
Suggested line of text (optional):

WE START WITH YES.

March 28, 2023

Understanding and
Improving the I/O
Behavior of Scientific
Computing Applications

erhtjhtyhy

Shane Snyder
ssnyder@mcs.anl.gov
Argonne National Laboratory

MCS CS Seminar Series

❖ Characterizing and understanding application I/O
workloads is critical to ensuring efficient use of an
evolving and increasingly complex HPC I/O stack
➢ Deep layers of coordinating I/O libraries and entirely

new-to-HPC storage paradigms (e.g., object storage)
➢ Emerging storage hardware (e.g., CXL) and storage

architectures (e.g., burst buffers)

❖ I/O analysis tools are invaluable in helping to navigate
this complexity and to better understand I/O
➢ Characterize I/O behavior of individual jobs to inform

tuning decisions
➢ Characterize job populations to better understand

system-wide I/O stack usage and optimize deployments

Understanding and improving HPC I/O

2

Darshan: An I/O characterization tool for
HPC applications

3

❖ Darshan is a lightweight I/O characterization tool that captures concise views
of HPC application I/O behavior
➢ Produces a summary of I/O activity for each instrumented job

■ Counters, histograms, timers, & statistics
■ If requested by user, full I/O traces

❖ Widely available
➢ Deployed (and commonly enabled by default) at many HPC facilities around the world

❖ Easy to use
➢ No code changes required to integrate Darshan instrumentation
➢ Negligible performance impact; just “leave it on”

❖ Modular
➢ Adding instrumentation for new I/O interfaces or storage components is straightforward

What is Darshan?

4

How does Darshan work?

5

❖ Darshan records file access statistics
independently on each process

❖ At app shutdown, collect, aggregate,
compress, and write log data

❖ After job completes, analyze Darshan log data
➢ darshan-parser - provides complete text-format

dump of all counters in a log file
➢ PyDarshan - Python analysis module for Darshan

logs, including a summary tool for creating HTML
reports

❖ Originally designed for MPI applications, but in recent Darshan versions (3.2+) any
dynamically-linked executable can be instrumented
➢ In MPI mode, a log is generated for each app
➢ In non-MPI mode, a log is generated for each process

Using Darshan

6

Instrumenting apps with Darshan

❖ On many HPC platforms
(e.g., ALCF Theta, NERSC
Cori & Perlmutter, OLCF
Summit), Darshan is already
installed and typically
enabled by default

7

Traditional usage on HPC platforms

Darshan 3.3.0 is enabled by default on ALCF Theta

Darshan module can typically be explicitly loaded if
not available by default, e.g., Darshan 3.4.0 on

NERSC Perlmutter

Instrumenting apps with Darshan

❖ On many HPC platforms
(e.g., ALCF Theta, NERSC
Cori & Perlmutter, OLCF
Summit), Darshan is already
installed and typically
enabled by default
➢ Just compile and run

your apps like normal

8

Traditional usage on HPC platforms

E.g., compiling and running a simple example on
NERSC Perlmutter

Instrumenting apps with Darshan

❖ On many HPC platforms
(e.g., ALCF Theta, NERSC
Cori & Perlmutter, OLCF
Summit), Darshan is already
installed and typically
enabled by default
➢ Just compile and run

your apps like normal

9

Traditional usage on HPC platforms

Important caveats related to non-MPI usage:
● Requires dynamically-linked executables
● Non-MPI mode must be explicitly enabled

via env variable
○ export DARSHAN_ENABLE_NONMPI=1

● Some systems may have dated Darshan
versions that don’t properly support
non-MPI mode

Instrumenting apps with Darshan

❖ On many HPC platforms
(e.g., ALCF Theta, NERSC
Cori & Perlmutter, OLCF
Summit), Darshan is already
installed and typically
enabled by default
➢ Just compile and run your

apps like normal
➢ Logs are written to a

central repository for all
users when the app
terminates

10

Traditional usage on HPC platforms

‘darshan-config --log-path’ command can be
used to find output log directory. Directory is further

organized into year/month/day subdirectories.

