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Abstract—Upcoming high-performance computing (HPC) plat-
forms will have more complex memory hierarchies with high-
bandwidth on-package memory and in the future also non-
volatile memory. How to use such deep memory hierarchies
effectively remains an open research question.

In this paper we evaluate the performance implications of a
scheme based on a software-managed scratchpad with coarse-
grained memory-copy operations migrating application data
structures between memory hierarchy levels. We expect that
such a scheme can, under specific circumstances, outperform
a hardware-managed cache while requiring a lot less effort
than would a scheme managed entirely by the application
programmers.

Because suitable hardware is not yet generally available, we
propose and benchmark several existing hardware configurations
that can be used as approximations, including non-uniform
memory access (NUMA) systems and memory on accelerators.
We then evaluate data migration mechanisms currently available
on Linux systems, such as move_pages and memcpy. We also
design a best-case-scenario HPC benchmark to explore how the
memory locality and parallelism of applications can be improved
by data migration.

We find that NUMA systems can be a reasonable approxi-
mation platform, especially when auxiliary load mechanisms are
employed. Memory migration mechanisms inside the Linux ker-
nel turn out to significantly lag behind a plain user-space memory
copy, even after we level the playing field as much as possible.
Our dedicated application benchmark demonstrates a significant
performance benefit of doing memory migrations—approaching
the measured difference in the memory bandwidth—provided
that the ratio of worker threads to migration threads is chosen
well.

I. INTRODUCTION

Future high-performance computing (HPC) platforms are
expected to feature compute nodes with hundreds of hard-
ware threads and significantly more complex memory hier-
archies [1]. Intel’s Knights Landing processor, soon to be
made available, already hosts up to 288 hardware threads and
a new level in the memory hierarchy: the high-bandwidth
multichannel DRAM (MCDRAM) located on the processor
package. This memory is expected to deliver more than five
times the bandwidth of regular DRAM [2], which is now
pushed farther in the memory hierarchy. With only 16 GiB
in the best case, however, Knights Landing’s MCDRAM may
be too small to fit many HPC applications.

This presents a dilemma: how should a deep-memory hier-
archy be managed, and who should be managing it? Should
applications be statically allocating individual data structures
explicitly at the most suitable hierarchy level depending, for

example, on data size or expected access pattern? Should the
fast memory be instead managed dynamically, as a cache, and
if so, at what granularity (cache line size, page size, whole data
structure) and who should be responsible for the policy and
the mechanism (application, runtime, OS kernel, hardware)?
In general, we have little faith in static schemes managed
solely by the applications; beyond heroic efforts of few and
far between “ninja” programmers, the history of computing is
littered with examples of powerful yet complex mechanisms
being misused or simply unused. On the other hand, hiding
the fast memory as a transparent, hardware-managed new
level of cache, while highly practical in that it requires no
changes to the applications, strikes us as a lazy way out
that misses the opportunity to perform advanced optimizations
that could benefit the applications more than the necessarily
basic and inflexible cache replacement policies implemented
in hardware.

In this paper we explore the middle ground between these
two extremes. Our focus is on using the fast memory as a
software-managed scratchpad, with coarse-grained memory-
copy operations migrating application data structures between
memory hierarchy levels to best match the dynamically
changing working sets of application kernels. We expect that
with sufficient information about the application — obtained
through programming directives in the source code, feedback
from the compiler analysis phases, and dynamic performance
data from the runtime system — a middleware-managed
solution should, under specific circumstances, be able to
outperform a hardware-managed cache while requiring a lot
less effort than would a scheme managed entirely by the
application programmers. Clear parallels exist between this
approach and the partitioned global address space (PGAS)
programming model or out-of-core computations.

Application workload that could benefit from such a scheme
needs to exhibit certain characteristics. Chief among them,
its memory access pattern must be predictable enough that
the data can be prefetched ahead of time, effectively hiding
the cost of migration. Beyond that, its access pattern must
be sufficiently localized that when a portion of application’s
data is migrated from slow to fast memory, the majority of
subsequent memory accesses will hit the latter. Of course,
the problem needs to be bandwidth-bound when running in
slow memory so that a bottleneck exists that can be overcome
by moving data to fast memory. The dynamic working set
size must be “just right,” fitting in fast memory but being



too large to fit in the CPU cache. Software-managed solutions
bring their own overheads. We assume no hardware assistance
in the form of, for example, a DMA engine, so we will
need to take a portion of compute resources away from the
application to perform data migration in the background.
The effectiveness of such a solution will depend on both
the application characteristics (thread count, data parallelism,
bandwidth requirements) and hardware characteristics (core
count, bandwidth and latency of each memory level).

