Portable, Scalable, and High-Performance I/O Forwarding on Massively Parallel Systems

Jason Cope
copej@mcs.anl.gov
Computation and I/O Performance Imbalance

- Leadership-class computational scale:
 - >100,000 processes
 - Multi-core architectures
 - Lightweight operating systems on compute nodes

- Leadership-class storage scale:
 - >100 servers
 - Cluster file systems
 - Commercial storage hardware

- Compute and storage imbalance in current leadership-class systems hinders application I/O performance
 - 1 GB/s of storage throughput for every 10TF of computation performance gap
 - The gap has increased by a factor of 10 in recent years
DOE FastOS2 I/O Forwarding Scalability Layer (IOFSL) Project

Goal: Design, build, and distribute a scalable, unified high-end computing I/O forwarding software layer that would be adopted by the DOE Office of Science and NNSA.

- Reduce the number of file system operations that the parallel file system handles
- Provide function shipping at the file system interface level
- Offload file system functions from simple or full OS client processes to a variety of targets
- Support multiple parallel file system solutions and networks
- Integrate with MPI-IO and any hardware features designed to support efficient parallel I/O
Outline

- I/O Forwarding Scalability Layer (IOFSL) Overview
- IOFSL Deployment on Argonne’s IBM Blue Gene/P Systems
- IOFSL Deployment on Oak Ridge’s Cray XT Systems
- Optimizations and Results
 - Pipelining in IOFSL
 - Request Scheduling and Merging in IOFSL
 - IOFSL Request Processing
- Future Work and Summary
HPC I/O Software Stack

High-Level I/O Library
maps application abstractions onto storage abstractions and provides data portability.

HDF5, Parallel netCDF, ADIOS

I/O Forwarding
brides between app. tasks and storage system and provides aggregation for uncoordinated I/O.

IBM ciod

<table>
<thead>
<tr>
<th>Application</th>
<th>High-Level I/O Library</th>
<th>I/O Middleware</th>
<th>I/O Forwarding</th>
<th>Parallel File System</th>
<th>I/O Hardware</th>
</tr>
</thead>
</table>

I/O Middleware
organizes accesses from many processes, especially those using collective I/O.

MPI-IO

Parallel File System
maintains logical space and provides efficient access to data.

PVFS, PanFS, GPFS, Lustre
IOFSL Architecture

- **Client**
 - MPI-IO using ZoidFS ROMIO interface
 - POSIX using libsysio or FUSE

- **Network**
 - Transmit message using BMI over TCP / IP, MX, IB, Portals, and ZOID
 - Messages encoded using XDR

- **Server**
 - Delegates IO to backend file systems using native drivers or libsysio
Argonne’s IBM Blue Gene/P Systems

Gateway nodes: run parallel file system client software and forward I/O operations from HPC clients.
- 640 Quad core PowerPC nodes with 2 Gbytes of RAM each

Commodity network: primarily carries storage traffic.
- 900+ port 10 Gigabit Ethernet Myricom switch complex

Storage nodes: run parallel file system software and manage incoming FS traffic from gateway nodes.
- 136 two dual core Opteron servers with 8 Gbytes of RAM each

Enterprise storage: controllers and large racks of disks are connected via InfiniBand or Fibre Channel.
- 17 DataDirect S2A9900 controller pairs with 480 1 Tbyte drives and 8 InfiniBand ports per pair

Architectural diagram of the 557 TFlop IBM Blue Gene/P system at the Argonne Leadership Computing Facility.

Figure Courtesy of Robert Ross, ANL
IOFSL Deployment on Argonne’s IBM Blue Gene/P Systems

- Storage Server
- 10 Gbit Ethernet Network
- Compute Nodes
- PVFS2 servers
- GPFS servers
- PVFS2 clients
- GPFS clients
- IOFSL servers
- ZOID servers
- IOFSL clients
- ZOID clients
Initial IOFSL Results on Argonne’s IBM Blue Gene/P Systems

IOR Read

IOR Write
Initial IOFSL Results on Argonne’s IBM Blue Gene/P Systems

![Graph showing the relationship between Avg Bandwidth (MiB/s) and Clients for CIOD, non-collective, t=8M and IOFSL, TASK, t=8M. The graph includes data points for different numbers of clients, ranging from 64 to 1024.]
Oak Ridge’s Cray XT Systems

Enterprise Storage controllers and large racks of disks are connected via InfiniBand.