Log file name includes username, app name, and job
ID for easy identification.

Instrumenting apps with Darshan

❖ In some circumstances, it may be necessary to roll your own install
➢ Darshan not installed or lacking necessary features
➢ Need to build Darshan in specific software environments (e.g.,

containers with old compilers)

❖ Beyond installing from source, Darshan is also available on Spack
➢ darshan-runtime: runtime instrumentation library linked with application
➢ darshan-util: log analysis utilities
➢ E.g., “spack install darshan-runtime”

❖ Once installed, users can LD_PRELOAD the darshan-runtime library
➢ Output logs are written to directory pointed to by

DARSHAN_LOG_DIR_PATH environment variable (defaults to $HOME)

11

Installing and using your own Darshan tools

Analyzing Darshan logs

12

❖ After locating your log, users can utilize Darshan log analysis tools for gaining
insights into application I/O behavior:

If you know what you’re looking for, darshan-parser can be a quick way to
extract important I/O details from a log, e.g., the 10 most heavily written files

Analyzing Darshan logs

13

❖ After locating your log, users can utilize Darshan log analysis tools for gaining
insights into application I/O behavior:

A more user-friendly starting
point is the Darshan job

summary tool. It can generate
a summary report for a log
containing useful graphs,
tables, and performance

estimates describing
application I/O behavior

Analyzing Darshan logs

14

❖ After locating your log, users can utilize Darshan log analysis tools for gaining
insights into application I/O behavior:

More details on the Darshan job
summary tool coming shortly!

Key Darshan instrumentation capabilities

15

Low-level I/O instrumentation

❖ Darshan provides in-depth instrumentation of
the lower layers of the traditional HPC I/O stack:
➢ MPI-IO parallel I/O interface
➢ POSIX file system interface
➢ STDIO buffered stream I/O interface
➢ Lustre striping parameters

❖ Captures fixed set of statistics, properties, and
timing info for each file accessed using these
interfaces

❖ Informs on key I/O performance characteristics
of foundational components of the HPC I/O
stack

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

Technologies

S
to

ra
ge

 a
bs

tra
ct

io
ns

16

Low-level I/O instrumentation

❖ Beyond its traditional capture mode, Darshan
offers key features for obtaining finer-grained
details of low-level I/O activity:
➢ Heatmap module: captures histograms of I/O

activity at each process using a fixed size
histogram

■ Available for POSIX, MPI-IO, and
STDIO interfaces by default in 3.4+
versions of Darshan

➢ DXT modules: captures full I/O traces at
each process using a configurable buffer size

■ Available for POSIX and MPI-IO
modules

■ Enabled using DXT_ENABLE_IO_TRACE
environment variable

Heatmaps showcase application I/O
intensity across time, ranks, and

interfaces – helpful for identifying hot
spots, I/O and compute phases, etc.

17

High-level I/O library instrumentation

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

Technologies

S
to

ra
ge

 a
bs

tra
ct

io
ns

❖ Darshan similarly provides in-depth
instrumentation of popular high-level I/O
libraries for HPC
➢ HDF5: detailed instrumentation of accesses to

HDF5 files and datasets available starting in
3.2+ versions

➢ PnetCDF: detailed instrumentation of
accesses to PnetCDF files and variables
available starting in 3.4.1+ versions

❖ Full-stack characterization allows deeper
understanding of app usage of I/O libraries,
as well as underlying performance
characteristics for these usage patterns

18

High-level I/O library instrumentation

I/O Hardware

Application

Parallel File System

Data Model Support

Transformations

Technologies

S
to

ra
ge

 a
bs

tra
ct

io
ns

❖ Darshan similarly provides in-depth
instrumentation of popular high-level I/O
libraries for HPC
➢ HDF5: detailed instrumentation of accesses to