Unfortunately, without access to suitable hardware (general-
purpose processors with on-package memory are not available
yet) identifying how those characteristics will impact the
effectiveness of data migration is difficult. This paper describes
early experiments, using current hardware to approximate
the features of such a deep-memory system, to explore the
performance of data migration and its usefulness to HPC
applications.

The contributions of this paper are as follows. First, we
present several available hardware configurations that can be
used to test data migration schemes for deep-memory systems.
Using state-of-the-art methods, we measure the configurations’
latency and bandwidth. Second, we identify the various data
migration mechanisms currently available on Linux systems
and study their performance on our platforms, depending on
the number of hardware threads dedicated to migration. Third,
we design an HPC benchmark to explore how the memory
locality and parallelism of applications can be improved by
data migration. In particular, we study trade-offs between
the number of threads dedicated to migration and to the
application and the size of the datasets migrated back and
forth.

The rest of this paper is organized as follows. Section II
outlines the future many-core deep-memory platforms, and in
particular Intel’s Knights Landing. Section III describes the
platforms we used to approximate such deep-memory architec-
tures and our measurements of their characteristics. Section IV
explains the current facilities available to an application to
migrate data between physical memory locations and evaluates
their performance. In Section V we present an application
benchmark for our use case and explore how modifying its
characteristics affects the performance. Section VI discusses
related work. We conclude in Section VII with a summary and
a brief look at future work.

II. DEEP-MEMORY PLATFORMS

To the best of our knowledge, Knights Landing will be the
first HPC-oriented, general-purpose processor to directly ad-
dress two levels of memory beyond the CPU cache hierarchy.
Consequently, this section focuses on the memory hierarchy
of this CPU.

Knights Landing is the second generation of the Intel Xeon
Phi many-core processor. It will be available either as a
bootable host processor or as a PCIe coprocessor. Our work
here focuses on the bootable host processor version. The
processor will have up to 72 CPU cores, each capable of
hosting four hardware threads.

The processor is organized in tiles of two cores each. Each
core has an 8-way associative, 32 KiB L1 Icache and 32 KiB
L1 Dcache. The L2 cache is 1 MB large, 16-way associative,
coherent, and shared between the two cores of a tile. The first-
level (unified) TLB offers 64 entries for 4 KiB pages while the
second level, meant for data only, offers 256 entries for 4 KiB
pages, 128 entries for 2 MiB pages, and 16 entries for 1 GiB
pages.

The 16 GiB of on-board MCDRAM can be coupled with
up to 384 GiB of 6-channel DDR4 memory. The MCDRAM
is expected to deliver over 400 GB/s in peak bandwidth while
the DDR4 will peak at about 90 GB/s; thus, the on-package
memory will offer more than five times the bandwidth of
the off-package DRAM. The MCDRAM can be used as
follows [3]:
Cache A direct-mapped 64 B-lines cache, with some overhead

in each line for tag information.
Flat A regular memory that extends the DRAM from the

upper physical addresses end. In this mode, the MCDRAM
is exposed as a second NUMA node.

Hybrid 25% or 50% of the MCDRAM used as cache while
the rest extends the DRAM in the form of a separate NUMA
node.

Based on the above, in the rest of paper, we make the fol-
lowing assumptions about the platform: two levels of DRAM
hierarchy with a limited-capacity fast memory and a large-
capacity slow memory; a five-times difference in bandwidth
between the two tiers; and no hardware offloading for data
migration. Given a lack of information on access latency
differences between the two tiers, we assume no noteworthy
improvements. The target we eventually want to compare with
is the Cache mode of MCDRAM described above.

Other companies are also working in this area. Nvidia
plans to incorporate high-bandwidth memory in its Pascal
GPUs [4]. AMD already has a GPU product with high-
bandwidth memory [5] on the market (Fiji) and is planning to
release a hybrid Zen APU that incorporates such memory as
well.

