327:     PetscDrawLGSave(ctx->lg);
4328:   }
4329:   return(0);
4330: }

4332: /*@C
4333:    TSMonitorLGCtxDestroy - Destroys a line graph context that was created
4334:    with TSMonitorLGCtxCreate().

4336:    Collective on TSMonitorLGCtx

4338:    Input Parameter:
4339: .  ctx - the monitor context

4341:    Level: intermediate

4343: .seealso: TSMonitorLGCtxCreate(),  TSMonitorSet(), TSMonitorLGTimeStep();
4344: @*/
4345: PetscErrorCode  TSMonitorLGCtxDestroy(TSMonitorLGCtx *ctx)
4346: {

4350:   if ((*ctx)->transformdestroy) {
4351:     ((*ctx)->transformdestroy)((*ctx)->transformctx);
4352:   }
4353:   PetscDrawLGDestroy(&(*ctx)->lg);
4354:   PetscStrArrayDestroy(&(*ctx)->names);
4355:   PetscStrArrayDestroy(&(*ctx)->displaynames);
4356:   PetscFree((*ctx)->displayvariables);
4357:   PetscFree((*ctx)->displayvalues);
4358:   PetscFree(*ctx);
4359:   return(0);
4360: }

4362: /*

4364:   Creates a TS Monitor SPCtx for use with DM Swarm particle visualizations

4366: */
4367: PetscErrorCode TSMonitorSPCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorSPCtx *ctx)
4368: {
4369:   PetscDraw      draw;

4373:   PetscNew(ctx);
4374:   PetscDrawCreate(comm,host,label,x,y,m,n,&draw);
4375:   PetscDrawSetFromOptions(draw);
4376:   PetscDrawSPCreate(draw,1,&(*ctx)->sp);
4377:   PetscDrawDestroy(&draw);
4378:   (*ctx)->howoften = howoften;
4379:   return(0);

4381: }

4383: /*
4384:   Destroys a TSMonitorSPCtx that was created with TSMonitorSPCtxCreate
4385: */
4386: PetscErrorCode TSMonitorSPCtxDestroy(TSMonitorSPCtx *ctx)
4387: {


4392:   PetscDrawSPDestroy(&(*ctx)->sp);
4393:   PetscFree(*ctx);

4395:   return(0);

4397: }

4399: /*@
4400:    TSGetTime - Gets the time of the most recently completed step.

4402:    Not Collective

4404:    Input Parameter:
4405: .  ts - the TS context obtained from TSCreate()

4407:    Output Parameter:
4408: .  t  - the current time. This time may not corresponds to the final time set with TSSetMaxTime(), use TSGetSolveTime().

4410:    Level: beginner

4412:    Note:
4413:    When called during time step evaluation (e.g. during residual evaluation or via hooks set using TSSetPreStep(),
4414:    TSSetPreStage(), TSSetPostStage(), or TSSetPostStep()), the time is the time at the start of the step being evaluated.

4416: .seealso:  TSGetSolveTime(), TSSetTime(), TSGetTimeStep(), TSGetStepNumber()

4418: @*/
4419: PetscErrorCode  TSGetTime(TS ts,PetscReal *t)
4420: {
4424:   *t = ts->ptime;
4425:   return(0);
4426: }

4428: /*@
4429:    TSGetPrevTime - Gets the starting time of the previously completed step.

4431:    Not Collective

4433:    Input Parameter:
4434: .  ts - the TS context obtained from TSCreate()

4436:    Output Parameter:
4437: .  t  - the previous time

4439:    Level: beginner

4441: .seealso: TSGetTime(), TSGetSolveTime(), TSGetTimeStep()

4443: @*/
4444: PetscErrorCode  TSGetPrevTime(TS ts,PetscReal *t)
4445: {
4449:   *t = ts->ptime_prev;
4450:   return(0);
4451: }

4453: /*@
4454:    TSSetTime - Allows one to reset the time.

4456:    Logically Collective on TS

4458:    Input Parameters:
4459: +  ts - the TS context obtained from TSCreate()
4460: -  time - the time

4462:    Level: intermediate

4464: .seealso: TSGetTime(), TSSetMaxSteps()

4466: @*/
4467: PetscErrorCode  TSSetTime(TS ts, PetscReal t)
4468: {
4472:   ts->ptime = t;
4473:   return(0);
4474: }

4476: /*@C
4477:    TSSetOptionsPrefix - Sets the prefix used for searching for all
4478:    TS options in the database.

4480:    Logically Collective on TS

4482:    Input Parameter:
4483: +  ts     - The TS context
4484: -  prefix - The prefix to prepend to all option names

4486:    Notes:
4487:    A hyphen (-) must NOT be given at the beginning of the prefix name.
4488:    The first character of all runtime options is AUTOMATICALLY the
4489:    hyphen.

4491:    Level: advanced

4493: .seealso: TSSetFromOptions()

4495: @*/
4496: PetscErrorCode  TSSetOptionsPrefix(TS ts,const char prefix[])
4497: {
4499:   SNES           snes;

4503:   PetscObjectSetOptionsPrefix((PetscObject)ts,prefix);
4504:   TSGetSNES(ts,&snes);
4505:   SNESSetOptionsPrefix(snes,prefix);
4506:   return(0);
4507: }

4509: /*@C
4510:    TSAppendOptionsPrefix - Appends to the prefix used for searching for all
4511:    TS options in the database.

4513:    Logically Collective on TS

4515:    Input Parameter:
4516: +  ts     - The TS context
4517: -  prefix - The prefix to prepend to all option names

4519:    Notes:
4520:    A hyphen (-) must NOT be given at the beginning of the prefix name.
4521:    The first character of all runtime options is AUTOMATICALLY the
4522:    hyphen.

4524:    Level: advanced

4526: .seealso: TSGetOptionsPrefix()

4528: @*/
4529: PetscErrorCode  TSAppendOptionsPrefix(TS ts,const char prefix[])
4530: {
4532:   SNES           snes;

4536:   PetscObjectAppendOptionsPrefix((PetscObject)ts,prefix);
4537:   TSGetSNES(ts,&snes);
4538:   SNESAppendOptionsPrefix(snes,prefix);
4539:   return(0);
4540: }

4542: /*@C
4543:    TSGetOptionsPrefix - Sets the prefix used for searching for all
4544:    TS options in the database.

4546:    Not Collective

4548:    Input Parameter:
4549: .  ts - The TS context

4551:    Output Parameter:
4552: .  prefix - A pointer to the prefix string used

4554:    Notes:
4555:     On the fortran side, the user should pass in a string 'prifix' of
4556:    sufficient length to hold the prefix.

4558:    Level: intermediate

4560: .seealso: TSAppendOptionsPrefix()
4561: @*/
4562: PetscErrorCode  TSGetOptionsPrefix(TS ts,const char *prefix[])
4563: {

4569:   PetscObjectGetOptionsPrefix((PetscObject)ts,prefix);
4570:   return(0);
4571: }

4573: /*@C
4574:    TSGetRHSJacobian - Returns the Jacobian J at the present timestep.

4576:    Not Collective, but parallel objects are returned if TS is parallel

4578:    Input Parameter:
4579: .  ts  - The TS context obtained from TSCreate()

4581:    Output Parameters:
4582: +  Amat - The (approximate) Jacobian J of G, where U_t = G(U,t)  (or NULL)
4583: .  Pmat - The matrix from which the preconditioner is constructed, usually the same as Amat  (or NULL)
4584: .  func - Function to compute the Jacobian of the RHS  (or NULL)
4585: -  ctx - User-defined context for Jacobian evaluation routine  (or NULL)

4587:    Notes:
4588:     You can pass in NULL for any return argument you do not need.

4590:    Level: intermediate

4592: .seealso: TSGetTimeStep(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()

4594: @*/
4595: PetscErrorCode  TSGetRHSJacobian(TS ts,Mat *Amat,Mat *Pmat,TSRHSJacobian *func,void **ctx)
4596: {
4598:   DM             dm;

4601:   if (Amat || Pmat) {
4602:     SNES snes;
4603:     TSGetSNES(ts,&snes);
4604:     SNESSetUpMatrices(snes);
4605:     SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4606:   }
4607:   TSGetDM(ts,&dm);
4608:   DMTSGetRHSJacobian(dm,func,ctx);
4609:   return(0);
4610: }

4612: /*@C
4613:    TSGetIJacobian - Returns the implicit Jacobian at the present timestep.

4615:    Not Collective, but parallel objects are returned if TS is parallel

4617:    Input Parameter:
4618: .  ts  - The TS context obtained from TSCreate()

4620:    Output Parameters:
4621: +  Amat  - The (approximate) Jacobian of F(t,U,U_t)
4622: .  Pmat - The matrix from which the preconditioner is constructed, often the same as Amat
4623: .  f   - The function to compute the matrices
4624: - ctx - User-defined context for Jacobian evaluation routine

4626:    Notes:
4627:     You can pass in NULL for any return argument you do not need.

4629:    Level: advanced

4631: .seealso: TSGetTimeStep(), TSGetRHSJacobian(), TSGetMatrices(), TSGetTime(), TSGetStepNumber()

4633: @*/
4634: PetscErrorCode  TSGetIJacobian(TS ts,Mat *Amat,Mat *Pmat,TSIJacobian *f,void **ctx)
4635: {
4637:   DM             dm;

4640:   if (Amat || Pmat) {
4641:     SNES snes;
4642:     TSGetSNES(ts,&snes);
4643:     SNESSetUpMatrices(snes);
4644:     SNESGetJacobian(snes,Amat,Pmat,NULL,NULL);
4645:   }
4646:   TSGetDM(ts,&dm);
4647:   DMTSGetIJacobian(dm,f,ctx);
4648:   return(0);
4649: }

4651: /*@C
4652:    TSMonitorDrawSolution - Monitors progress of the TS solvers by calling
4653:    VecView() for the solution at each timestep

4655:    Collective on TS

4657:    Input Parameters:
4658: +  ts - the TS context
4659: .  step - current time-step
4660: .  ptime - current time
4661: -  dummy - either a viewer or NULL

4663:    Options Database:
4664: .   -ts_monitor_draw_solution_initial - show initial solution as well as current solution

4666:    Notes:
4667:     the initial solution and current solution are not display with a common axis scaling so generally the option -ts_monitor_draw_solution_initial
4668:        will look bad

4670:    Level: intermediate

4672: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4673: @*/
4674: PetscErrorCode  TSMonitorDrawSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4675: {
4676:   PetscErrorCode   ierr;
4677:   TSMonitorDrawCtx ictx = (TSMonitorDrawCtx)dummy;
4678:   PetscDraw        draw;

4681:   if (!step && ictx->showinitial) {
4682:     if (!ictx->initialsolution) {
4683:       VecDuplicate(u,&ictx->initialsolution);
4684:     }
4685:     VecCopy(u,ictx->initialsolution);
4686:   }
4687:   if (!(((ictx->howoften > 0) && (!(step % ictx->howoften))) || ((ictx->howoften == -1) && ts->reason))) return(0);

4689:   if (ictx->showinitial) {
4690:     PetscReal pause;
4691:     PetscViewerDrawGetPause(ictx->viewer,&pause);
4692:     PetscViewerDrawSetPause(ictx->viewer,0.0);
4693:     VecView(ictx->initialsolution,ictx->viewer);
4694:     PetscViewerDrawSetPause(ictx->viewer,pause);
4695:     PetscViewerDrawSetHold(ictx->viewer,PETSC_TRUE);
4696:   }
4697:   VecView(u,ictx->viewer);
4698:   if (ictx->showtimestepandtime) {
4699:     PetscReal xl,yl,xr,yr,h;
4700:     char      time[32];

4702:     PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4703:     PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4704:     PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4705:     h    = yl + .95*(yr - yl);
4706:     PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4707:     PetscDrawFlush(draw);
4708:   }

4710:   if (ictx->showinitial) {
4711:     PetscViewerDrawSetHold(ictx->viewer,PETSC_FALSE);
4712:   }
4713:   return(0);
4714: }

4716: /*@C
4717:    TSMonitorDrawSolutionPhase - Monitors progress of the TS solvers by plotting the solution as a phase diagram

4719:    Collective on TS

4721:    Input Parameters:
4722: +  ts - the TS context
4723: .  step - current time-step
4724: .  ptime - current time
4725: -  dummy - either a viewer or NULL

4727:    Level: intermediate

4729: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
4730: @*/
4731: PetscErrorCode  TSMonitorDrawSolutionPhase(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4732: {
4733:   PetscErrorCode    ierr;
4734:   TSMonitorDrawCtx  ictx = (TSMonitorDrawCtx)dummy;
4735:   PetscDraw         draw;
4736:   PetscDrawAxis     axis;
4737:   PetscInt          n;
4738:   PetscMPIInt       size;
4739:   PetscReal         U0,U1,xl,yl,xr,yr,h;
4740:   char              time[32];
4741:   const PetscScalar *U;

4744:   MPI_Comm_size(PetscObjectComm((PetscObject)ts),&size);
4745:   if (size != 1) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only allowed for sequential runs");
4746:   VecGetSize(u,&n);
4747:   if (n != 2) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Only for ODEs with two unknowns");

4749:   PetscViewerDrawGetDraw(ictx->viewer,0,&draw);
4750:   PetscViewerDrawGetDrawAxis(ictx->viewer,0,&axis);
4751:   PetscDrawAxisGetLimits(axis,&xl,&xr,&yl,&yr);
4752:   if (!step) {
4753:     PetscDrawClear(draw);
4754:     PetscDrawAxisDraw(axis);
4755:   }

4757:   VecGetArrayRead(u,&U);
4758:   U0 = PetscRealPart(U[0]);
4759:   U1 = PetscRealPart(U[1]);
4760:   VecRestoreArrayRead(u,&U);
4761:   if ((U0 < xl) || (U1 < yl) || (U0 > xr) || (U1 > yr)) return(0);

4763:   PetscDrawCollectiveBegin(draw);
4764:   PetscDrawPoint(draw,U0,U1,PETSC_DRAW_BLACK);
4765:   if (ictx->showtimestepandtime) {
4766:     PetscDrawGetCoordinates(draw,&xl,&yl,&xr,&yr);
4767:     PetscSNPrintf(time,32,"Timestep %d Time %g",(int)step,(double)ptime);
4768:     h    = yl + .95*(yr - yl);
4769:     PetscDrawStringCentered(draw,.5*(xl+xr),h,PETSC_DRAW_BLACK,time);
4770:   }
4771:   PetscDrawCollectiveEnd(draw);
4772:   PetscDrawFlush(draw);
4773:   PetscDrawPause(draw);
4774:   PetscDrawSave(draw);
4775:   return(0);
4776: }