HDF5 files and datasets available starting in
3.2+ versions

➢ PnetCDF: detailed instrumentation of
accesses to PnetCDF files and variables
available starting in 3.4.1+ versions

19

PnetCDF module contributed by
Wei-Keng Liao (NWU)

PyDarshan log analysis framework

20

PyDarshan log analysis framework

❖ Darshan has traditionally offered only the C-based darshan-util library and a
handful of corresponding tools to users for log file analysis
➢ Complicates development of custom Darshan analysis tools

❖ PyDarshan developed to simplify the interfacing of analysis tools with log data
➢ Use Python CFFI module to define bindings to the native darshan-utils C API
➢ Expose Darshan log data as dictionaries, pandas dataframes, and NumPy arrays

❖ PyDarshan should provide a richer ecosystem for development of Darshan
log analysis tools, either by users or by the Darshan team

PyDarshan development led by
Jakob Luttgau (UTK), Tyler Reddy

and Nik Awtrey (LANL)

21

Available via PyPI or Spack:
★ “pip install darshan”
★ “spack install py-darshan”

PyDarshan job summary tool

❖ PyDarshan includes a new job summary tool that is replacing the original
darshan-job-summary.pl script
➢ Generates detailed HTML reports summarizing application I/O behavior using

different plots, graphs, and statistics
➢ Builds off popular Python libraries like matplotlib (plotting), seaborn (plotting),

and mako (HTML templating)
❖ Users can generate summary reports for a given Darshan log file using the

following command:
➢ ‘python -m darshan summary <path_to_log_file>’
➢ Generates output HTML report matching input log file name

22

PyDarshan job summary tool

23 1. https://github.com/hpc-io/h5bench

Detailed job metadata

256 process (4 node) h5bench1 runs on NERSC Perlmutter. h5bench contains
lots of parameters (e.g., contiguous vs interleaved accesses, independent vs

collective I/O, synchronous vs asynchronous I/O, etc.) for controlling
characteristics of generated HDF5 workloads.

PyDarshan job summary tool

24

Heatmaps for visualizing I/O activity

Analyzing I/O behavior over time, ranks, and interfaces can offer key
insights into application I/O behavior.

Histograms
over time

Histograms
over ranks

PyDarshan job summary tool

25

Heatmaps for visualizing I/O activity

This example heatmap illustrates a typical MPI-IO collective I/O pattern.
All MPI ranks perform MPI-IO operations (left), but only a subset of

“aggregators” access the file via POSIX operations (right).

PyDarshan job summary tool

26

Heatmaps for visualizing I/O activity

Heatmaps can help quickly detect common I/O pitfalls.

I could have sworn I enabled collective I/O in HDF5.

PyDarshan job summary tool

27

Heatmaps for visualizing I/O activity

Heatmaps can help quickly detect common I/O pitfalls.

Oops, I enabled collective I/O, but forgot to tell Lustre to use more
than one stripe.

All I/O funneled
through rank 0

28

PyDarshan job summary tool
Average I/O cost across APIs

independent

● POSIX write
dominates

● MPI-IO/HDF5
negligible write
overheads

● HDF5 incurs
additional metadata
overhead (flushes?)

29

PyDarshan job summary tool
Average I/O cost across APIs

collectiveindependent

● POSIX write
dominates

● MPI-IO/HDF5
negligible write
overheads

● HDF5 incurs
additional metadata
overhead (flushes?)

● POSIX write
nearly negligible

● MPI-IO collective
algorithm cost
dominates

● No comparable
HDF5 metadata
overhead

30

PyDarshan job summary tool
Average I/O cost across APIs

collectiveindependent

In this head-to-head comparison, independent mode (~55 seconds avg. I/O time)
actually performs better than collective (~85 seconds avg. I/O time).

Collective I/O behavior affected by many factors (access patterns, FS parameters,
job scale, MPI-IO parameters, dynamic system state, etc.).