III. APPROXIMATION PLATFORMS

Although we do not have access to deep-memory architec-
tures, and to Knights Landing in particular, we can evaluate
the usefulness of data migration on platforms approximating
their expected characteristics. For this purpose, we use three
experimental setups: two based on a NUMA machine and one
on the previous-generation Xeon Phi (Knights Corner). Each
of these setups exhibits different hardware characteristics in
terms of latency and bandwidth of different memory levels
and number of hardware threads. This variability helps us
explore the impact of each characteristic on the usefulness
of data migration. We describe here each platform and its
performance.

A. NUMA System

One straightforward way to test a platform with several
levels of memory that can be managed from an application
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Figure 1: Hardware characteristics of our NUMA platform.

is to use a NUMA machine. Such a system exhibits several
memory nodes that are at a different distance from the various
cores available.

Although we do not expect a future deep-memory system
to exhibit the same latency/bandwidth ratios between memory
nodes, this provides us with an easily accessible first approx-
imation platform.

Our NUMA system of choice is a dual-socket node using
Intel Xeon E5–2670 v3 “Haswell” processors (each with 12
cores running at 2.3 GHz). Two memory nodes are present on
this machine, each 64 GiB in size. Each socket also contains
a 30 MiB shared L3 cache and 256 KiB L2 caches private
to each core. This system is running a vanilla 4.1.3 Linux
kernel. For the remainder of this paper, we will always use
the same execution context: we run the benchmarks on CPU
socket 0 (main socket) and use the memory node 0 (closest
to this socket) as the fast node. The memory node 1 (closer
to the second CPU socket) is used as the slow memory. All
measurements reported in the remainder of this paper are
the average of 10 runs (including STREAM which already
reports the best of 10 internal measurements). Unless visible
on the figure, confidence intervals at 95% are too small to
show. All the benchmarks were compiled with GCC 4.8.4
with optimizations (-O2), except for the codes where the
exact memory behavior matters (latency benchmark, memory
loader), which were compiled without optimizations (-O0).

We use the following benchmarks to characterize this sys-
tem. First, for memory bandwidth, we run the STREAM
benchmark [6]. Our goal is to measure maximum available
bandwidth from the main socket to each memory node. We
also vary the number of threads used, in order to understand
the minimum thread count needed to maximize the bandwidth
usage. Figure 1a presents the results.

We then measure the access latency of each memory node
from the main socket. To do so, we use a typical random-

access benchmark [7], [8], which works by making a large
number of accesses to a single, contiguous memory region
containing a shuffled linked list. By adjusting the size of the
memory region, we can control which level of the is exercised.
To prevent the hardware prefetch mechanism from interfering,
we set the size of individual elements to be twice the size of
a physical cache line. Figure 1b details those measurements.

As we can see, this system exhibits both bandwidth and
latency differences between the two memory nodes when
accessed from the same socket. When saturated, the bandwidth
of the fast node is 2.5 times better than that of the slow node.
We note that the benchmark requires multiple (eight) threads
to saturate the bandwidth. Thus, migrating data between the
nodes will also require multiple threads in order to go as fast
as possible. We also note that the slow node takes 1.5 times
longer to access than does the fast node. In that case, codes
whose performance is impacted by memory latency will likely
benefit from data migration, too.

B. Degraded NUMA System

As indicated earlier, on-package memory is expected to
feature on the order of five times more bandwidth than
standard memory nodes do. Our NUMA system, however,
exhibits a difference half as large.

Although we cannot modify this system to improve the
bandwidth of the fast memory node, we can further degrade
the bandwidth of the slow one. Doing so should create a
setup with a latency/bandwidth ratio closer to that of deep-
memory systems. Since we are using only one socket for our
benchmark runs, we can use the second socket to run a loader
workload using some of the memory bandwidth of the slow
node. By controlling this loader’s usage of bandwidth, we
can create a setup where the fast node exhibits much better
bandwidth than the slow node does.
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Figure 2: Hardware characteristics of our degraded NUMA platform.

To perform this memory load, we use a program similar
to the STREAM benchmark used in the preceding section.
Our loader performs a 3-point stencil across a memory region,
splitting its work in equal parts for each thread. By controlling
the number of threads and the size of the memory region
accessed, we can control how much memory this benchmark is
accessing. We also insert a configurable number of additional
instructions between each step of the stencil, in order to
decrease the bandwidth needed by each thread.