4778: /*@C
4779:    TSMonitorDrawCtxDestroy - Destroys the monitor context for TSMonitorDrawSolution()

4781:    Collective on TS

4783:    Input Parameters:
4784: .    ctx - the monitor context

4786:    Level: intermediate

4788: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawSolution(), TSMonitorDrawError()
4789: @*/
4790: PetscErrorCode  TSMonitorDrawCtxDestroy(TSMonitorDrawCtx *ictx)
4791: {

4795:   PetscViewerDestroy(&(*ictx)->viewer);
4796:   VecDestroy(&(*ictx)->initialsolution);
4797:   PetscFree(*ictx);
4798:   return(0);
4799: }

4801: /*@C
4802:    TSMonitorDrawCtxCreate - Creates the monitor context for TSMonitorDrawCtx

4804:    Collective on TS

4806:    Input Parameter:
4807: .    ts - time-step context

4809:    Output Patameter:
4810: .    ctx - the monitor context

4812:    Options Database:
4813: .   -ts_monitor_draw_solution_initial - show initial solution as well as current solution

4815:    Level: intermediate

4817: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorDrawCtx()
4818: @*/
4819: PetscErrorCode  TSMonitorDrawCtxCreate(MPI_Comm comm,const char host[],const char label[],int x,int y,int m,int n,PetscInt howoften,TSMonitorDrawCtx *ctx)
4820: {
4821:   PetscErrorCode   ierr;

4824:   PetscNew(ctx);
4825:   PetscViewerDrawOpen(comm,host,label,x,y,m,n,&(*ctx)->viewer);
4826:   PetscViewerSetFromOptions((*ctx)->viewer);

4828:   (*ctx)->howoften    = howoften;
4829:   (*ctx)->showinitial = PETSC_FALSE;
4830:   PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_initial",&(*ctx)->showinitial,NULL);

4832:   (*ctx)->showtimestepandtime = PETSC_FALSE;
4833:   PetscOptionsGetBool(NULL,NULL,"-ts_monitor_draw_solution_show_time",&(*ctx)->showtimestepandtime,NULL);
4834:   return(0);
4835: }

4837: /*@C
4838:    TSMonitorDrawSolutionFunction - Monitors progress of the TS solvers by calling
4839:    VecView() for the solution provided by TSSetSolutionFunction() at each timestep

4841:    Collective on TS

4843:    Input Parameters:
4844: +  ts - the TS context
4845: .  step - current time-step
4846: .  ptime - current time
4847: -  dummy - either a viewer or NULL

4849:    Options Database:
4850: .  -ts_monitor_draw_solution_function - Monitor error graphically, requires user to have provided TSSetSolutionFunction()

4852:    Level: intermediate

4854: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4855: @*/
4856: PetscErrorCode  TSMonitorDrawSolutionFunction(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4857: {
4858:   PetscErrorCode   ierr;
4859:   TSMonitorDrawCtx ctx    = (TSMonitorDrawCtx)dummy;
4860:   PetscViewer      viewer = ctx->viewer;
4861:   Vec              work;

4864:   if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4865:   VecDuplicate(u,&work);
4866:   TSComputeSolutionFunction(ts,ptime,work);
4867:   VecView(work,viewer);
4868:   VecDestroy(&work);
4869:   return(0);
4870: }

4872: /*@C
4873:    TSMonitorDrawError - Monitors progress of the TS solvers by calling
4874:    VecView() for the error at each timestep

4876:    Collective on TS

4878:    Input Parameters:
4879: +  ts - the TS context
4880: .  step - current time-step
4881: .  ptime - current time
4882: -  dummy - either a viewer or NULL

4884:    Options Database:
4885: .  -ts_monitor_draw_error - Monitor error graphically, requires user to have provided TSSetSolutionFunction()

4887:    Level: intermediate

4889: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
4890: @*/
4891: PetscErrorCode  TSMonitorDrawError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
4892: {
4893:   PetscErrorCode   ierr;
4894:   TSMonitorDrawCtx ctx    = (TSMonitorDrawCtx)dummy;
4895:   PetscViewer      viewer = ctx->viewer;
4896:   Vec              work;

4899:   if (!(((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason))) return(0);
4900:   VecDuplicate(u,&work);
4901:   TSComputeSolutionFunction(ts,ptime,work);
4902:   VecAXPY(work,-1.0,u);
4903:   VecView(work,viewer);
4904:   VecDestroy(&work);
4905:   return(0);
4906: }

4908: #include <petsc/private/dmimpl.h>
4909: /*@
4910:    TSSetDM - Sets the DM that may be used by some nonlinear solvers or preconditioners under the TS

4912:    Logically Collective on ts

4914:    Input Parameters:
4915: +  ts - the ODE integrator object
4916: -  dm - the dm, cannot be NULL

4918:    Notes:
4919:    A DM can only be used for solving one problem at a time because information about the problem is stored on the DM,
4920:    even when not using interfaces like DMTSSetIFunction().  Use DMClone() to get a distinct DM when solving
4921:    different problems using the same function space.

4923:    Level: intermediate

4925: .seealso: TSGetDM(), SNESSetDM(), SNESGetDM()
4926: @*/
4927: PetscErrorCode  TSSetDM(TS ts,DM dm)
4928: {
4930:   SNES           snes;
4931:   DMTS           tsdm;

4936:   PetscObjectReference((PetscObject)dm);
4937:   if (ts->dm) {               /* Move the DMTS context over to the new DM unless the new DM already has one */
4938:     if (ts->dm->dmts && !dm->dmts) {
4939:       DMCopyDMTS(ts->dm,dm);
4940:       DMGetDMTS(ts->dm,&tsdm);
4941:       if (tsdm->originaldm == ts->dm) { /* Grant write privileges to the replacement DM */
4942:         tsdm->originaldm = dm;
4943:       }
4944:     }
4945:     DMDestroy(&ts->dm);
4946:   }
4947:   ts->dm = dm;

4949:   TSGetSNES(ts,&snes);
4950:   SNESSetDM(snes,dm);
4951:   return(0);
4952: }

4954: /*@
4955:    TSGetDM - Gets the DM that may be used by some preconditioners

4957:    Not Collective

4959:    Input Parameter:
4960: . ts - the preconditioner context

4962:    Output Parameter:
4963: .  dm - the dm

4965:    Level: intermediate

4967: .seealso: TSSetDM(), SNESSetDM(), SNESGetDM()
4968: @*/
4969: PetscErrorCode  TSGetDM(TS ts,DM *dm)
4970: {

4975:   if (!ts->dm) {
4976:     DMShellCreate(PetscObjectComm((PetscObject)ts),&ts->dm);
4977:     if (ts->snes) {SNESSetDM(ts->snes,ts->dm);}
4978:   }
4979:   *dm = ts->dm;
4980:   return(0);
4981: }

4983: /*@
4984:    SNESTSFormFunction - Function to evaluate nonlinear residual

4986:    Logically Collective on SNES

4988:    Input Parameter:
4989: + snes - nonlinear solver
4990: . U - the current state at which to evaluate the residual
4991: - ctx - user context, must be a TS

4993:    Output Parameter:
4994: . F - the nonlinear residual

4996:    Notes:
4997:    This function is not normally called by users and is automatically registered with the SNES used by TS.
4998:    It is most frequently passed to MatFDColoringSetFunction().

5000:    Level: advanced

5002: .seealso: SNESSetFunction(), MatFDColoringSetFunction()
5003: @*/
5004: PetscErrorCode  SNESTSFormFunction(SNES snes,Vec U,Vec F,void *ctx)
5005: {
5006:   TS             ts = (TS)ctx;

5014:   (ts->ops->snesfunction)(snes,U,F,ts);
5015:   return(0);
5016: }

5018: /*@
5019:    SNESTSFormJacobian - Function to evaluate the Jacobian

5021:    Collective on SNES

5023:    Input Parameter:
5024: + snes - nonlinear solver
5025: . U - the current state at which to evaluate the residual
5026: - ctx - user context, must be a TS

5028:    Output Parameter:
5029: + A - the Jacobian
5030: . B - the preconditioning matrix (may be the same as A)
5031: - flag - indicates any structure change in the matrix

5033:    Notes:
5034:    This function is not normally called by users and is automatically registered with the SNES used by TS.

5036:    Level: developer

5038: .seealso: SNESSetJacobian()
5039: @*/
5040: PetscErrorCode  SNESTSFormJacobian(SNES snes,Vec U,Mat A,Mat B,void *ctx)
5041: {
5042:   TS             ts = (TS)ctx;

5053:   (ts->ops->snesjacobian)(snes,U,A,B,ts);
5054:   return(0);
5055: }

5057: /*@C
5058:    TSComputeRHSFunctionLinear - Evaluate the right hand side via the user-provided Jacobian, for linear problems Udot = A U only

5060:    Collective on TS

5062:    Input Arguments:
5063: +  ts - time stepping context
5064: .  t - time at which to evaluate
5065: .  U - state at which to evaluate
5066: -  ctx - context

5068:    Output Arguments:
5069: .  F - right hand side

5071:    Level: intermediate

5073:    Notes:
5074:    This function is intended to be passed to TSSetRHSFunction() to evaluate the right hand side for linear problems.
5075:    The matrix (and optionally the evaluation context) should be passed to TSSetRHSJacobian().

5077: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSJacobianConstant()
5078: @*/
5079: PetscErrorCode TSComputeRHSFunctionLinear(TS ts,PetscReal t,Vec U,Vec F,void *ctx)
5080: {
5082:   Mat            Arhs,Brhs;

5085:   TSGetRHSMats_Private(ts,&Arhs,&Brhs);
5086:   /* undo the damage caused by shifting */
5087:   TSRecoverRHSJacobian(ts,Arhs,Brhs);
5088:   TSComputeRHSJacobian(ts,t,U,Arhs,Brhs);
5089:   MatMult(Arhs,U,F);
5090:   return(0);
5091: }

5093: /*@C
5094:    TSComputeRHSJacobianConstant - Reuses a Jacobian that is time-independent.

5096:    Collective on TS

5098:    Input Arguments:
5099: +  ts - time stepping context
5100: .  t - time at which to evaluate
5101: .  U - state at which to evaluate
5102: -  ctx - context

5104:    Output Arguments:
5105: +  A - pointer to operator
5106: .  B - pointer to preconditioning matrix
5107: -  flg - matrix structure flag

5109:    Level: intermediate

5111:    Notes:
5112:    This function is intended to be passed to TSSetRHSJacobian() to evaluate the Jacobian for linear time-independent problems.

5114: .seealso: TSSetRHSFunction(), TSSetRHSJacobian(), TSComputeRHSFunctionLinear()
5115: @*/
5116: PetscErrorCode TSComputeRHSJacobianConstant(TS ts,PetscReal t,Vec U,Mat A,Mat B,void *ctx)
5117: {
5119:   return(0);
5120: }

5122: /*@C
5123:    TSComputeIFunctionLinear - Evaluate the left hand side via the user-provided Jacobian, for linear problems only

5125:    Collective on TS

5127:    Input Arguments:
5128: +  ts - time stepping context
5129: .  t - time at which to evaluate
5130: .  U - state at which to evaluate
5131: .  Udot - time derivative of state vector
5132: -  ctx - context

5134:    Output Arguments:
5135: .  F - left hand side

5137:    Level: intermediate

5139:    Notes:
5140:    The assumption here is that the left hand side is of the form A*Udot (and not A*Udot + B*U). For other cases, the
5141:    user is required to write their own TSComputeIFunction.
5142:    This function is intended to be passed to TSSetIFunction() to evaluate the left hand side for linear problems.
5143:    The matrix (and optionally the evaluation context) should be passed to TSSetIJacobian().

5145:    Note that using this function is NOT equivalent to using TSComputeRHSFunctionLinear() since that solves Udot = A U

5147: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIJacobianConstant(), TSComputeRHSFunctionLinear()
5148: @*/
5149: PetscErrorCode TSComputeIFunctionLinear(TS ts,PetscReal t,Vec U,Vec Udot,Vec F,void *ctx)
5150: {
5152:   Mat            A,B;

5155:   TSGetIJacobian(ts,&A,&B,NULL,NULL);
5156:   TSComputeIJacobian(ts,t,U,Udot,1.0,A,B,PETSC_TRUE);
5157:   MatMult(A,Udot,F);
5158:   return(0);
5159: }

5161: /*@C
5162:    TSComputeIJacobianConstant - Reuses a time-independent for a semi-implicit DAE or ODE

5164:    Collective on TS

5166:    Input Arguments:
5167: +  ts - time stepping context
5168: .  t - time at which to evaluate
5169: .  U - state at which to evaluate
5170: .  Udot - time derivative of state vector
5171: .  shift - shift to apply
5172: -  ctx - context

5174:    Output Arguments:
5175: +  A - pointer to operator
5176: .  B - pointer to preconditioning matrix
5177: -  flg - matrix structure flag

5179:    Level: advanced

5181:    Notes:
5182:    This function is intended to be passed to TSSetIJacobian() to evaluate the Jacobian for linear time-independent problems.

5184:    It is only appropriate for problems of the form

5186: $     M Udot = F(U,t)

5188:   where M is constant and F is non-stiff.  The user must pass M to TSSetIJacobian().  The current implementation only
5189:   works with IMEX time integration methods such as TSROSW and TSARKIMEX, since there is no support for de-constructing
5190:   an implicit operator of the form

5192: $    shift*M + J

5194:   where J is the Jacobian of -F(U).  Support may be added in a future version of PETSc, but for now, the user must store
5195:   a copy of M or reassemble it when requested.

5197: .seealso: TSSetIFunction(), TSSetIJacobian(), TSComputeIFunctionLinear()
5198: @*/
5199: PetscErrorCode TSComputeIJacobianConstant(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat A,Mat B,void *ctx)
5200: {

5204:   MatScale(A, shift / ts->ijacobian.shift);
5205:   ts->ijacobian.shift = shift;
5206:   return(0);
5207: }

5209: /*@
5210:    TSGetEquationType - Gets the type of the equation that TS is solving.

5212:    Not Collective

5214:    Input Parameter:
5215: .  ts - the TS context

5217:    Output Parameter:
5218: .  equation_type - see TSEquationType

5220:    Level: beginner

5222: .seealso: TSSetEquationType(), TSEquationType
5223: @*/
5224: PetscErrorCode  TSGetEquationType(TS ts,TSEquationType *equation_type)
5225: {
5229:   *equation_type = ts->equation_type;
5230:   return(0);
5231: }

5233: /*@
5234:    TSSetEquationType - Sets the type of the equation that TS is solving.