31

PyDarshan job summary tool
I/O performance estimates

collectiveindependent

32

PyDarshan job summary tool
I/O performance estimates

collective

While I/O cost plots are based on averages
across all processes, performance estimates
are based on the slowest observed process.

Average cost metrics aren’t the greatest at
quantifying collective I/O – we are working to
integrate more effective metrics into Darshan

(e.g. cost by slowest process).

33

PyDarshan job summary tool
More per-API I/O stats

MPI-IO

POSIX

Op
counts

Access size
histograms

independent mode

MPI-IO independent operations
mostly map 1-to-1 with POSIX

file operations.

Access sizes mirror the 512 MiB
accesses being made at the

HDF5 layer.

34

PyDarshan job summary tool
More per-API I/O stats

collective mode

MPI-IO

POSIX

Op
counts

Access size
histograms

768 MPI-IO collective operations
transform into nearly 400K POSIX

file operations.

POSIX access sizes now match
the collective I/O algorithm buffer

size (which equals the Lustre
stripe width, 1 MiB).

What’s next for Darshan?

35

DAOS instrumentation

36

❖ ALCF Aurora will feature Intel’s DAOS
storage system, a first-of-a-kind
object-based storage system for
large-scale HPC platforms
➢ Leverages both SCM and SSDs for storage

❖ Darshan instrumentation will provide
valuable insights into various ways apps
and I/O middleware can utilize DAOS

Various access methods for DAOS users.

Figure courtesy of Intel

DAOS instrumentation

37

❖ ALCF Aurora will feature Intel’s DAOS
storage system, a first-of-a-kind
object-based storage system for
large-scale HPC platforms
➢ Leverages both SCM and SSDs for storage

❖ Darshan instrumentation will provide
valuable insights into various ways apps
and I/O middleware can utilize DAOS
➢ Direct usage of POSIX-like DAOS file system

(libdfs) interface
Various access methods for DAOS users.

Figure courtesy of Intel

DAOS instrumentation

38

❖ ALCF Aurora will feature Intel’s DAOS
storage system, a first-of-a-kind
object-based storage system for
large-scale HPC platforms
➢ Leverages both SCM and SSDs for storage

❖ Darshan instrumentation will provide
valuable insights into various ways apps
and I/O middleware can utilize DAOS
➢ Direct usage of POSIX-like DAOS file system

(libdfs) interface
➢ Direct usage of native DAOS object (libdaos)

interface
Various access methods for DAOS users.

Figure courtesy of Intel

DAOS instrumentation

39

❖ ALCF Aurora will feature Intel’s DAOS
storage system, a first-of-a-kind
object-based storage system for
large-scale HPC platforms
➢ Leverages both SCM and SSDs for storage

❖ Darshan instrumentation will provide
valuable insights into various ways apps
and I/O middleware can utilize DAOS
➢ Direct usage of POSIX-like DAOS file system

(libdfs) interface
➢ Direct usage of native DAOS object (libdaos)

interface
➢ Legacy POSIX support using FUSE

Various access methods for DAOS users.

Figure courtesy of Intel

40

DAOS instrumentation

DAOS storage model. DAOS objects
can be accessed using either key-val or

array interfaces.

Figure courtesy of Intel

❖ The libdfs file interface is a natural fit for
Darshan’s traditional “record per-file”
instrumentation strategy

❖ But, instrumenting the native libdaos
object interface is a bit more complicated,
as DAOS objects can take multiple forms
➢ Array objects

■ Extent-based access, similar to files
➢ Key-val objects

■ Data accessed using arbitrary keys

41

DAOS instrumentation

DAOS storage model. DAOS objects
can be accessed using either key-val or

array interfaces.

Figure courtesy of Intel

❖ The libdfs file interface is a natural fit for
Darshan’s traditional “record per-file”
instrumentation strategy

❖ But, instrumenting the native libdaos
object interface is a bit more complicated,
as DAOS objects can take multiple forms
➢ Array objects

■ Extent-based access, similar to files
➢ Key-val objects

■ Data accessed using arbitrary keys

What helpful information could Darshan
provide regarding key access distributions of

DAOS key-val objects?