To demonstrate this control of the memory bandwidth of
the slow node, we run concurrently our loader (on the second
socket) and STREAM (24 threads on the main socket). Varying
either the loader’s thread count or the additional instructions
(ADDS) per step, we show in Figure 2a the different band-
widths we obtain.

As we can see, this loader has an impact on the bandwidth
measured by STREAM. The more instructions added per step,
the lower our loader uses the memory bandwidth. Similarly,
increasing the amount of threads increases the bandwidth
usage of our loader. Because we are interested here only in de-
creasing the bandwidth of the slow node statically, we choose
the parameters resulting in the worst bandwidth. Specifically,
we use 24 threads with ADDS = 0 in the remainder of this
paper for experiments running on the degraded platform.
These parameters result in a 55% reduction in measured
bandwidth for the slow node and a 5.6 performance ratio
between the nodes, which is close to the platform we attempt
to approximate. The latency impact of our loader was also
measured and is displayed in Figure 2b. As we can see, the
fast node is not impacted, but the slow node is.

C. Xeon Phi

While the two previous platforms already exhibit interesting
features to compare the impact of hardware characteristics on
data migration, we also wanted to test more unusual setups.

For this purpose, we used a system with the current generation
Xeon Phi 5110P (Knights Corner) coprocessor board, which
is connected to the host machine via PCI Express. The host
processor is a dual-socket Intel Xeon CPU E5-2670 v2 (10
CPU cores per socket, two hardware threads per core) with
32 GiB memory connected to each socket. The Xeon Phi board
is equipped with 8 GiB of RAM, which is also visible on the
host machine as device memory. To mimic the far memory in a
platform with deep memory hierarchy, we map the Xeon Phi’s
physical memory directly into user space on the host. We point
out that this architecture is notably different from the purely
NUMA-based environments, because memory accesses to the
Xeon Phi bypass the cache hierarchy of the host CPU.1

As before, we measure bandwidth and latency for accessing
both the host’s and Xeon Phi’s memory. All measurements
are performed on socket 0, and for the host memory we use
NUMA node 0 (we stress that all the Phi experiments run
on the host; we only use the Xeon Phi card for its memory).
Figures 3a and 3b present the results. We can see that the
DRAM of this system behaves like our NUMA system, with
similar bandwidth and latency. The Xeon Phi, being accessed
through the PCIe bus, has a much higher latency and less
bandwidth (respectively 14 times and over 200 times) than
does the DRAM. While not the best approximation for Knights
Landing, it could be useful for approximating the performance
of NVRAM.

IV. DATA MIGRATION

Now that we have a collection of platforms to evaluate data
migration, we can look at the various migration mechanisms
currently available to user applications.

1The Xeon Phi is also equipped with a number of DMA engines, which
provide significantly higher bandwidth; but we deliberately use direct memory
mappings so that we can access it with regular load/store instructions.
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Figure 3: Hardware characteristics of our Xeon Phi platform.

Unlike numerous related works (see Section VI) that con-
sider migration from the point of view of the Operating
System, our investigation is meant to help devise policies that
would provide automatic migration in cooperation with the
application’s runtimes and using information on the character-
istics of the target application (data access patterns, working
set size, etc).

We begin by exploring the underlying existing data migra-
tion mechanisms that could form the basis of flexible migration
policies to be developed later.

A. Migration Mechanisms

Chiefly, two sorts of mechanisms are available on modern
Linux systems for migrating data between physical locations.

The first mechanism is the move_pages system call. It
is designed specifically for migration purposes and has been
used successfully to perform dynamic placement on NUMA
machines [9]. The caller provides a set of 4 KiB pages to
move and their desired new location (as a NUMA node).
For each page to move, the kernel allocates a new physical
page on the destination node, copies the data, updates the
associated page table entry, and frees the source page. Since
the Linux kernel uses a single thread for this operation,
does not take advantage of huge pages, and performs the
copying without using vectorized instructions, this mechanism
might not be the fastest to migrate large amounts of data [9].
Nevertheless, move_pages is the only mechanism available
to user applications to transparently alter the physical location
of a page and is thus highly desirable in scenarios where
changes to the application code are to be minimized.

The second mechanism available is memcpy. Being a user-
space library call, it can copy only from one virtual memory
location to another. When used between memory locations that
have been locked to a specific physical node, however, it can
still be used to perform data migration. It will be especially

quick if the destination is prefaulted; moreover, most compilers
and system libraries provide highly optimized versions of this
operation, using vectorization for example, so a performance
comparison with move_pages should be instructive. The
major disadvantage of this migration mechanism is the fact
that the address of the object changes when it is copied around,
potentially requiring changes to the application code.