5236:    Not Collective

5238:    Input Parameter:
5239: +  ts - the TS context
5240: -  equation_type - see TSEquationType

5242:    Level: advanced

5244: .seealso: TSGetEquationType(), TSEquationType
5245: @*/
5246: PetscErrorCode  TSSetEquationType(TS ts,TSEquationType equation_type)
5247: {
5250:   ts->equation_type = equation_type;
5251:   return(0);
5252: }

5254: /*@
5255:    TSGetConvergedReason - Gets the reason the TS iteration was stopped.

5257:    Not Collective

5259:    Input Parameter:
5260: .  ts - the TS context

5262:    Output Parameter:
5263: .  reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
5264:             manual pages for the individual convergence tests for complete lists

5266:    Level: beginner

5268:    Notes:
5269:    Can only be called after the call to TSSolve() is complete.

5271: .seealso: TSSetConvergenceTest(), TSConvergedReason
5272: @*/
5273: PetscErrorCode  TSGetConvergedReason(TS ts,TSConvergedReason *reason)
5274: {
5278:   *reason = ts->reason;
5279:   return(0);
5280: }

5282: /*@
5283:    TSSetConvergedReason - Sets the reason for handling the convergence of TSSolve.

5285:    Logically Collective; reason must contain common value

5287:    Input Parameters:
5288: +  ts - the TS context
5289: -  reason - negative value indicates diverged, positive value converged, see TSConvergedReason or the
5290:             manual pages for the individual convergence tests for complete lists

5292:    Level: advanced

5294:    Notes:
5295:    Can only be called while TSSolve() is active.

5297: .seealso: TSConvergedReason
5298: @*/
5299: PetscErrorCode  TSSetConvergedReason(TS ts,TSConvergedReason reason)
5300: {
5303:   ts->reason = reason;
5304:   return(0);
5305: }

5307: /*@
5308:    TSGetSolveTime - Gets the time after a call to TSSolve()

5310:    Not Collective

5312:    Input Parameter:
5313: .  ts - the TS context

5315:    Output Parameter:
5316: .  ftime - the final time. This time corresponds to the final time set with TSSetMaxTime()

5318:    Level: beginner

5320:    Notes:
5321:    Can only be called after the call to TSSolve() is complete.

5323: .seealso: TSSetConvergenceTest(), TSConvergedReason
5324: @*/
5325: PetscErrorCode  TSGetSolveTime(TS ts,PetscReal *ftime)
5326: {
5330:   *ftime = ts->solvetime;
5331:   return(0);
5332: }

5334: /*@
5335:    TSGetSNESIterations - Gets the total number of nonlinear iterations
5336:    used by the time integrator.

5338:    Not Collective

5340:    Input Parameter:
5341: .  ts - TS context

5343:    Output Parameter:
5344: .  nits - number of nonlinear iterations

5346:    Notes:
5347:    This counter is reset to zero for each successive call to TSSolve().

5349:    Level: intermediate

5351: .seealso:  TSGetKSPIterations()
5352: @*/
5353: PetscErrorCode TSGetSNESIterations(TS ts,PetscInt *nits)
5354: {
5358:   *nits = ts->snes_its;
5359:   return(0);
5360: }

5362: /*@
5363:    TSGetKSPIterations - Gets the total number of linear iterations
5364:    used by the time integrator.

5366:    Not Collective

5368:    Input Parameter:
5369: .  ts - TS context

5371:    Output Parameter:
5372: .  lits - number of linear iterations

5374:    Notes:
5375:    This counter is reset to zero for each successive call to TSSolve().

5377:    Level: intermediate

5379: .seealso:  TSGetSNESIterations(), SNESGetKSPIterations()
5380: @*/
5381: PetscErrorCode TSGetKSPIterations(TS ts,PetscInt *lits)
5382: {
5386:   *lits = ts->ksp_its;
5387:   return(0);
5388: }

5390: /*@
5391:    TSGetStepRejections - Gets the total number of rejected steps.

5393:    Not Collective

5395:    Input Parameter:
5396: .  ts - TS context

5398:    Output Parameter:
5399: .  rejects - number of steps rejected

5401:    Notes:
5402:    This counter is reset to zero for each successive call to TSSolve().

5404:    Level: intermediate

5406: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetSNESFailures(), TSSetMaxSNESFailures(), TSSetErrorIfStepFails()
5407: @*/
5408: PetscErrorCode TSGetStepRejections(TS ts,PetscInt *rejects)
5409: {
5413:   *rejects = ts->reject;
5414:   return(0);
5415: }

5417: /*@
5418:    TSGetSNESFailures - Gets the total number of failed SNES solves

5420:    Not Collective

5422:    Input Parameter:
5423: .  ts - TS context

5425:    Output Parameter:
5426: .  fails - number of failed nonlinear solves

5428:    Notes:
5429:    This counter is reset to zero for each successive call to TSSolve().

5431:    Level: intermediate

5433: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSSetMaxSNESFailures()
5434: @*/
5435: PetscErrorCode TSGetSNESFailures(TS ts,PetscInt *fails)
5436: {
5440:   *fails = ts->num_snes_failures;
5441:   return(0);
5442: }

5444: /*@
5445:    TSSetMaxStepRejections - Sets the maximum number of step rejections before a step fails

5447:    Not Collective

5449:    Input Parameter:
5450: +  ts - TS context
5451: -  rejects - maximum number of rejected steps, pass -1 for unlimited

5453:    Notes:
5454:    The counter is reset to zero for each step

5456:    Options Database Key:
5457:  .  -ts_max_reject - Maximum number of step rejections before a step fails

5459:    Level: intermediate

5461: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxSNESFailures(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5462: @*/
5463: PetscErrorCode TSSetMaxStepRejections(TS ts,PetscInt rejects)
5464: {
5467:   ts->max_reject = rejects;
5468:   return(0);
5469: }

5471: /*@
5472:    TSSetMaxSNESFailures - Sets the maximum number of failed SNES solves

5474:    Not Collective

5476:    Input Parameter:
5477: +  ts - TS context
5478: -  fails - maximum number of failed nonlinear solves, pass -1 for unlimited

5480:    Notes:
5481:    The counter is reset to zero for each successive call to TSSolve().

5483:    Options Database Key:
5484:  .  -ts_max_snes_failures - Maximum number of nonlinear solve failures

5486:    Level: intermediate

5488: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), SNESGetConvergedReason(), TSGetConvergedReason()
5489: @*/
5490: PetscErrorCode TSSetMaxSNESFailures(TS ts,PetscInt fails)
5491: {
5494:   ts->max_snes_failures = fails;
5495:   return(0);
5496: }

5498: /*@
5499:    TSSetErrorIfStepFails - Error if no step succeeds

5501:    Not Collective

5503:    Input Parameter:
5504: +  ts - TS context
5505: -  err - PETSC_TRUE to error if no step succeeds, PETSC_FALSE to return without failure

5507:    Options Database Key:
5508:  .  -ts_error_if_step_fails - Error if no step succeeds

5510:    Level: intermediate

5512: .seealso:  TSGetSNESIterations(), TSGetKSPIterations(), TSSetMaxStepRejections(), TSGetStepRejections(), TSGetSNESFailures(), TSSetErrorIfStepFails(), TSGetConvergedReason()
5513: @*/
5514: PetscErrorCode TSSetErrorIfStepFails(TS ts,PetscBool err)
5515: {
5518:   ts->errorifstepfailed = err;
5519:   return(0);
5520: }

5522: /*@C
5523:    TSMonitorSolution - Monitors progress of the TS solvers by VecView() for the solution at each timestep. Normally the viewer is a binary file or a PetscDraw object

5525:    Collective on TS

5527:    Input Parameters:
5528: +  ts - the TS context
5529: .  step - current time-step
5530: .  ptime - current time
5531: .  u - current state
5532: -  vf - viewer and its format

5534:    Level: intermediate

5536: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5537: @*/
5538: PetscErrorCode  TSMonitorSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
5539: {

5543:   PetscViewerPushFormat(vf->viewer,vf->format);
5544:   VecView(u,vf->viewer);
5545:   PetscViewerPopFormat(vf->viewer);
5546:   return(0);
5547: }

5549: /*@C
5550:    TSMonitorSolutionVTK - Monitors progress of the TS solvers by VecView() for the solution at each timestep.

5552:    Collective on TS

5554:    Input Parameters:
5555: +  ts - the TS context
5556: .  step - current time-step
5557: .  ptime - current time
5558: .  u - current state
5559: -  filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)

5561:    Level: intermediate

5563:    Notes:
5564:    The VTK format does not allow writing multiple time steps in the same file, therefore a different file will be written for each time step.
5565:    These are named according to the file name template.

5567:    This function is normally passed as an argument to TSMonitorSet() along with TSMonitorSolutionVTKDestroy().

5569: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView()
5570: @*/
5571: PetscErrorCode TSMonitorSolutionVTK(TS ts,PetscInt step,PetscReal ptime,Vec u,void *filenametemplate)
5572: {
5574:   char           filename[PETSC_MAX_PATH_LEN];
5575:   PetscViewer    viewer;

5578:   if (step < 0) return(0); /* -1 indicates interpolated solution */
5579:   PetscSNPrintf(filename,sizeof(filename),(const char*)filenametemplate,step);
5580:   PetscViewerVTKOpen(PetscObjectComm((PetscObject)ts),filename,FILE_MODE_WRITE,&viewer);
5581:   VecView(u,viewer);
5582:   PetscViewerDestroy(&viewer);
5583:   return(0);
5584: }

5586: /*@C
5587:    TSMonitorSolutionVTKDestroy - Destroy context for monitoring

5589:    Collective on TS

5591:    Input Parameters:
5592: .  filenametemplate - string containing a format specifier for the integer time step (e.g. %03D)

5594:    Level: intermediate

5596:    Note:
5597:    This function is normally passed to TSMonitorSet() along with TSMonitorSolutionVTK().

5599: .seealso: TSMonitorSet(), TSMonitorSolutionVTK()
5600: @*/
5601: PetscErrorCode TSMonitorSolutionVTKDestroy(void *filenametemplate)
5602: {

5606:   PetscFree(*(char**)filenametemplate);
5607:   return(0);
5608: }

5610: /*@
5611:    TSGetAdapt - Get the adaptive controller context for the current method

5613:    Collective on TS if controller has not been created yet

5615:    Input Arguments:
5616: .  ts - time stepping context

5618:    Output Arguments:
5619: .  adapt - adaptive controller

5621:    Level: intermediate

5623: .seealso: TSAdapt, TSAdaptSetType(), TSAdaptChoose()
5624: @*/
5625: PetscErrorCode TSGetAdapt(TS ts,TSAdapt *adapt)
5626: {

5632:   if (!ts->adapt) {
5633:     TSAdaptCreate(PetscObjectComm((PetscObject)ts),&ts->adapt);
5634:     PetscLogObjectParent((PetscObject)ts,(PetscObject)ts->adapt);
5635:     PetscObjectIncrementTabLevel((PetscObject)ts->adapt,(PetscObject)ts,1);
5636:   }
5637:   *adapt = ts->adapt;
5638:   return(0);
5639: }

5641: /*@
5642:    TSSetTolerances - Set tolerances for local truncation error when using adaptive controller

5644:    Logically Collective

5646:    Input Arguments:
5647: +  ts - time integration context
5648: .  atol - scalar absolute tolerances, PETSC_DECIDE to leave current value
5649: .  vatol - vector of absolute tolerances or NULL, used in preference to atol if present
5650: .  rtol - scalar relative tolerances, PETSC_DECIDE to leave current value
5651: -  vrtol - vector of relative tolerances or NULL, used in preference to atol if present

5653:    Options Database keys:
5654: +  -ts_rtol <rtol> - relative tolerance for local truncation error
5655: -  -ts_atol <atol> Absolute tolerance for local truncation error

5657:    Notes:
5658:    With PETSc's implicit schemes for DAE problems, the calculation of the local truncation error
5659:    (LTE) includes both the differential and the algebraic variables. If one wants the LTE to be
5660:    computed only for the differential or the algebraic part then this can be done using the vector of
5661:    tolerances vatol. For example, by setting the tolerance vector with the desired tolerance for the
5662:    differential part and infinity for the algebraic part, the LTE calculation will include only the
5663:    differential variables.