PyDarshan analysis enhancements
Enabling multi-log analysis

42

❖ Darshan analysis tools have traditionally
operated on a single input log, but
analysis across multiple logs is useful in
different contexts
➢ Analysis of workflows
➢ Analysis of arbitrary log collections

❖ We would like to support new
PyDarshan analysis capabilities
enabling reporting on I/O behavior
beyond the context of a single “job”

PyDarshan analysis enhancements

❖ Darshan analysis tools have traditionally
operated on a single input log, but
analysis across multiple logs is useful in
different contexts
➢ Analysis of workflows
➢ Analysis of arbitrary log collections

❖ We would like to support new
PyDarshan analysis capabilities
enabling reporting on I/O behavior
beyond the context of a single “job”

Enabling multi-log analysis

43

Heatmap visualization of an HEP multiprocess
analysis workflow (AthenaMP). 8 workers read

input data, while a shared writer process writes all
worker output data from shared memory.

Athena analysis contributed by Rui Wang (ANL).

PyDarshan analysis enhancements
Enabling multi-log analysis

44

Visualizing overall app I/O performance over
time to determine changes in I/O behavior.
Borrowed from an I/O analysis tool from the

TOKIO project that predated PyDarshan.

https://www.anl.gov/mcs/tokio-total-knowledge-of-io

G.K. Lockwood et al. "UMAMI: a recipe for
generating meaningful metrics through holistic I/O

performance analysis." PDSW’17.

❖ Darshan analysis tools have traditionally
operated on a single input log, but
analysis across multiple logs is useful in
different contexts
➢ Analysis of workflows
➢ Analysis of arbitrary log collections

❖ We would like to support new
PyDarshan analysis capabilities
enabling reporting on I/O behavior
beyond the context of a single “job”

https://www.anl.gov/mcs/tokio-total-knowledge-of-io

PyDarshan analysis enhancements

❖ Darshan’s native log format is optimized for efficient writing by apps
➢ Minimizes instrumentation overheads, but creates problems for log analysis tools

❖ We want to explore popular industry solutions like Apache Parquet/Arrow to
help transform Darshan data into more analysis-friendly formats
➢ Columnar format can save storage/memory and speed up analysis tasks, particularly when

analyzing lots of Darshan data (e.g., all logs collected at a facility)
➢ Integrations with popular data analysis frameworks like pandas and Dask

From write-optimized to analysis-friendly formats

45

Wrapping up

❖ Darshan is an invaluable tool for HPC application scientists, facilities, and I/O
researchers for better understanding application I/O behavior
➢ Detailed instrumentation of application access to multiple layers of the HPC I/O stack

■ High-level I/O library usage
■ MPI-IO transformations
■ File system access (i.e., POSIX)

➢ Helpful tools for extracting salient data from Darshan logs and summarizing for users

❖ Please reach out with any questions, comments, or feedback!

❖ Darshan website, docs: https://www.mcs.anl.gov/research/projects/darshan/
❖ Source code, issue tracking: https://github.com/darshan-hpc/darshan
❖ Darshan-users mailing list: darshan-users@lists.mcs.anl.gov

46

https://www.mcs.anl.gov/research/projects/darshan/
https://github.com/darshan-hpc/darshan
mailto:darshan-users@lists.mcs.anl.gov

Acknowledgement

This work was supported by the U.S. Department of Energy, Office of Science, Advanced Scientific Computing
Research, under Contract DE-AC02-06CH11357. This research used resources of the Argonne Leadership Computing
Facility at Argonne National Laboratory, which is supported by the Office of Science of the U.S. Department of Energy
under contract DE-AC02-06CH11357. This research also used resources and data generated from resources of the
National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the Office
of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

47