B. Observations

We now compare the performance of these two mechanisms
to migrate data from the slow node to the fast one, for
increasing amounts of data and varying numbers of threads
performing the migration. These experiments have two goals:
establishing which mechanism is faster for a given data
volume and determining the number of threads required for
best performance. Our benchmark is simple: starting with a
prefaulted, memory-bound source array, perform in parallel
either move_pages or memcpy of the entire array. This
benchmark uses OpenMP to parallelize its work, splitting
the memory to migrate into equal chunks, one per thread.
Both methods are timed on the migration operation, after the
source data has been prefaulted and bound to the slow node,
although the memcpy result includes the cost of unmapping
the source buffer and the destination is not prefaulted, in order
to make the comparison with move_pages fairer. Figure 4a
presents the execution time of these operations on one thread
for different buffer sizes; Figure 4b focuses on the speedup
obtained when using multiple threads for both operations, on
all our platforms, for a fixed buffer size of 1 GiB.

The single-threaded results show that for small sizes
move_pages and memcpy have the same performance but
that memcpy is faster if the memory region is bigger than a few
pages. The results stay within 50% of each other; we attribute
the differences to the lack of vectorization in the kernel and
different code paths taken in the kernel to update the page
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Figure 4: Performance of migration between the slow node and the fast node, from the main socket, on all platforms.

table of the process when performing an explicit page move
operation vs reacting to page faults in memcpy. Increasing
the number of threads used in the process makes the situation
clearer. Although both operations perform better when using
multiple threads, memcpy is consistently significantly faster—
over 5 times for NUMA and 3 times for Degraded. Our results
using multiple threads are also consistent with the platform
measurements: about the same number of threads saturate the
bandwidth of the slow node. We also note that memcpy is
the only available facility to move data between the Xeon Phi
memory and the host and that it exhibits a performance over
an order of magnitude below that of the other platforms.

These results indicate clearly that memcpy is a much better
option performance-wise. In fact, the difference in practice
could be even greater than shown here. As indicated earlier,
our memcpy results include the cost of faulting destination
pages and releasing the source buffer, in order to make the
comparison with move_pages fairer. An application could,
however, allocate the buffers on the slow and the fast node only
once and not release them until the its completion. The cost of
page faults would be reduced to a single access for each page,
making moving the data in and out of the fast memory node
considerably faster. Consequently, in the remainder of this
paper we focus exclusively on data migration using memcpy.

V. AN EXPLORATORY BENCHMARK

We now want to understand the ideal performance improve-
ment that data migration can bring to an application. For such
performance improvement to appear, the application must be
able to make progress while the migration is taking place and
to perform better when the data used is located on the fast
node instead of the slow node.

Given the previous experiments and the expected features
of deep-memory systems, we focus on applications with
bandwidth-limited performance. Two configurations are of
interest. The first involves giving enough threads to an ap-

plication so that it saturates the fast memory bandwidth. This
should leave some hardware threads available to perform data
migration. The second configuration is the opposite: dedicating
enough threads to data migration to saturate the bandwidth
of the slow node and using the remaining threads for the
application.

Since we want to evaluate these cases while also un-
derstanding the exact characteristics of the application that
influence the effectiveness of data migration, we use a custom
microbenchmark as our application. For simplicity, only two
types of threads are used: data migration and worker threads.
This benchmark proceeds in phases. In each phase, W worker
threads execute a kernel accessing a private memory region
located on the fast node. All workers handle the same amount
of data and execute the same kernel. In parallel, C migration
threads copy the data required by the workers for the next
phase from the slow memory to the fast one. Our implemen-
tation uses two memory regions on each node type, to allow
migration and work to proceed in parallel without interfering.
We also make tunable the number of times a kernel is applied
during a phase (I) and how much memory each thread is
working on. The kernel used by worker threads is similar to
STREAM Add: a 3 point stencil over 1D array.