5665:    Level: beginner

5667: .seealso: TS, TSAdapt, TSErrorWeightedNorm(), TSGetTolerances()
5668: @*/
5669: PetscErrorCode TSSetTolerances(TS ts,PetscReal atol,Vec vatol,PetscReal rtol,Vec vrtol)
5670: {

5674:   if (atol != PETSC_DECIDE && atol != PETSC_DEFAULT) ts->atol = atol;
5675:   if (vatol) {
5676:     PetscObjectReference((PetscObject)vatol);
5677:     VecDestroy(&ts->vatol);
5678:     ts->vatol = vatol;
5679:   }
5680:   if (rtol != PETSC_DECIDE && rtol != PETSC_DEFAULT) ts->rtol = rtol;
5681:   if (vrtol) {
5682:     PetscObjectReference((PetscObject)vrtol);
5683:     VecDestroy(&ts->vrtol);
5684:     ts->vrtol = vrtol;
5685:   }
5686:   return(0);
5687: }

5689: /*@
5690:    TSGetTolerances - Get tolerances for local truncation error when using adaptive controller

5692:    Logically Collective

5694:    Input Arguments:
5695: .  ts - time integration context

5697:    Output Arguments:
5698: +  atol - scalar absolute tolerances, NULL to ignore
5699: .  vatol - vector of absolute tolerances, NULL to ignore
5700: .  rtol - scalar relative tolerances, NULL to ignore
5701: -  vrtol - vector of relative tolerances, NULL to ignore

5703:    Level: beginner

5705: .seealso: TS, TSAdapt, TSErrorWeightedNorm(), TSSetTolerances()
5706: @*/
5707: PetscErrorCode TSGetTolerances(TS ts,PetscReal *atol,Vec *vatol,PetscReal *rtol,Vec *vrtol)
5708: {
5710:   if (atol)  *atol  = ts->atol;
5711:   if (vatol) *vatol = ts->vatol;
5712:   if (rtol)  *rtol  = ts->rtol;
5713:   if (vrtol) *vrtol = ts->vrtol;
5714:   return(0);
5715: }

5717: /*@
5718:    TSErrorWeightedNorm2 - compute a weighted 2-norm of the difference between two state vectors

5720:    Collective on TS

5722:    Input Arguments:
5723: +  ts - time stepping context
5724: .  U - state vector, usually ts->vec_sol
5725: -  Y - state vector to be compared to U

5727:    Output Arguments:
5728: +  norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5729: .  norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5730: -  normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances

5732:    Level: developer

5734: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNormInfinity()
5735: @*/
5736: PetscErrorCode TSErrorWeightedNorm2(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5737: {
5738:   PetscErrorCode    ierr;
5739:   PetscInt          i,n,N,rstart;
5740:   PetscInt          n_loc,na_loc,nr_loc;
5741:   PetscReal         n_glb,na_glb,nr_glb;
5742:   const PetscScalar *u,*y;
5743:   PetscReal         sum,suma,sumr,gsum,gsuma,gsumr,diff;
5744:   PetscReal         tol,tola,tolr;
5745:   PetscReal         err_loc[6],err_glb[6];

5757:   if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");

5759:   VecGetSize(U,&N);
5760:   VecGetLocalSize(U,&n);
5761:   VecGetOwnershipRange(U,&rstart,NULL);
5762:   VecGetArrayRead(U,&u);
5763:   VecGetArrayRead(Y,&y);
5764:   sum  = 0.; n_loc  = 0;
5765:   suma = 0.; na_loc = 0;
5766:   sumr = 0.; nr_loc = 0;
5767:   if (ts->vatol && ts->vrtol) {
5768:     const PetscScalar *atol,*rtol;
5769:     VecGetArrayRead(ts->vatol,&atol);
5770:     VecGetArrayRead(ts->vrtol,&rtol);
5771:     for (i=0; i<n; i++) {
5772:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5773:       diff = PetscAbsScalar(y[i] - u[i]);
5774:       tola = PetscRealPart(atol[i]);
5775:       if (tola>0.){
5776:         suma  += PetscSqr(diff/tola);
5777:         na_loc++;
5778:       }
5779:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5780:       if (tolr>0.){
5781:         sumr  += PetscSqr(diff/tolr);
5782:         nr_loc++;
5783:       }
5784:       tol=tola+tolr;
5785:       if (tol>0.){
5786:         sum  += PetscSqr(diff/tol);
5787:         n_loc++;
5788:       }
5789:     }
5790:     VecRestoreArrayRead(ts->vatol,&atol);
5791:     VecRestoreArrayRead(ts->vrtol,&rtol);
5792:   } else if (ts->vatol) {       /* vector atol, scalar rtol */
5793:     const PetscScalar *atol;
5794:     VecGetArrayRead(ts->vatol,&atol);
5795:     for (i=0; i<n; i++) {
5796:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5797:       diff = PetscAbsScalar(y[i] - u[i]);
5798:       tola = PetscRealPart(atol[i]);
5799:       if (tola>0.){
5800:         suma  += PetscSqr(diff/tola);
5801:         na_loc++;
5802:       }
5803:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5804:       if (tolr>0.){
5805:         sumr  += PetscSqr(diff/tolr);
5806:         nr_loc++;
5807:       }
5808:       tol=tola+tolr;
5809:       if (tol>0.){
5810:         sum  += PetscSqr(diff/tol);
5811:         n_loc++;
5812:       }
5813:     }
5814:     VecRestoreArrayRead(ts->vatol,&atol);
5815:   } else if (ts->vrtol) {       /* scalar atol, vector rtol */
5816:     const PetscScalar *rtol;
5817:     VecGetArrayRead(ts->vrtol,&rtol);
5818:     for (i=0; i<n; i++) {
5819:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5820:       diff = PetscAbsScalar(y[i] - u[i]);
5821:       tola = ts->atol;
5822:       if (tola>0.){
5823:         suma  += PetscSqr(diff/tola);
5824:         na_loc++;
5825:       }
5826:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5827:       if (tolr>0.){
5828:         sumr  += PetscSqr(diff/tolr);
5829:         nr_loc++;
5830:       }
5831:       tol=tola+tolr;
5832:       if (tol>0.){
5833:         sum  += PetscSqr(diff/tol);
5834:         n_loc++;
5835:       }
5836:     }
5837:     VecRestoreArrayRead(ts->vrtol,&rtol);
5838:   } else {                      /* scalar atol, scalar rtol */
5839:     for (i=0; i<n; i++) {
5840:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5841:       diff = PetscAbsScalar(y[i] - u[i]);
5842:       tola = ts->atol;
5843:       if (tola>0.){
5844:         suma  += PetscSqr(diff/tola);
5845:         na_loc++;
5846:       }
5847:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5848:       if (tolr>0.){
5849:         sumr  += PetscSqr(diff/tolr);
5850:         nr_loc++;
5851:       }
5852:       tol=tola+tolr;
5853:       if (tol>0.){
5854:         sum  += PetscSqr(diff/tol);
5855:         n_loc++;
5856:       }
5857:     }
5858:   }
5859:   VecRestoreArrayRead(U,&u);
5860:   VecRestoreArrayRead(Y,&y);

5862:   err_loc[0] = sum;
5863:   err_loc[1] = suma;
5864:   err_loc[2] = sumr;
5865:   err_loc[3] = (PetscReal)n_loc;
5866:   err_loc[4] = (PetscReal)na_loc;
5867:   err_loc[5] = (PetscReal)nr_loc;

5869:   MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));

5871:   gsum   = err_glb[0];
5872:   gsuma  = err_glb[1];
5873:   gsumr  = err_glb[2];
5874:   n_glb  = err_glb[3];
5875:   na_glb = err_glb[4];
5876:   nr_glb = err_glb[5];

5878:   *norm  = 0.;
5879:   if (n_glb>0.){*norm  = PetscSqrtReal(gsum  / n_glb);}
5880:   *norma = 0.;
5881:   if (na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
5882:   *normr = 0.;
5883:   if (nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}

5885:   if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
5886:   if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
5887:   if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
5888:   return(0);
5889: }

5891: /*@
5892:    TSErrorWeightedNormInfinity - compute a weighted infinity-norm of the difference between two state vectors

5894:    Collective on TS

5896:    Input Arguments:
5897: +  ts - time stepping context
5898: .  U - state vector, usually ts->vec_sol
5899: -  Y - state vector to be compared to U

5901:    Output Arguments:
5902: +  norm - weighted norm, a value of 1.0 means that the error matches the tolerances
5903: .  norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
5904: -  normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances

5906:    Level: developer

5908: .seealso: TSErrorWeightedNorm(), TSErrorWeightedNorm2()
5909: @*/
5910: PetscErrorCode TSErrorWeightedNormInfinity(TS ts,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
5911: {
5912:   PetscErrorCode    ierr;
5913:   PetscInt          i,n,N,rstart;
5914:   const PetscScalar *u,*y;
5915:   PetscReal         max,gmax,maxa,gmaxa,maxr,gmaxr;
5916:   PetscReal         tol,tola,tolr,diff;
5917:   PetscReal         err_loc[3],err_glb[3];

5929:   if (U == Y) SETERRQ(PetscObjectComm((PetscObject)U),PETSC_ERR_ARG_IDN,"U and Y cannot be the same vector");

5931:   VecGetSize(U,&N);
5932:   VecGetLocalSize(U,&n);
5933:   VecGetOwnershipRange(U,&rstart,NULL);
5934:   VecGetArrayRead(U,&u);
5935:   VecGetArrayRead(Y,&y);

5937:   max=0.;
5938:   maxa=0.;
5939:   maxr=0.;

5941:   if (ts->vatol && ts->vrtol) {     /* vector atol, vector rtol */
5942:     const PetscScalar *atol,*rtol;
5943:     VecGetArrayRead(ts->vatol,&atol);
5944:     VecGetArrayRead(ts->vrtol,&rtol);

5946:     for (i=0; i<n; i++) {
5947:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5948:       diff = PetscAbsScalar(y[i] - u[i]);
5949:       tola = PetscRealPart(atol[i]);
5950:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5951:       tol  = tola+tolr;
5952:       if (tola>0.){
5953:         maxa = PetscMax(maxa,diff / tola);
5954:       }
5955:       if (tolr>0.){
5956:         maxr = PetscMax(maxr,diff / tolr);
5957:       }
5958:       if (tol>0.){
5959:         max = PetscMax(max,diff / tol);
5960:       }
5961:     }
5962:     VecRestoreArrayRead(ts->vatol,&atol);
5963:     VecRestoreArrayRead(ts->vrtol,&rtol);
5964:   } else if (ts->vatol) {       /* vector atol, scalar rtol */
5965:     const PetscScalar *atol;
5966:     VecGetArrayRead(ts->vatol,&atol);
5967:     for (i=0; i<n; i++) {
5968:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5969:       diff = PetscAbsScalar(y[i] - u[i]);
5970:       tola = PetscRealPart(atol[i]);
5971:       tolr = ts->rtol  * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5972:       tol  = tola+tolr;
5973:       if (tola>0.){
5974:         maxa = PetscMax(maxa,diff / tola);
5975:       }
5976:       if (tolr>0.){
5977:         maxr = PetscMax(maxr,diff / tolr);
5978:       }
5979:       if (tol>0.){
5980:         max = PetscMax(max,diff / tol);
5981:       }
5982:     }
5983:     VecRestoreArrayRead(ts->vatol,&atol);
5984:   } else if (ts->vrtol) {       /* scalar atol, vector rtol */
5985:     const PetscScalar *rtol;
5986:     VecGetArrayRead(ts->vrtol,&rtol);

5988:     for (i=0; i<n; i++) {
5989:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
5990:       diff = PetscAbsScalar(y[i] - u[i]);
5991:       tola = ts->atol;
5992:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
5993:       tol  = tola+tolr;
5994:       if (tola>0.){
5995:         maxa = PetscMax(maxa,diff / tola);
5996:       }
5997:       if (tolr>0.){
5998:         maxr = PetscMax(maxr,diff / tolr);
5999:       }
6000:       if (tol>0.){
6001:         max = PetscMax(max,diff / tol);
6002:       }
6003:     }
6004:     VecRestoreArrayRead(ts->vrtol,&rtol);
6005:   } else {                      /* scalar atol, scalar rtol */

6007:     for (i=0; i<n; i++) {
6008:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6009:       diff = PetscAbsScalar(y[i] - u[i]);
6010:       tola = ts->atol;
6011:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6012:       tol  = tola+tolr;
6013:       if (tola>0.){
6014:         maxa = PetscMax(maxa,diff / tola);
6015:       }
6016:       if (tolr>0.){
6017:         maxr = PetscMax(maxr,diff / tolr);
6018:       }
6019:       if (tol>0.){
6020:         max = PetscMax(max,diff / tol);
6021:       }
6022:     }
6023:   }
6024:   VecRestoreArrayRead(U,&u);
6025:   VecRestoreArrayRead(Y,&y);
6026:   err_loc[0] = max;
6027:   err_loc[1] = maxa;
6028:   err_loc[2] = maxr;
6029:   MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
6030:   gmax   = err_glb[0];
6031:   gmaxa  = err_glb[1];
6032:   gmaxr  = err_glb[2];

6034:   *norm = gmax;
6035:   *norma = gmaxa;
6036:   *normr = gmaxr;
6037:   if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6038:     if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6039:     if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6040:   return(0);
6041: }

6043: /*@
6044:    TSErrorWeightedNorm - compute a weighted norm of the difference between two state vectors based on supplied absolute and relative tolerances

6046:    Collective on TS

6048:    Input Arguments:
6049: +  ts - time stepping context
6050: .  U - state vector, usually ts->vec_sol
6051: .  Y - state vector to be compared to U
6052: -  wnormtype - norm type, either NORM_2 or NORM_INFINITY

6054:    Output Arguments:
6055: +  norm  - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
6056: .  norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
6057: -  normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user

6059:    Options Database Keys:
6060: .  -ts_adapt_wnormtype <wnormtype> - 2, INFINITY

6062:    Level: developer

6064: .seealso: TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2(), TSErrorWeightedENorm
6065: @*/
6066: PetscErrorCode TSErrorWeightedNorm(TS ts,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6067: {

6071:   if (wnormtype == NORM_2) {
6072:     TSErrorWeightedNorm2(ts,U,Y,norm,norma,normr);
6073:   } else if (wnormtype == NORM_INFINITY) {
6074:     TSErrorWeightedNormInfinity(ts,U,Y,norm,norma,normr);
6075:   } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
6076:   return(0);
6077: }


6080: /*@
6081:    TSErrorWeightedENorm2 - compute a weighted 2 error norm based on supplied absolute and relative tolerances

6083:    Collective on TS

6085:    Input Arguments:
6086: +  ts - time stepping context
6087: .  E - error vector
6088: .  U - state vector, usually ts->vec_sol
6089: -  Y - state vector, previous time step

6091:    Output Arguments:
6092: +  norm - weighted norm, a value of 1.0 means that the error matches the tolerances
6093: .  norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
6094: -  normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances

6096:    Level: developer

6098: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENormInfinity()
6099: @*/
6100: PetscErrorCode TSErrorWeightedENorm2(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6101: {
6102:   PetscErrorCode    ierr;
6103:   PetscInt          i,n,N,rstart;
6104:   PetscInt          n_loc,na_loc,nr_loc;
6105:   PetscReal         n_glb,na_glb,nr_glb;
6106:   const PetscScalar *e,*u,*y;
6107:   PetscReal         err,sum,suma,sumr,gsum,gsuma,gsumr;
6108:   PetscReal         tol,tola,tolr;
6109:   PetscReal         err_loc[6],err_glb[6];