48 DataDirect S2A9900 controller pairs with 1 Tbyte drives and 4 InfiniBand connections per pair

InfiniBand
16 Gbit/sec
384 Gbytes/s

XT5
SeaStar2+ 3D Torus
9.6 Gbytes/sec

Storage Nodes
run parallel file system software and manage incoming FS traffic.
192 dual quad core Xeon servers with 16 Gbytes of RAM each

SION Network
provides connectivity between OLCF resources and primarily carries storage traffic.
3000+ port 16 Gbit/sec InfiniBand switch complex

Lustre Router Nodes
run parallel file system client software and forward I/O operations from HPC clients.
192 (XT5) and 48 (XT4)
one dual core Opteron nodes with 8 GB of RAM each

Jaguar XT5

Jaguar XT4

Other Systems (Viz, Clusters)

Figure Courtesy of Galen Shipman, ORNL
IOFSL Deployment on Oak Ridge’s Cray XT Systems
Initial IOFSL Results on Oak Ridge’s Cray XT Systems

![Graph showing IOFSL and XT4 performance]

- IOFSL, TASK, t=8M
- XT4, non-collective, t=8M
IOFSL Optimization #1: Pipeline Data Transfers

- **Motivation**
 - Limits on the amount of memory available on I/O nodes
 - Limits on the amount of posted network operations
 - Need to overlap network operations and file system operation for sustained throughput

- **Solution:** Pipeline data transfers between the IOFSL client and server
 - Negotiate the pipeline transfer buffer size
 - Data buffers are aggregated or segmented at the negotiated buffer size
 - Issue network transfer requests for each pipeline buffer
 - Reformat pipeline buffers into the original buffer sizes

- Currently serial and parallel pipeline modes
Pipeline Data Transfer Results for Different IOFSL Server Configurations

![Graph showing the relationship between pipeline buffer size (MiB) and average bandwidth (MiB/s) for two server configurations. The x-axis represents pipeline buffer size ranging from 256 MiB to 8192 MiB. The y-axis represents average bandwidth ranging from 0 MiB/s to 250 MiB/s. The graph includes two lines: one for Server Config #1 (SM Events) and another for Server Config #2 (TASK Events).]
IOFSL Optimization #2: Request Scheduling and Merging

- Request scheduling aggregates several requests into a bulk IO request
 - Reduces the number of client accesses to the file systems
 - With pipeline transfers, overlaps network and storage IO accesses

- Two scheduling modes supported
 - FIFO mode aggregates requests as they arrive
 - Handle-Based Round-Robin (HBRR) iterates over all active file handles to aggregate requests

- Request merging identifies aggregates noncontiguous requests into contiguous requests
 - Brute Force mode iterates over all pending requests
 - Interval Tree mode compares requests that are on similar ranges
IOFSL Request Scheduling and Merging Results with the IOFSL GridFTP Driver

![Diagram showing IOFSL components and their interactions]

![Graph showing average bandwidth (MiB/s) vs. number of clients]

- MPI Application
- MPI-IO
- Application
- FUSE
- IOFSL Server
- GridFTP Server
- WAN
- GridFTP Server
- GridFTP Server
- High-Performance Storage System
- Archival Storage System

Graph labels:
- Average Bandwidth (MiB/s)
- Number of Clients
- Requesting Scheduling
- No Request Scheduling
IOFSL Optimization #3: Request Processing and Event Mode

- Multi-Threaded Task Mode
 - New thread for executing each IO request
 - Simple implementation
 - Thread contention and scalability issues

- State Machine Mode
 - Use a fixed number of threads from a thread pool to execute IO requests
 - Divide IO requests into smaller units of work
 - Thread pools schedules IO requests to run non-blocking units of work (data manipulation, pipeline calculations, request merging)
 - Yield execution of IO requests on blocking resource accesses (network communication, timer events, memory allocations)
IOFSL Request Processing and Event Mode: Argonne’s IBM Blue Gene/P Results

![Graph showing Avg Bandwidth (MiB/s) vs. Clients]

- CIOD, non-collective, t=8M
- IOFSL, TASK, t=8M
- IOFSL, SM, t=8M
IOFSL Request Processing and Event Mode: Oak Ridge’s Cray XT4 Results

![Graph showing IOFSL, TASK, t=8M, IOFSL, SM, t=8M, and XT4, non-collective, t=8M results. The x-axis represents the number of clients ranging from 128 to 4096, and the y-axis represents the average bandwidth in MiB/s.]
Current and Future Work

- Scaling and tuning of IOFSL on IBM BG/P and Cray XT systems
- Collaborative caching layer between IOFSL servers
- Security infrastructure
- Integrating IOFSL with end-to-end I/O tracing and visualization tools for the NSF HECURA IOVIS / Jupiter project
Project Participants and Support

- **Argonne National Laboratory**: Rob Ross, Pete Beckman, Kamil Iskra, Dries Kimpe, Jason Cope
- **Los Alamos National Laboratory**: James Nunez, John Bent, Gary Grider, Sean Blanchard, Latchesar Ionkov, Hugh Greenberg
- **Oak Ridge National Laboratory**: Steve Poole, Terry Jones
- **Sandia National Laboratories**: Lee Ward
- **University of Tokyo**: Kazuki Ohta, Yutaka Ishikawa

- The IOFSL project is supported by the DOE Office of Science and NNSA.
IOFSL Software Access, Documentation, and Links

- IOFSL Project Website: http://www.iofsl.org
- Access to IOFSL Public git Repository:
 git clone http://www.mcs.anl.gov/research/projects/iofsl/git iofsl
- Recent publications
Questions?

Jason Cope

copej@mcs.anl.gov