We first study the performance of this microbenchmark
without memory migration (i.e., all data stays in slow mem-
ory). We use a memory size larger than the last level cache
of the platform (128 MiB for NUMA and Degraded, 16 MiB
for Phi). When varying the number of threads, this benchmark
should behave similarly to the STREAM benchmark. We will
use this performance as a baseline for the remainder of our
experiments. Figure 5 shows the results. We can see that
increasing the number of threads improves the performance
of the benchmark until the bandwidth of the slow node is
saturated. Increasing the number of iterations of the kernel,
however, increases significantly the run time of the benchmark
but does not change its overall behavior. Note that we ran those
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Next, we study the performance of this microbenchmark
when it is given enough cores for the worker threads to
saturate the bandwidth of the fast node (e.g., 8 for NUMA
and Degraded, 6 for Phi—refer to Figures 1a and 3a). The
other 4 cores are used for data migration. We then vary
the computation time of each phase. Our goal is to study
the effects of data migration depending on the ability of the
application to prefetch its data while the workers are still busy
with the previous phase. Our microbenchmark is written so
that if data migration takes too long, the benchmark will stall,
waiting for the data required for the next phase to be ready.

Figure 6a displays results from this experiment, for a
number of kernel iterations (I) between 1 and 20 on our
platforms, using one thread per core on the main socket. We
keep the memory size from the last experiment, to ensure
that the workers are still impacted by the available bandwidth.
We measure the execution time and report it in the form of
the speedup of the benchmark compared with two baselines:
when using the same number of worker threads Wb in the
baseline (8 for NUMA and Degraded, 6 for Phi) and when
using the number of worker threads in the baseline equal
to the sum of worker and migration threads (12 for NUMA
and Degraded, 10 for Phi). We can see that migration can
significantly improve the performance of our benchmark when
compared with either baseline. Thus, a better performance can
be obtained by removing worker threads from the application
and using them to transfer data around. As long as workers are
kept busy, the benchmark will perform in a way comparable
to running directly from the fast memory node. Starting from
a low number of iterations, the worker threads are given
more work in each phase, leaving time for the migration to
complete. The resulting performance increase ends for NUMA
and Degraded when the workers no longer stall waiting for the

migration. Results from Phi show the same trend but do not
level off even for 20 kernel iterations since the migration cost
is much higher.

We now study the performance of this microbenchmark
when enough cores are instead dedicated to data migration
to saturate the bandwidth of the slow node (8 for NUMA
and Degraded, 6 for Phi). Again, we vary the number of
iterations of the kernel for each worker. Figure 6b presents the
results obtained between 1 and 20 iterations; we use the same
two baselines for the speedup as in the previous experiment.
The difference in the number of worker threads between the
baselines is greater than before, leading to a wider gap in
the plot between each pair of experiments. Prioritizing the
number of migration threads leads to a slightly worse speedup
than before for NUMA and Degraded because it does not
leave enough worker threads to process the deluge of input
data. The same is not the case with the Phi runs, however,
where increasing the number of migration threads reduces the
memory bandwidth bottleneck.

Overall, these experiments demonstrate that application-
driven data migration has the potential to significantly improve
the performance on future deep-memory platforms. Perhaps
unsurprisingly, the speedup obtained (around 2 times for
NUMA, 4 times for Degraded, and up to 80 times for Phi)
is closely related to the bandwidth gap between fast and slow
memory for each platform, as measured in Section III. Still,
the ability to close this gap on NUMA and Degraded strongly
indicates the viability of this approach, even if it is done using
a dedicated microbenchmark.

VI. RELATED WORK

The general issue of migrating hot data to faster but limited-
size memory is an old problem. The constraints are diversified,
however, and they depend mostly on how the computing
device interacts with each kind of memory.

Increasingly, flash-based block devices are used not as an
extension to hard drives [10]–[12], but as a memory level
that sits between DRAM and the hard drive. SSDs have
been used as DRAM extensions for metagenomics [13], graph
traversal [14], stencil computation [15], and big data comput-
ing [16]. More elaborate approaches have merged NAND flash
and PCM into a unified, single-memory unit that requires the
migration of hot data from NAND to PCM to be addressed by
the CPU [17]. The extension of the memory hierarchy with
flash-based devices calls for migration mechanisms that are
different from the ones considered by our current work, as
neither move_pages nor memcpy can be used with a block
device.