6125:   VecGetSize(E,&N);
6126:   VecGetLocalSize(E,&n);
6127:   VecGetOwnershipRange(E,&rstart,NULL);
6128:   VecGetArrayRead(E,&e);
6129:   VecGetArrayRead(U,&u);
6130:   VecGetArrayRead(Y,&y);
6131:   sum  = 0.; n_loc  = 0;
6132:   suma = 0.; na_loc = 0;
6133:   sumr = 0.; nr_loc = 0;
6134:   if (ts->vatol && ts->vrtol) {
6135:     const PetscScalar *atol,*rtol;
6136:     VecGetArrayRead(ts->vatol,&atol);
6137:     VecGetArrayRead(ts->vrtol,&rtol);
6138:     for (i=0; i<n; i++) {
6139:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6140:       err = PetscAbsScalar(e[i]);
6141:       tola = PetscRealPart(atol[i]);
6142:       if (tola>0.){
6143:         suma  += PetscSqr(err/tola);
6144:         na_loc++;
6145:       }
6146:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6147:       if (tolr>0.){
6148:         sumr  += PetscSqr(err/tolr);
6149:         nr_loc++;
6150:       }
6151:       tol=tola+tolr;
6152:       if (tol>0.){
6153:         sum  += PetscSqr(err/tol);
6154:         n_loc++;
6155:       }
6156:     }
6157:     VecRestoreArrayRead(ts->vatol,&atol);
6158:     VecRestoreArrayRead(ts->vrtol,&rtol);
6159:   } else if (ts->vatol) {       /* vector atol, scalar rtol */
6160:     const PetscScalar *atol;
6161:     VecGetArrayRead(ts->vatol,&atol);
6162:     for (i=0; i<n; i++) {
6163:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6164:       err = PetscAbsScalar(e[i]);
6165:       tola = PetscRealPart(atol[i]);
6166:       if (tola>0.){
6167:         suma  += PetscSqr(err/tola);
6168:         na_loc++;
6169:       }
6170:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6171:       if (tolr>0.){
6172:         sumr  += PetscSqr(err/tolr);
6173:         nr_loc++;
6174:       }
6175:       tol=tola+tolr;
6176:       if (tol>0.){
6177:         sum  += PetscSqr(err/tol);
6178:         n_loc++;
6179:       }
6180:     }
6181:     VecRestoreArrayRead(ts->vatol,&atol);
6182:   } else if (ts->vrtol) {       /* scalar atol, vector rtol */
6183:     const PetscScalar *rtol;
6184:     VecGetArrayRead(ts->vrtol,&rtol);
6185:     for (i=0; i<n; i++) {
6186:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6187:       err = PetscAbsScalar(e[i]);
6188:       tola = ts->atol;
6189:       if (tola>0.){
6190:         suma  += PetscSqr(err/tola);
6191:         na_loc++;
6192:       }
6193:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6194:       if (tolr>0.){
6195:         sumr  += PetscSqr(err/tolr);
6196:         nr_loc++;
6197:       }
6198:       tol=tola+tolr;
6199:       if (tol>0.){
6200:         sum  += PetscSqr(err/tol);
6201:         n_loc++;
6202:       }
6203:     }
6204:     VecRestoreArrayRead(ts->vrtol,&rtol);
6205:   } else {                      /* scalar atol, scalar rtol */
6206:     for (i=0; i<n; i++) {
6207:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6208:       err = PetscAbsScalar(e[i]);
6209:       tola = ts->atol;
6210:       if (tola>0.){
6211:         suma  += PetscSqr(err/tola);
6212:         na_loc++;
6213:       }
6214:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6215:       if (tolr>0.){
6216:         sumr  += PetscSqr(err/tolr);
6217:         nr_loc++;
6218:       }
6219:       tol=tola+tolr;
6220:       if (tol>0.){
6221:         sum  += PetscSqr(err/tol);
6222:         n_loc++;
6223:       }
6224:     }
6225:   }
6226:   VecRestoreArrayRead(E,&e);
6227:   VecRestoreArrayRead(U,&u);
6228:   VecRestoreArrayRead(Y,&y);

6230:   err_loc[0] = sum;
6231:   err_loc[1] = suma;
6232:   err_loc[2] = sumr;
6233:   err_loc[3] = (PetscReal)n_loc;
6234:   err_loc[4] = (PetscReal)na_loc;
6235:   err_loc[5] = (PetscReal)nr_loc;

6237:   MPIU_Allreduce(err_loc,err_glb,6,MPIU_REAL,MPIU_SUM,PetscObjectComm((PetscObject)ts));

6239:   gsum   = err_glb[0];
6240:   gsuma  = err_glb[1];
6241:   gsumr  = err_glb[2];
6242:   n_glb  = err_glb[3];
6243:   na_glb = err_glb[4];
6244:   nr_glb = err_glb[5];

6246:   *norm  = 0.;
6247:   if (n_glb>0.){*norm  = PetscSqrtReal(gsum  / n_glb);}
6248:   *norma = 0.;
6249:   if (na_glb>0.){*norma = PetscSqrtReal(gsuma / na_glb);}
6250:   *normr = 0.;
6251:   if (nr_glb>0.){*normr = PetscSqrtReal(gsumr / nr_glb);}

6253:   if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6254:   if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6255:   if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6256:   return(0);
6257: }

6259: /*@
6260:    TSErrorWeightedENormInfinity - compute a weighted infinity error norm based on supplied absolute and relative tolerances
6261:    Collective on TS

6263:    Input Arguments:
6264: +  ts - time stepping context
6265: .  E - error vector
6266: .  U - state vector, usually ts->vec_sol
6267: -  Y - state vector, previous time step

6269:    Output Arguments:
6270: +  norm - weighted norm, a value of 1.0 means that the error matches the tolerances
6271: .  norma - weighted norm based on the absolute tolerance, a value of 1.0 means that the error matches the tolerances
6272: -  normr - weighted norm based on the relative tolerance, a value of 1.0 means that the error matches the tolerances

6274:    Level: developer

6276: .seealso: TSErrorWeightedENorm(), TSErrorWeightedENorm2()
6277: @*/
6278: PetscErrorCode TSErrorWeightedENormInfinity(TS ts,Vec E,Vec U,Vec Y,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6279: {
6280:   PetscErrorCode    ierr;
6281:   PetscInt          i,n,N,rstart;
6282:   const PetscScalar *e,*u,*y;
6283:   PetscReal         err,max,gmax,maxa,gmaxa,maxr,gmaxr;
6284:   PetscReal         tol,tola,tolr;
6285:   PetscReal         err_loc[3],err_glb[3];


6301:   VecGetSize(E,&N);
6302:   VecGetLocalSize(E,&n);
6303:   VecGetOwnershipRange(E,&rstart,NULL);
6304:   VecGetArrayRead(E,&e);
6305:   VecGetArrayRead(U,&u);
6306:   VecGetArrayRead(Y,&y);

6308:   max=0.;
6309:   maxa=0.;
6310:   maxr=0.;

6312:   if (ts->vatol && ts->vrtol) {     /* vector atol, vector rtol */
6313:     const PetscScalar *atol,*rtol;
6314:     VecGetArrayRead(ts->vatol,&atol);
6315:     VecGetArrayRead(ts->vrtol,&rtol);

6317:     for (i=0; i<n; i++) {
6318:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6319:       err = PetscAbsScalar(e[i]);
6320:       tola = PetscRealPart(atol[i]);
6321:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6322:       tol  = tola+tolr;
6323:       if (tola>0.){
6324:         maxa = PetscMax(maxa,err / tola);
6325:       }
6326:       if (tolr>0.){
6327:         maxr = PetscMax(maxr,err / tolr);
6328:       }
6329:       if (tol>0.){
6330:         max = PetscMax(max,err / tol);
6331:       }
6332:     }
6333:     VecRestoreArrayRead(ts->vatol,&atol);
6334:     VecRestoreArrayRead(ts->vrtol,&rtol);
6335:   } else if (ts->vatol) {       /* vector atol, scalar rtol */
6336:     const PetscScalar *atol;
6337:     VecGetArrayRead(ts->vatol,&atol);
6338:     for (i=0; i<n; i++) {
6339:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6340:       err = PetscAbsScalar(e[i]);
6341:       tola = PetscRealPart(atol[i]);
6342:       tolr = ts->rtol  * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6343:       tol  = tola+tolr;
6344:       if (tola>0.){
6345:         maxa = PetscMax(maxa,err / tola);
6346:       }
6347:       if (tolr>0.){
6348:         maxr = PetscMax(maxr,err / tolr);
6349:       }
6350:       if (tol>0.){
6351:         max = PetscMax(max,err / tol);
6352:       }
6353:     }
6354:     VecRestoreArrayRead(ts->vatol,&atol);
6355:   } else if (ts->vrtol) {       /* scalar atol, vector rtol */
6356:     const PetscScalar *rtol;
6357:     VecGetArrayRead(ts->vrtol,&rtol);

6359:     for (i=0; i<n; i++) {
6360:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6361:       err = PetscAbsScalar(e[i]);
6362:       tola = ts->atol;
6363:       tolr = PetscRealPart(rtol[i]) * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6364:       tol  = tola+tolr;
6365:       if (tola>0.){
6366:         maxa = PetscMax(maxa,err / tola);
6367:       }
6368:       if (tolr>0.){
6369:         maxr = PetscMax(maxr,err / tolr);
6370:       }
6371:       if (tol>0.){
6372:         max = PetscMax(max,err / tol);
6373:       }
6374:     }
6375:     VecRestoreArrayRead(ts->vrtol,&rtol);
6376:   } else {                      /* scalar atol, scalar rtol */

6378:     for (i=0; i<n; i++) {
6379:       SkipSmallValue(y[i],u[i],ts->adapt->ignore_max);
6380:       err = PetscAbsScalar(e[i]);
6381:       tola = ts->atol;
6382:       tolr = ts->rtol * PetscMax(PetscAbsScalar(u[i]),PetscAbsScalar(y[i]));
6383:       tol  = tola+tolr;
6384:       if (tola>0.){
6385:         maxa = PetscMax(maxa,err / tola);
6386:       }
6387:       if (tolr>0.){
6388:         maxr = PetscMax(maxr,err / tolr);
6389:       }
6390:       if (tol>0.){
6391:         max = PetscMax(max,err / tol);
6392:       }
6393:     }
6394:   }
6395:   VecRestoreArrayRead(E,&e);
6396:   VecRestoreArrayRead(U,&u);
6397:   VecRestoreArrayRead(Y,&y);
6398:   err_loc[0] = max;
6399:   err_loc[1] = maxa;
6400:   err_loc[2] = maxr;
6401:   MPIU_Allreduce(err_loc,err_glb,3,MPIU_REAL,MPIU_MAX,PetscObjectComm((PetscObject)ts));
6402:   gmax   = err_glb[0];
6403:   gmaxa  = err_glb[1];
6404:   gmaxr  = err_glb[2];

6406:   *norm = gmax;
6407:   *norma = gmaxa;
6408:   *normr = gmaxr;
6409:   if (PetscIsInfOrNanScalar(*norm)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norm");
6410:     if (PetscIsInfOrNanScalar(*norma)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in norma");
6411:     if (PetscIsInfOrNanScalar(*normr)) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_FP,"Infinite or not-a-number generated in normr");
6412:   return(0);
6413: }

6415: /*@
6416:    TSErrorWeightedENorm - compute a weighted error norm based on supplied absolute and relative tolerances

6418:    Collective on TS

6420:    Input Arguments:
6421: +  ts - time stepping context
6422: .  E - error vector
6423: .  U - state vector, usually ts->vec_sol
6424: .  Y - state vector, previous time step
6425: -  wnormtype - norm type, either NORM_2 or NORM_INFINITY

6427:    Output Arguments:
6428: +  norm  - weighted norm, a value of 1.0 achieves a balance between absolute and relative tolerances
6429: .  norma - weighted norm, a value of 1.0 means that the error meets the absolute tolerance set by the user
6430: -  normr - weighted norm, a value of 1.0 means that the error meets the relative tolerance set by the user

6432:    Options Database Keys:
6433: .  -ts_adapt_wnormtype <wnormtype> - 2, INFINITY

6435:    Level: developer

6437: .seealso: TSErrorWeightedENormInfinity(), TSErrorWeightedENorm2(), TSErrorWeightedNormInfinity(), TSErrorWeightedNorm2()
6438: @*/
6439: PetscErrorCode TSErrorWeightedENorm(TS ts,Vec E,Vec U,Vec Y,NormType wnormtype,PetscReal *norm,PetscReal *norma,PetscReal *normr)
6440: {

6444:   if (wnormtype == NORM_2) {
6445:     TSErrorWeightedENorm2(ts,E,U,Y,norm,norma,normr);
6446:   } else if (wnormtype == NORM_INFINITY) {
6447:     TSErrorWeightedENormInfinity(ts,E,U,Y,norm,norma,normr);
6448:   } else SETERRQ1(PETSC_COMM_SELF,PETSC_ERR_SUP,"No support for norm type %s",NormTypes[wnormtype]);
6449:   return(0);
6450: }


6453: /*@
6454:    TSSetCFLTimeLocal - Set the local CFL constraint relative to forward Euler

6456:    Logically Collective on TS

6458:    Input Arguments:
6459: +  ts - time stepping context
6460: -  cfltime - maximum stable time step if using forward Euler (value can be different on each process)

6462:    Note:
6463:    After calling this function, the global CFL time can be obtained by calling TSGetCFLTime()

6465:    Level: intermediate

6467: .seealso: TSGetCFLTime(), TSADAPTCFL
6468: @*/
6469: PetscErrorCode TSSetCFLTimeLocal(TS ts,PetscReal cfltime)
6470: {
6473:   ts->cfltime_local = cfltime;
6474:   ts->cfltime       = -1.;
6475:   return(0);
6476: }

6478: /*@
6479:    TSGetCFLTime - Get the maximum stable time step according to CFL criteria applied to forward Euler

6481:    Collective on TS

6483:    Input Arguments:
6484: .  ts - time stepping context

6486:    Output Arguments:
6487: .  cfltime - maximum stable time step for forward Euler

6489:    Level: advanced

6491: .seealso: TSSetCFLTimeLocal()
6492: @*/
6493: PetscErrorCode TSGetCFLTime(TS ts,PetscReal *cfltime)
6494: {

6498:   if (ts->cfltime < 0) {
6499:     MPIU_Allreduce(&ts->cfltime_local,&ts->cfltime,1,MPIU_REAL,MPIU_MIN,PetscObjectComm((PetscObject)ts));
6500:   }
6501:   *cfltime = ts->cfltime;
6502:   return(0);
6503: }

6505: /*@
6506:    TSVISetVariableBounds - Sets the lower and upper bounds for the solution vector. xl <= x <= xu

6508:    Input Parameters:
6509: +  ts   - the TS context.
6510: .  xl   - lower bound.
6511: -  xu   - upper bound.

6513:    Notes:
6514:    If this routine is not called then the lower and upper bounds are set to
6515:    PETSC_NINFINITY and PETSC_INFINITY respectively during SNESSetUp().