In high-performance computing, the most commonly avail-
able deep-memory architectures to date are made of GPUs
accessing their own on-package GDDR as faster memory
and the host DRAM as slower memory [18]. While recent
GPUs can seamlessly address the host DRAM, the preferred
approach remains the asynchronous prefetching of the data
because of PCIe bandwidth constraints and the need for
pinning host memory for GPU access [19]–[21]. With the
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Figure 6: Impact of the number of kernel iterations on the speedup obtained from data migration.

Intel Xeon Phi code-named Knights Corner, the host can use
the coprocessor memory as a slower memory via the SCIF
interface [22]. Other authors used the host memory as the
slower kind for computations on Knights Corner [23]. Both
GPUs and Knights Corner operate as accelerators with respect
to their host DRAM. In comparison, our work explores regular
processors.

An important difference exists between all the aforemen-
tioned hierarchical memory systems, along with their associ-
ated needs for migration, and the MCDRAM-DRAM usage
modes in the upcoming Knights Landing. With the latter,
program data is natively addressable from both memories and
in a symmetric way with respect to the interface. A two-
level natively addressable deep-memory architecture has been
emulated [24] to behave like the Knights Landing in that
respect. Others [25] have studied a hierarchical memory that
can also be used as cache or addressed as a faster DRAM on
chip, just like the Knights Landing.

Page migration using NUMA nodes has been explored.
Researchers have considered applications that exhibit a repet-
itive pattern of memory access and perform the migrations
based on previous iterations of similar computations [26].
With programs for which no assumption can be made, a
sampling-based approach is used where pages with excessive
remote references are migrated to nodes closer to the accessing
cores. Others [9] used both move_pages and memcpy in
their approach to memory migration. A new madvise flag
has also been implemented to change the access rights of
pages meant to be migrated, forcing the kernel to trigger a
migration upon fault. Where the focus of the previous work
was on regular NUMA architectures, we use some of the same
mechanisms to explore emerging deep memory hierarchies,
which feature different performance trade-offs and, critically,
significant capacity differences between memory hierarchies,
requiring different migration policies.

VII. CONCLUSION

Performance of HPC applications on future computing plat-
forms with deep memory hierarchies will depend on the ability
to choose carefully which data structures must be located
where and when. In this context, we studied here the pos-
sibility for applications to dynamically migrate data between
the levels of such deep-memory architectures. Because these
architectures are not yet available, we used a variety of approx-
imation platforms, including NUMA systems and accelerators,
with different latency and bandwith characteristics, to study
the usefulness of user-level data migration.

Using state-of-the-art methods, we measured the character-
istics of those platforms, as well as the performance of user-
level data migration mechanisms available on Linux systems.
We found that with some additional software-induced degra-
dation, a regular NUMA system can reasonably approximate
the bandwidth of a deep-memory architecture. Our comparison
of the performance of move_pages and memcpy indicates
that the latter, while more challenging to use for applications,
shows performance improvement by an integer factor in mul-
tithreaded scenarios.

Given these measurements, we then designed a set of
experiments to evaluate the best performance improvements
an application can expect from data migration. The resulting
experiments show that a significant speedup—approaching
the measured difference in the memory bandwidth—can be
obtained by reducing the number of worker threads in the
application and using them for data migration instead. To
obtain such improvements, the workload needs to meet a
number of requirements in terms of the memory access pattern
and working set size characteristics and must be insensitive to
an occasional stall. The ratio of worker threads to migration
threads needs to be chosen carefully to maximize the migration
bandwidth while ensuring that the application is not starved
of compute resources.



Overall, we believe this study provides important infor-
mation about the relation between the number of threads,
the amount of work in the application, and the character-
istics of the hardware platform. This should prove valuable
to efficiently use the soon-to-be-released Knights Landing
architecture, for example.

In terms of future work, we are interested in extending this
study to benchmarks mimicking exascale applications. We will
also use hardware performance counters and tracing to obtain a
deeper understanding of how application kernel characteristics
impact the performance of data migration schemes. We are ea-
gerly awaiting deep-memory architectures to become available
so that we can continue our work on real hardware. We want
to investigate whether the performance gap we have identified
between the kernel and user-level data migration mechanisms
can be narrowed down.

The early experiments we presented required performing
data migration explicitly in the application. It will be highly
valuable to design facilities to automate, or at the east help
with, the data migration process. In particular, we are inter-
ested in facilities for applications or compilers to annotate
data structures with memory usage information and the use
of this information in automatic data placement and migration
policies at the runtime level.
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