6517:    Level: advanced

6519: @*/
6520: PetscErrorCode TSVISetVariableBounds(TS ts, Vec xl, Vec xu)
6521: {
6523:   SNES           snes;

6526:   TSGetSNES(ts,&snes);
6527:   SNESVISetVariableBounds(snes,xl,xu);
6528:   return(0);
6529: }

6531: /*@C
6532:    TSMonitorLGSolution - Monitors progress of the TS solvers by plotting each component of the solution vector
6533:        in a time based line graph

6535:    Collective on TS

6537:    Input Parameters:
6538: +  ts - the TS context
6539: .  step - current time-step
6540: .  ptime - current time
6541: .  u - current solution
6542: -  dctx - the TSMonitorLGCtx object that contains all the options for the monitoring, this is created with TSMonitorLGCtxCreate()

6544:    Options Database:
6545: .   -ts_monitor_lg_solution_variables

6547:    Level: intermediate

6549:    Notes:
6550:     Each process in a parallel run displays its component solutions in a separate window

6552: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGCtxCreate(), TSMonitorLGCtxSetVariableNames(), TSMonitorLGCtxGetVariableNames(),
6553:            TSMonitorLGSetVariableNames(), TSMonitorLGGetVariableNames(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetDisplayVariables(),
6554:            TSMonitorLGCtxSetTransform(), TSMonitorLGSetTransform(), TSMonitorLGError(), TSMonitorLGSNESIterations(), TSMonitorLGKSPIterations(),
6555:            TSMonitorEnvelopeCtxCreate(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxDestroy(), TSMonitorEnvelop()
6556: @*/
6557: PetscErrorCode  TSMonitorLGSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
6558: {
6559:   PetscErrorCode    ierr;
6560:   TSMonitorLGCtx    ctx = (TSMonitorLGCtx)dctx;
6561:   const PetscScalar *yy;
6562:   Vec               v;

6565:   if (step < 0) return(0); /* -1 indicates interpolated solution */
6566:   if (!step) {
6567:     PetscDrawAxis axis;
6568:     PetscInt      dim;
6569:     PetscDrawLGGetAxis(ctx->lg,&axis);
6570:     PetscDrawAxisSetLabels(axis,"Solution as function of time","Time","Solution");
6571:     if (!ctx->names) {
6572:       PetscBool flg;
6573:       /* user provides names of variables to plot but no names has been set so assume names are integer values */
6574:       PetscOptionsHasName(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",&flg);
6575:       if (flg) {
6576:         PetscInt i,n;
6577:         char     **names;
6578:         VecGetSize(u,&n);
6579:         PetscMalloc1(n+1,&names);
6580:         for (i=0; i<n; i++) {
6581:           PetscMalloc1(5,&names[i]);
6582:           PetscSNPrintf(names[i],5,"%D",i);
6583:         }
6584:         names[n] = NULL;
6585:         ctx->names = names;
6586:       }
6587:     }
6588:     if (ctx->names && !ctx->displaynames) {
6589:       char      **displaynames;
6590:       PetscBool flg;
6591:       VecGetLocalSize(u,&dim);
6592:       PetscCalloc1(dim+1,&displaynames);
6593:       PetscOptionsGetStringArray(((PetscObject)ts)->options,((PetscObject)ts)->prefix,"-ts_monitor_lg_solution_variables",displaynames,&dim,&flg);
6594:       if (flg) {
6595:         TSMonitorLGCtxSetDisplayVariables(ctx,(const char *const *)displaynames);
6596:       }
6597:       PetscStrArrayDestroy(&displaynames);
6598:     }
6599:     if (ctx->displaynames) {
6600:       PetscDrawLGSetDimension(ctx->lg,ctx->ndisplayvariables);
6601:       PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->displaynames);
6602:     } else if (ctx->names) {
6603:       VecGetLocalSize(u,&dim);
6604:       PetscDrawLGSetDimension(ctx->lg,dim);
6605:       PetscDrawLGSetLegend(ctx->lg,(const char *const *)ctx->names);
6606:     } else {
6607:       VecGetLocalSize(u,&dim);
6608:       PetscDrawLGSetDimension(ctx->lg,dim);
6609:     }
6610:     PetscDrawLGReset(ctx->lg);
6611:   }

6613:   if (!ctx->transform) v = u;
6614:   else {(*ctx->transform)(ctx->transformctx,u,&v);}
6615:   VecGetArrayRead(v,&yy);
6616:   if (ctx->displaynames) {
6617:     PetscInt i;
6618:     for (i=0; i<ctx->ndisplayvariables; i++)
6619:       ctx->displayvalues[i] = PetscRealPart(yy[ctx->displayvariables[i]]);
6620:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,ctx->displayvalues);
6621:   } else {
6622: #if defined(PETSC_USE_COMPLEX)
6623:     PetscInt  i,n;
6624:     PetscReal *yreal;
6625:     VecGetLocalSize(v,&n);
6626:     PetscMalloc1(n,&yreal);
6627:     for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6628:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6629:     PetscFree(yreal);
6630: #else
6631:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6632: #endif
6633:   }
6634:   VecRestoreArrayRead(v,&yy);
6635:   if (ctx->transform) {VecDestroy(&v);}

6637:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6638:     PetscDrawLGDraw(ctx->lg);
6639:     PetscDrawLGSave(ctx->lg);
6640:   }
6641:   return(0);
6642: }

6644: /*@C
6645:    TSMonitorLGSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot

6647:    Collective on TS

6649:    Input Parameters:
6650: +  ts - the TS context
6651: -  names - the names of the components, final string must be NULL

6653:    Level: intermediate

6655:    Notes:
6656:     If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored

6658: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGCtxSetVariableNames()
6659: @*/
6660: PetscErrorCode  TSMonitorLGSetVariableNames(TS ts,const char * const *names)
6661: {
6662:   PetscErrorCode    ierr;
6663:   PetscInt          i;

6666:   for (i=0; i<ts->numbermonitors; i++) {
6667:     if (ts->monitor[i] == TSMonitorLGSolution) {
6668:       TSMonitorLGCtxSetVariableNames((TSMonitorLGCtx)ts->monitorcontext[i],names);
6669:       break;
6670:     }
6671:   }
6672:   return(0);
6673: }

6675: /*@C
6676:    TSMonitorLGCtxSetVariableNames - Sets the name of each component in the solution vector so that it may be displayed in the plot

6678:    Collective on TS

6680:    Input Parameters:
6681: +  ts - the TS context
6682: -  names - the names of the components, final string must be NULL

6684:    Level: intermediate

6686: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables(), TSMonitorLGSetVariableNames()
6687: @*/
6688: PetscErrorCode  TSMonitorLGCtxSetVariableNames(TSMonitorLGCtx ctx,const char * const *names)
6689: {
6690:   PetscErrorCode    ierr;

6693:   PetscStrArrayDestroy(&ctx->names);
6694:   PetscStrArrayallocpy(names,&ctx->names);
6695:   return(0);
6696: }

6698: /*@C
6699:    TSMonitorLGGetVariableNames - Gets the name of each component in the solution vector so that it may be displayed in the plot

6701:    Collective on TS

6703:    Input Parameter:
6704: .  ts - the TS context

6706:    Output Parameter:
6707: .  names - the names of the components, final string must be NULL

6709:    Level: intermediate

6711:    Notes:
6712:     If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored

6714: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
6715: @*/
6716: PetscErrorCode  TSMonitorLGGetVariableNames(TS ts,const char *const **names)
6717: {
6718:   PetscInt       i;

6721:   *names = NULL;
6722:   for (i=0; i<ts->numbermonitors; i++) {
6723:     if (ts->monitor[i] == TSMonitorLGSolution) {
6724:       TSMonitorLGCtx  ctx = (TSMonitorLGCtx) ts->monitorcontext[i];
6725:       *names = (const char *const *)ctx->names;
6726:       break;
6727:     }
6728:   }
6729:   return(0);
6730: }

6732: /*@C
6733:    TSMonitorLGCtxSetDisplayVariables - Sets the variables that are to be display in the monitor

6735:    Collective on TS

6737:    Input Parameters:
6738: +  ctx - the TSMonitorLG context
6739: -  displaynames - the names of the components, final string must be NULL

6741:    Level: intermediate

6743: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6744: @*/
6745: PetscErrorCode  TSMonitorLGCtxSetDisplayVariables(TSMonitorLGCtx ctx,const char * const *displaynames)
6746: {
6747:   PetscInt          j = 0,k;
6748:   PetscErrorCode    ierr;

6751:   if (!ctx->names) return(0);
6752:   PetscStrArrayDestroy(&ctx->displaynames);
6753:   PetscStrArrayallocpy(displaynames,&ctx->displaynames);
6754:   while (displaynames[j]) j++;
6755:   ctx->ndisplayvariables = j;
6756:   PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvariables);
6757:   PetscMalloc1(ctx->ndisplayvariables,&ctx->displayvalues);
6758:   j = 0;
6759:   while (displaynames[j]) {
6760:     k = 0;
6761:     while (ctx->names[k]) {
6762:       PetscBool flg;
6763:       PetscStrcmp(displaynames[j],ctx->names[k],&flg);
6764:       if (flg) {
6765:         ctx->displayvariables[j] = k;
6766:         break;
6767:       }
6768:       k++;
6769:     }
6770:     j++;
6771:   }
6772:   return(0);
6773: }

6775: /*@C
6776:    TSMonitorLGSetDisplayVariables - Sets the variables that are to be display in the monitor

6778:    Collective on TS

6780:    Input Parameters:
6781: +  ts - the TS context
6782: -  displaynames - the names of the components, final string must be NULL

6784:    Notes:
6785:     If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored

6787:    Level: intermediate

6789: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames()
6790: @*/
6791: PetscErrorCode  TSMonitorLGSetDisplayVariables(TS ts,const char * const *displaynames)
6792: {
6793:   PetscInt          i;
6794:   PetscErrorCode    ierr;

6797:   for (i=0; i<ts->numbermonitors; i++) {
6798:     if (ts->monitor[i] == TSMonitorLGSolution) {
6799:       TSMonitorLGCtxSetDisplayVariables((TSMonitorLGCtx)ts->monitorcontext[i],displaynames);
6800:       break;
6801:     }
6802:   }
6803:   return(0);
6804: }

6806: /*@C
6807:    TSMonitorLGSetTransform - Solution vector will be transformed by provided function before being displayed

6809:    Collective on TS

6811:    Input Parameters:
6812: +  ts - the TS context
6813: .  transform - the transform function
6814: .  destroy - function to destroy the optional context
6815: -  ctx - optional context used by transform function

6817:    Notes:
6818:     If the TS object does not have a TSMonitorLGCtx associated with it then this function is ignored

6820:    Level: intermediate

6822: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGCtxSetTransform()
6823: @*/
6824: PetscErrorCode  TSMonitorLGSetTransform(TS ts,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6825: {
6826:   PetscInt          i;
6827:   PetscErrorCode    ierr;

6830:   for (i=0; i<ts->numbermonitors; i++) {
6831:     if (ts->monitor[i] == TSMonitorLGSolution) {
6832:       TSMonitorLGCtxSetTransform((TSMonitorLGCtx)ts->monitorcontext[i],transform,destroy,tctx);
6833:     }
6834:   }
6835:   return(0);
6836: }

6838: /*@C
6839:    TSMonitorLGCtxSetTransform - Solution vector will be transformed by provided function before being displayed

6841:    Collective on TSLGCtx

6843:    Input Parameters:
6844: +  ts - the TS context
6845: .  transform - the transform function
6846: .  destroy - function to destroy the optional context
6847: -  ctx - optional context used by transform function

6849:    Level: intermediate

6851: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetVariableNames(), TSMonitorLGSetTransform()
6852: @*/
6853: PetscErrorCode  TSMonitorLGCtxSetTransform(TSMonitorLGCtx ctx,PetscErrorCode (*transform)(void*,Vec,Vec*),PetscErrorCode (*destroy)(void*),void *tctx)
6854: {
6856:   ctx->transform    = transform;
6857:   ctx->transformdestroy = destroy;
6858:   ctx->transformctx = tctx;
6859:   return(0);
6860: }

6862: /*@C
6863:    TSMonitorLGError - Monitors progress of the TS solvers by plotting each component of the error
6864:        in a time based line graph

6866:    Collective on TS

6868:    Input Parameters:
6869: +  ts - the TS context
6870: .  step - current time-step
6871: .  ptime - current time
6872: .  u - current solution
6873: -  dctx - TSMonitorLGCtx object created with TSMonitorLGCtxCreate()

6875:    Level: intermediate

6877:    Notes:
6878:     Each process in a parallel run displays its component errors in a separate window

6880:    The user must provide the solution using TSSetSolutionFunction() to use this monitor.

6882:    Options Database Keys:
6883: .  -ts_monitor_lg_error - create a graphical monitor of error history

6885: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
6886: @*/
6887: PetscErrorCode  TSMonitorLGError(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dummy)
6888: {
6889:   PetscErrorCode    ierr;
6890:   TSMonitorLGCtx    ctx = (TSMonitorLGCtx)dummy;
6891:   const PetscScalar *yy;
6892:   Vec               y;

6895:   if (!step) {
6896:     PetscDrawAxis axis;
6897:     PetscInt      dim;
6898:     PetscDrawLGGetAxis(ctx->lg,&axis);
6899:     PetscDrawAxisSetLabels(axis,"Error in solution as function of time","Time","Error");
6900:     VecGetLocalSize(u,&dim);
6901:     PetscDrawLGSetDimension(ctx->lg,dim);
6902:     PetscDrawLGReset(ctx->lg);
6903:   }
6904:   VecDuplicate(u,&y);
6905:   TSComputeSolutionFunction(ts,ptime,y);
6906:   VecAXPY(y,-1.0,u);
6907:   VecGetArrayRead(y,&yy);
6908: #if defined(PETSC_USE_COMPLEX)
6909:   {
6910:     PetscReal *yreal;
6911:     PetscInt  i,n;
6912:     VecGetLocalSize(y,&n);
6913:     PetscMalloc1(n,&yreal);
6914:     for (i=0; i<n; i++) yreal[i] = PetscRealPart(yy[i]);
6915:     PetscDrawLGAddCommonPoint(ctx->lg,ptime,yreal);
6916:     PetscFree(yreal);
6917:   }
6918: #else
6919:   PetscDrawLGAddCommonPoint(ctx->lg,ptime,yy);
6920: #endif
6921:   VecRestoreArrayRead(y,&yy);
6922:   VecDestroy(&y);
6923:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6924:     PetscDrawLGDraw(ctx->lg);
6925:     PetscDrawLGSave(ctx->lg);
6926:   }
6927:   return(0);
6928: }

6930: /*@C
6931:    TSMonitorSPSwarmSolution - Graphically displays phase plots of DMSwarm particles on a scatter plot

6933:    Input Parameters:
6934: +  ts - the TS context
6935: .  step - current time-step
6936: .  ptime - current time
6937: .  u - current solution
6938: -  dctx - the TSMonitorSPCtx object that contains all the options for the monitoring, this is created with TSMonitorSPCtxCreate()

6940:    Options Database:
6941: .   -ts_monitor_sp_swarm

6943:    Level: intermediate

6945: @*/
6946: PetscErrorCode TSMonitorSPSwarmSolution(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
6947: {
6948:   PetscErrorCode    ierr;
6949:   TSMonitorSPCtx    ctx = (TSMonitorSPCtx)dctx;
6950:   const PetscScalar *yy;
6951:   PetscReal       *y,*x;
6952:   PetscInt          Np, p, dim=2;
6953:   DM                dm;


6957:   if (step < 0) return(0); /* -1 indicates interpolated solution */
6958:   if (!step) {
6959:     PetscDrawAxis axis;
6960:     PetscDrawSPGetAxis(ctx->sp,&axis);
6961:     PetscDrawAxisSetLabels(axis,"Particles","X","Y");
6962:     PetscDrawAxisSetLimits(axis, -5, 5, -5, 5);
6963:     PetscDrawAxisSetHoldLimits(axis, PETSC_TRUE);
6964:     TSGetDM(ts, &dm);
6965:     DMGetDimension(dm, &dim);
6966:     if (dim!=2) SETERRQ(PETSC_COMM_SELF, ierr, "Dimensions improper for monitor arguments! Current support: two dimensions.");
6967:     VecGetLocalSize(u, &Np);
6968:     Np /= 2*dim;
6969:     PetscDrawSPSetDimension(ctx->sp, Np);
6970:     PetscDrawSPReset(ctx->sp);
6971:   }

6973:   VecGetLocalSize(u, &Np);
6974:   Np /= 2*dim;
6975:   VecGetArrayRead(u,&yy);
6976:   PetscMalloc2(Np, &x, Np, &y);
6977:   /* get points from solution vector */
6978:   for (p=0; p<Np; ++p){
6979:     x[p] = PetscRealPart(yy[2*dim*p]);
6980:     y[p] = PetscRealPart(yy[2*dim*p+1]);
6981:   }
6982:   VecRestoreArrayRead(u,&yy);

6984:   if (((ctx->howoften > 0) && (!(step % ctx->howoften))) || ((ctx->howoften == -1) && ts->reason)) {
6985:     PetscDrawSPAddPoint(ctx->sp,x,y);
6986:     PetscDrawSPDraw(ctx->sp,PETSC_FALSE);
6987:     PetscDrawSPSave(ctx->sp);
6988:   }

6990:   PetscFree2(x, y);

6992:   return(0);
6993: }



6997: /*@C
6998:    TSMonitorError - Monitors progress of the TS solvers by printing the 2 norm of the error at each timestep

7000:    Collective on TS

7002:    Input Parameters:
7003: +  ts - the TS context
7004: .  step - current time-step
7005: .  ptime - current time
7006: .  u - current solution
7007: -  dctx - unused context

7009:    Level: intermediate

7011:    The user must provide the solution using TSSetSolutionFunction() to use this monitor.

7013:    Options Database Keys:
7014: .  -ts_monitor_error - create a graphical monitor of error history

7016: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSSetSolutionFunction()
7017: @*/
7018: PetscErrorCode  TSMonitorError(TS ts,PetscInt step,PetscReal ptime,Vec u,PetscViewerAndFormat *vf)
7019: {
7020:   PetscErrorCode    ierr;
7021:   Vec               y;
7022:   PetscReal         nrm;
7023:   PetscBool         flg;

7026:   VecDuplicate(u,&y);
7027:   TSComputeSolutionFunction(ts,ptime,y);
7028:   VecAXPY(y,-1.0,u);
7029:   PetscObjectTypeCompare((PetscObject)vf->viewer,PETSCVIEWERASCII,&flg);
7030:   if (flg) {
7031:     VecNorm(y,NORM_2,&nrm);
7032:     PetscViewerASCIIPrintf(vf->viewer,"2-norm of error %g\n",(double)nrm);
7033:   }
7034:   PetscObjectTypeCompare((PetscObject)vf->viewer,PETSCVIEWERDRAW,&flg);
7035:   if (flg) {
7036:     VecView(y,vf->viewer);
7037:   }
7038:   VecDestroy(&y);
7039:   return(0);
7040: }

7042: PetscErrorCode TSMonitorLGSNESIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
7043: {
7044:   TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
7045:   PetscReal      x   = ptime,y;
7047:   PetscInt       its;

7050:   if (n < 0) return(0); /* -1 indicates interpolated solution */
7051:   if (!n) {
7052:     PetscDrawAxis axis;
7053:     PetscDrawLGGetAxis(ctx->lg,&axis);
7054:     PetscDrawAxisSetLabels(axis,"Nonlinear iterations as function of time","Time","SNES Iterations");
7055:     PetscDrawLGReset(ctx->lg);
7056:     ctx->snes_its = 0;
7057:   }
7058:   TSGetSNESIterations(ts,&its);
7059:   y    = its - ctx->snes_its;
7060:   PetscDrawLGAddPoint(ctx->lg,&x,&y);
7061:   if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
7062:     PetscDrawLGDraw(ctx->lg);
7063:     PetscDrawLGSave(ctx->lg);
7064:   }
7065:   ctx->snes_its = its;
7066:   return(0);
7067: }

7069: PetscErrorCode TSMonitorLGKSPIterations(TS ts,PetscInt n,PetscReal ptime,Vec v,void *monctx)
7070: {
7071:   TSMonitorLGCtx ctx = (TSMonitorLGCtx) monctx;
7072:   PetscReal      x   = ptime,y;
7074:   PetscInt       its;

7077:   if (n < 0) return(0); /* -1 indicates interpolated solution */
7078:   if (!n) {
7079:     PetscDrawAxis axis;
7080:     PetscDrawLGGetAxis(ctx->lg,&axis);
7081:     PetscDrawAxisSetLabels(axis,"Linear iterations as function of time","Time","KSP Iterations");
7082:     PetscDrawLGReset(ctx->lg);
7083:     ctx->ksp_its = 0;
7084:   }
7085:   TSGetKSPIterations(ts,&its);
7086:   y    = its - ctx->ksp_its;
7087:   PetscDrawLGAddPoint(ctx->lg,&x,&y);
7088:   if (((ctx->howoften > 0) && (!(n % ctx->howoften)) && (n > -1)) || ((ctx->howoften == -1) && (n == -1))) {
7089:     PetscDrawLGDraw(ctx->lg);
7090:     PetscDrawLGSave(ctx->lg);
7091:   }
7092:   ctx->ksp_its = its;
7093:   return(0);
7094: }

7096: /*@
7097:    TSComputeLinearStability - computes the linear stability function at a point

7099:    Collective on TS

7101:    Input Parameters:
7102: +  ts - the TS context
7103: -  xr,xi - real and imaginary part of input arguments

7105:    Output Parameters:
7106: .  yr,yi - real and imaginary part of function value

7108:    Level: developer

7110: .seealso: TSSetRHSFunction(), TSComputeIFunction()
7111: @*/
7112: PetscErrorCode TSComputeLinearStability(TS ts,PetscReal xr,PetscReal xi,PetscReal *yr,PetscReal *yi)
7113: {

7118:   if (!ts->ops->linearstability) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"Linearized stability function not provided for this method");
7119:   (*ts->ops->linearstability)(ts,xr,xi,yr,yi);
7120:   return(0);
7121: }

7123: /* ------------------------------------------------------------------------*/
7124: /*@C
7125:    TSMonitorEnvelopeCtxCreate - Creates a context for use with TSMonitorEnvelope()

7127:    Collective on TS

7129:    Input Parameters:
7130: .  ts  - the ODE solver object

7132:    Output Parameter:
7133: .  ctx - the context

7135:    Level: intermediate

7137: .seealso: TSMonitorLGTimeStep(), TSMonitorSet(), TSMonitorLGSolution(), TSMonitorLGError()

7139: @*/
7140: PetscErrorCode  TSMonitorEnvelopeCtxCreate(TS ts,TSMonitorEnvelopeCtx *ctx)
7141: {

7145:   PetscNew(ctx);
7146:   return(0);
7147: }

7149: /*@C
7150:    TSMonitorEnvelope - Monitors the maximum and minimum value of each component of the solution

7152:    Collective on TS

7154:    Input Parameters:
7155: +  ts - the TS context
7156: .  step - current time-step
7157: .  ptime - current time
7158: .  u  - current solution
7159: -  dctx - the envelope context

7161:    Options Database:
7162: .  -ts_monitor_envelope

7164:    Level: intermediate

7166:    Notes:
7167:     after a solve you can use TSMonitorEnvelopeGetBounds() to access the envelope

7169: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorEnvelopeGetBounds(), TSMonitorEnvelopeCtxCreate()
7170: @*/
7171: PetscErrorCode  TSMonitorEnvelope(TS ts,PetscInt step,PetscReal ptime,Vec u,void *dctx)
7172: {
7173:   PetscErrorCode       ierr;
7174:   TSMonitorEnvelopeCtx ctx = (TSMonitorEnvelopeCtx)dctx;

7177:   if (!ctx->max) {
7178:     VecDuplicate(u,&ctx->max);
7179:     VecDuplicate(u,&ctx->min);
7180:     VecCopy(u,ctx->max);
7181:     VecCopy(u,ctx->min);
7182:   } else {
7183:     VecPointwiseMax(ctx->max,u,ctx->max);
7184:     VecPointwiseMin(ctx->min,u,ctx->min);
7185:   }
7186:   return(0);
7187: }

7189: /*@C
7190:    TSMonitorEnvelopeGetBounds - Gets the bounds for the components of the solution

7192:    Collective on TS

7194:    Input Parameter:
7195: .  ts - the TS context

7197:    Output Parameter:
7198: +  max - the maximum values
7199: -  min - the minimum values

7201:    Notes:
7202:     If the TS does not have a TSMonitorEnvelopeCtx associated with it then this function is ignored

7204:    Level: intermediate

7206: .seealso: TSMonitorSet(), TSMonitorDefault(), VecView(), TSMonitorLGSetDisplayVariables()
7207: @*/
7208: PetscErrorCode  TSMonitorEnvelopeGetBounds(TS ts,Vec *max,Vec *min)
7209: {
7210:   PetscInt i;

7213:   if (max) *max = NULL;
7214:   if (min) *min = NULL;
7215:   for (i=0; i<ts->numbermonitors; i++) {
7216:     if (ts->monitor[i] == TSMonitorEnvelope) {
7217:       TSMonitorEnvelopeCtx  ctx = (TSMonitorEnvelopeCtx) ts->monitorcontext[i];
7218:       if (max) *max = ctx->max;
7219:       if (min) *min = ctx->min;
7220:       break;
7221:     }
7222:   }
7223:   return(0);
7224: }

7226: /*@C
7227:    TSMonitorEnvelopeCtxDestroy - Destroys a context that was created  with TSMonitorEnvelopeCtxCreate().

7229:    Collective on TSMonitorEnvelopeCtx

7231:    Input Parameter:
7232: .  ctx - the monitor context

7234:    Level: intermediate

7236: .seealso: TSMonitorLGCtxCreate(),  TSMonitorSet(), TSMonitorLGTimeStep()
7237: @*/
7238: PetscErrorCode  TSMonitorEnvelopeCtxDestroy(TSMonitorEnvelopeCtx *ctx)
7239: {

7243:   VecDestroy(&(*ctx)->min);
7244:   VecDestroy(&(*ctx)->max);
7245:   PetscFree(*ctx);
7246:   return(0);
7247: }

7249: /*@
7250:    TSRestartStep - Flags the solver to restart the next step

7252:    Collective on TS

7254:    Input Parameter:
7255: .  ts - the TS context obtained from TSCreate()

7257:    Level: advanced

7259:    Notes:
7260:    Multistep methods like BDF or Runge-Kutta methods with FSAL property require restarting the solver in the event of
7261:    discontinuities. These discontinuities may be introduced as a consequence of explicitly modifications to the solution
7262:    vector (which PETSc attempts to detect and handle) or problem coefficients (which PETSc is not able to detect). For
7263:    the sake of correctness and maximum safety, users are expected to call TSRestart() whenever they introduce
7264:    discontinuities in callback routines (e.g. prestep and poststep routines, or implicit/rhs function routines with
7265:    discontinuous source terms).

7267: .seealso: TSSolve(), TSSetPreStep(), TSSetPostStep()
7268: @*/
7269: PetscErrorCode TSRestartStep(TS ts)
7270: {
7273:   ts->steprestart = PETSC_TRUE;
7274:   return(0);
7275: }

7277: /*@
7278:    TSRollBack - Rolls back one time step

7280:    Collective on TS

7282:    Input Parameter:
7283: .  ts - the TS context obtained from TSCreate()

7285:    Level: advanced

7287: .seealso: TSCreate(), TSSetUp(), TSDestroy(), TSSolve(), TSSetPreStep(), TSSetPreStage(), TSInterpolate()
7288: @*/
7289: PetscErrorCode  TSRollBack(TS ts)
7290: {

7295:   if (ts->steprollback) SETERRQ(PetscObjectComm((PetscObject)ts),PETSC_ERR_ARG_WRONGSTATE,"TSRollBack already called");
7296:   if (!ts->ops->rollback) SETERRQ1(PetscObjectComm((PetscObject)ts),PETSC_ERR_SUP,"TSRollBack not implemented for type '%s'",((PetscObject)ts)->type_name);
7297:   (*ts->ops->rollback)(ts);
7298:   ts->time_step = ts->ptime - ts->ptime_prev;
7299:   ts->ptime = ts->ptime_prev;
7300:   ts->ptime_prev = ts->ptime_prev_rollback;
7301:   ts->steps--;
7302:   ts->steprollback = PETSC_TRUE;
7303:   return(0);
7304: }

7306: /*@
7307:    TSGetStages - Get the number of stages and stage values

7309:    Input Parameter:
7310: .  ts - the TS context obtained from TSCreate()

7312:    Output Parameters:
7313: +  ns - the number of stages
7314: -  Y - the current stage vectors

7316:    Level: advanced

7318:    Notes: Both ns and Y can be NULL.

7320: .seealso: TSCreate()
7321: @*/
7322: PetscErrorCode  TSGetStages(TS ts,PetscInt *ns,Vec **Y)
7323: {

7330:   if (!ts->ops->getstages) {
7331:     if (ns) *ns = 0;
7332:     if (Y) *Y = NULL;
7333:   } else {
7334:     (*ts->ops->getstages)(ts,ns,Y);
7335:   }
7336:   return(0);
7337: }

7339: /*@C
7340:   TSComputeIJacobianDefaultColor - Computes the Jacobian using finite differences and coloring to exploit matrix sparsity.

7342:   Collective on SNES

7344:   Input Parameters:
7345: + ts - the TS context
7346: . t - current timestep
7347: . U - state vector
7348: . Udot - time derivative of state vector
7349: . shift - shift to apply, see note below
7350: - ctx - an optional user context

7352:   Output Parameters:
7353: + J - Jacobian matrix (not altered in this routine)
7354: - B - newly computed Jacobian matrix to use with preconditioner (generally the same as J)

7356:   Level: intermediate

7358:   Notes:
7359:   If F(t,U,Udot)=0 is the DAE, the required Jacobian is

7361:   dF/dU + shift*dF/dUdot

7363:   Most users should not need to explicitly call this routine, as it
7364:   is used internally within the nonlinear solvers.

7366:   This will first try to get the coloring from the DM.  If the DM type has no coloring
7367:   routine, then it will try to get the coloring from the matrix.  This requires that the
7368:   matrix have nonzero entries precomputed.

7370: .seealso: TSSetIJacobian(), MatFDColoringCreate(), MatFDColoringSetFunction()
7371: @*/
7372: PetscErrorCode TSComputeIJacobianDefaultColor(TS ts,PetscReal t,Vec U,Vec Udot,PetscReal shift,Mat J,Mat B,void *ctx)
7373: {
7374:   SNES           snes;
7375:   MatFDColoring  color;
7376:   PetscBool      hascolor, matcolor = PETSC_FALSE;

7380:   PetscOptionsGetBool(((PetscObject)ts)->options,((PetscObject) ts)->prefix, "-ts_fd_color_use_mat", &matcolor, NULL);
7381:   PetscObjectQuery((PetscObject) B, "TSMatFDColoring", (PetscObject *) &color);
7382:   if (!color) {
7383:     DM         dm;
7384:     ISColoring iscoloring;

7386:     TSGetDM(ts, &dm);
7387:     DMHasColoring(dm, &hascolor);
7388:     if (hascolor && !matcolor) {
7389:       DMCreateColoring(dm, IS_COLORING_GLOBAL, &iscoloring);
7390:       MatFDColoringCreate(B, iscoloring, &color);
7391:       MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7392:       MatFDColoringSetFromOptions(color);
7393:       MatFDColoringSetUp(B, iscoloring, color);
7394:       ISColoringDestroy(&iscoloring);
7395:     } else {
7396:       MatColoring mc;

7398:       MatColoringCreate(B, &mc);
7399:       MatColoringSetDistance(mc, 2);
7400:       MatColoringSetType(mc, MATCOLORINGSL);
7401:       MatColoringSetFromOptions(mc);
7402:       MatColoringApply(mc, &iscoloring);
7403:       MatColoringDestroy(&mc);
7404:       MatFDColoringCreate(B, iscoloring, &color);
7405:       MatFDColoringSetFunction(color, (PetscErrorCode (*)(void)) SNESTSFormFunction, (void *) ts);
7406:       MatFDColoringSetFromOptions(color);
7407:       MatFDColoringSetUp(B, iscoloring, color);
7408:       ISColoringDestroy(&iscoloring);
7409:     }
7410:     PetscObjectCompose((PetscObject) B, "TSMatFDColoring", (PetscObject) color);
7411:     PetscObjectDereference((PetscObject) color);
7412:   }
7413:   TSGetSNES(ts, &snes);
7414:   MatFDColoringApply(B, color, U, snes);
7415:   if (J != B) {
7416:     MatAssemblyBegin(J, MAT_FINAL_ASSEMBLY);
7417:     MatAssemblyEnd(J, MAT_FINAL_ASSEMBLY);
7418:   }
7419:   return(0);
7420: }

7422: /*@
7423:     TSSetFunctionDomainError - Set a function that tests if the current state vector is valid

7425:     Input Parameters:
7426: +    ts - the TS context
7427: -    func - function called within TSFunctionDomainError

7429:     Calling sequence of func:
7430: $     PetscErrorCode func(TS ts,PetscReal time,Vec state,PetscBool reject)

7432: +   ts - the TS context
7433: .   time - the current time (of the stage)
7434: .   state - the state to check if it is valid
7435: -   reject - (output parameter) PETSC_FALSE if the state is acceptable, PETSC_TRUE if not acceptable

7437:     Level: intermediate

7439:     Notes:
7440:       If an implicit ODE solver is being used then, in addition to providing this routine, the
7441:       user's code should call SNESSetFunctionDomainError() when domain errors occur during
7442:       function evaluations where the functions are provided by TSSetIFunction() or TSSetRHSFunction().
7443:       Use TSGetSNES() to obtain the SNES object

7445:     Developer Notes:
7446:       The naming of this function is inconsistent with the SNESSetFunctionDomainError()
7447:       since one takes a function pointer and the other does not.

7449: .seealso: TSAdaptCheckStage(), TSFunctionDomainError(), SNESSetFunctionDomainError(), TSGetSNES()
7450: @*/

7452: PetscErrorCode TSSetFunctionDomainError(TS ts, PetscErrorCode (*func)(TS,PetscReal,Vec,PetscBool*))
7453: {
7456:   ts->functiondomainerror = func;
7457:   return(0);
7458: }

7460: /*@
7461:     TSFunctionDomainError - Checks if the current state is valid

7463:     Input Parameters:
7464: +    ts - the TS context
7465: .    stagetime - time of the simulation
7466: -    Y - state vector to check.

7468:     Output Parameter:
7469: .    accept - Set to PETSC_FALSE if the current state vector is valid.

7471:     Note:
7472:     This function is called by the TS integration routines and calls the user provided function (set with TSSetFunctionDomainError())
7473:     to check if the current state is valid.

7475:     Level: developer

7477: .seealso: TSSetFunctionDomainError()
7478: @*/
7479: PetscErrorCode TSFunctionDomainError(TS ts,PetscReal stagetime,Vec Y,PetscBool* accept)
7480: {
7483:   *accept = PETSC_TRUE;
7484:   if (ts->functiondomainerror) {
7485:     PetscStackCallStandard((*ts->functiondomainerror),(ts,stagetime,Y,accept));
7486:   }
7487:   return(0);
7488: }

7490: /*@C
7491:   TSClone - This function clones a time step object.

7493:   Collective

7495:   Input Parameter:
7496: . tsin    - The input TS

7498:   Output Parameter:
7499: . tsout   - The output TS (cloned)

7501:   Notes:
7502:   This function is used to create a clone of a TS object. It is used in ARKIMEX for initializing the slope for first stage explicit methods. It will likely be replaced in the future with a mechanism of switching methods on the fly.

7504:   When using TSDestroy() on a clone the user has to first reset the correct TS reference in the embedded SNES object: e.g.: by running SNES snes_dup=NULL; TSGetSNES(ts,&snes_dup); TSSetSNES(ts,snes_dup);

7506:   Level: developer

7508: .seealso: TSCreate(), TSSetType(), TSSetUp(), TSDestroy(), TSSetProblemType()
7509: @*/
7510: PetscErrorCode  TSClone(TS tsin, TS *tsout)
7511: {
7512:   TS             t;
7514:   SNES           snes_start;
7515:   DM             dm;
7516:   TSType         type;

7520:   *tsout = NULL;

7522:   PetscHeaderCreate(t, TS_CLASSID, "TS", "Time stepping", "TS", PetscObjectComm((PetscObject)tsin), TSDestroy, TSView);

7524:   /* General TS description */
7525:   t->numbermonitors    = 0;
7526:   t->setupcalled       = 0;
7527:   t->ksp_its           = 0;
7528:   t->snes_its          = 0;
7529:   t->nwork             = 0;
7530:   t->rhsjacobian.time  = PETSC_MIN_REAL;
7531:   t->rhsjacobian.scale = 1.;
7532:   t->ijacobian.shift   = 1.;

7534:   TSGetSNES(tsin,&snes_start);
7535:   TSSetSNES(t,snes_start);

7537:   TSGetDM(tsin,&dm);
7538:   TSSetDM(t,dm);

7540:   t->adapt = tsin->adapt;
7541:   PetscObjectReference((PetscObject)t->adapt);

7543:   t->trajectory = tsin->trajectory;
7544:   PetscObjectReference((PetscObject)t->trajectory);

7546:   t->event = tsin->event;
7547:   if (t->event) t->event->refct++;

7549:   t->problem_type      = tsin->problem_type;
7550:   t->ptime             = tsin->ptime;
7551:   t->ptime_prev        = tsin->ptime_prev;
7552:   t->time_step         = tsin->time_step;
7553:   t->max_time          = tsin->max_time;
7554:   t->steps             = tsin->steps;
7555:   t->max_steps         = tsin->max_steps;
7556:   t->equation_type     = tsin->equation_type;
7557:   t->atol              = tsin->atol;
7558:   t->rtol              = tsin->rtol;
7559:   t->max_snes_failures = tsin->max_snes_failures;
7560:   t->max_reject        = tsin->max_reject;
7561:   t->errorifstepfailed = tsin->errorifstepfailed;

7563:   TSGetType(tsin,&type);
7564:   TSSetType(t,type);

7566:   t->vec_sol           = NULL;

7568:   t->cfltime          = tsin->cfltime;
7569:   t->cfltime_local    = tsin->cfltime_local;
7570:   t->exact_final_time = tsin->exact_final_time;

7572:   PetscMemcpy(t->ops,tsin->ops,sizeof(struct _TSOps));

7574:   if (((PetscObject)tsin)->fortran_func_pointers) {
7575:     PetscInt i;
7576:     PetscMalloc((10)*sizeof(void(*)(void)),&((PetscObject)t)->fortran_func_pointers);
7577:     for (i=0; i<10; i++) {
7578:       ((PetscObject)t)->fortran_func_pointers[i] = ((PetscObject)tsin)->fortran_func_pointers[i];
7579:     }
7580:   }
7581:   *tsout = t;
7582:   return(0);
7583: }

7585: static PetscErrorCode RHSWrapperFunction_TSRHSJacobianTest(void* ctx,Vec x,Vec y)
7586: {
7588:   TS             ts = (TS) ctx;

7591:   TSComputeRHSFunction(ts,0,x,y);
7592:   return(0);
7593: }

7595: /*@
7596:     TSRHSJacobianTest - Compares the multiply routine provided to the MATSHELL with differencing on the TS given RHS function.

7598:    Logically Collective on TS

7600:     Input Parameters:
7601:     TS - the time stepping routine

7603:    Output Parameter:
7604: .   flg - PETSC_TRUE if the multiply is likely correct

7606:    Options Database:
7607:  .   -ts_rhs_jacobian_test_mult -mat_shell_test_mult_view - run the test at each timestep of the integrator

7609:    Level: advanced

7611:    Notes:
7612:     This only works for problems defined only the RHS function and Jacobian NOT IFunction and IJacobian

7614: .seealso: MatCreateShell(), MatShellGetContext(), MatShellGetOperation(), MatShellTestMultTranspose(), TSRHSJacobianTestTranspose()
7615: @*/
7616: PetscErrorCode  TSRHSJacobianTest(TS ts,PetscBool *flg)
7617: {
7618:   Mat            J,B;
7620:   TSRHSJacobian  func;
7621:   void*          ctx;

7624:   TSGetRHSJacobian(ts,&J,&B,&func,&ctx);
7625:   (*func)(ts,0.0,ts->vec_sol,J,B,ctx);
7626:   MatShellTestMult(J,RHSWrapperFunction_TSRHSJacobianTest,ts->vec_sol,ts,flg);
7627:   return(0);
7628: }

7630: /*@C
7631:     TSRHSJacobianTestTranspose - Compares the multiply transpose routine provided to the MATSHELL with differencing on the TS given RHS function.

7633:    Logically Collective on TS

7635:     Input Parameters:
7636:     TS - the time stepping routine

7638:    Output Parameter:
7639: .   flg - PETSC_TRUE if the multiply is likely correct

7641:    Options Database:
7642: .   -ts_rhs_jacobian_test_mult_transpose -mat_shell_test_mult_transpose_view - run the test at each timestep of the integrator

7644:    Notes:
7645:     This only works for problems defined only the RHS function and Jacobian NOT IFunction and IJacobian

7647:    Level: advanced

7649: .seealso: MatCreateShell(), MatShellGetContext(), MatShellGetOperation(), MatShellTestMultTranspose(), TSRHSJacobianTest()
7650: @*/
7651: PetscErrorCode  TSRHSJacobianTestTranspose(TS ts,PetscBool *flg)
7652: {
7653:   Mat            J,B;
7655:   void           *ctx;
7656:   TSRHSJacobian  func;

7659:   TSGetRHSJacobian(ts,&J,&B,&func,&ctx);
7660:   (*func)(ts,0.0,ts->vec_sol,J,B,ctx);
7661:   MatShellTestMultTranspose(J,RHSWrapperFunction_TSRHSJacobianTest,ts->vec_sol,ts,flg);
7662:   return(0);
7663: }

7665: /*@
7666:   TSSetUseSplitRHSFunction - Use the split RHSFunction when a multirate method is used.

7668:   Logically collective

7670:   Input Parameter:
7671: +  ts - timestepping context
7672: -  use_splitrhsfunction - PETSC_TRUE indicates that the split RHSFunction will be used

7674:   Options Database:
7675: .   -ts_use_splitrhsfunction - <true,false>

7677:   Notes:
7678:     This is only useful for multirate methods

7680:   Level: intermediate

7682: .seealso: TSGetUseSplitRHSFunction()
7683: @*/
7684: PetscErrorCode TSSetUseSplitRHSFunction(TS ts, PetscBool use_splitrhsfunction)
7685: {
7688:   ts->use_splitrhsfunction = use_splitrhsfunction;
7689:   return(0);
7690: }

7692: /*@
7693:   TSGetUseSplitRHSFunction - Gets whether to use the split RHSFunction when a multirate method is used.

7695:   Not collective

7697:   Input Parameter:
7698: .  ts - timestepping context

7700:   Output Parameter:
7701: .  use_splitrhsfunction - PETSC_TRUE indicates that the split RHSFunction will be used

7703:   Level: intermediate

7705: .seealso: TSSetUseSplitRHSFunction()
7706: @*/
7707: PetscErrorCode TSGetUseSplitRHSFunction(TS ts, PetscBool *use_splitrhsfunction)
7708: {
7711:   *use_splitrhsfunction = ts->use_splitrhsfunction;
7712:   return(0);
7713: }