7TH JLESC WORKSHOP Argonne &

AAAAAAAAAAAAAAAAAA

FAULT DETECTION AND GROUP MEMBERSHIP IN

HPC DATA SERVICES

SHANE SNYDER
Argonne National Laboratory
ssnyder@mcs.anl.gov

July 19, 2017
NCSA, Urbana, IL

STATE OF THE ART IN HPC DATA MANAGEMENT

= Apps generally use high-level I/O libraries to
transform workloads into a form suitable for
storing on a PFS

— Much work invested to optimize I/O performance
for specific workloads/architectures

= However, today's increasingly data-intensive
apps are ill-served by PFS designs that have

remained mostly stagnant for decades
— POSIX-compliance
— Inflexible designs that cannot efficiently leverage
hierarchical storage models and emerging
storage technologies (e.g., non-volatile)

— Poor fault detection/recovery
2

Dedicated application nodes

Dedicated, remote service nodes

00 8
O O EI_-DIZI\(/)i(éI(;s

00 00
:|00| |00
§ 00 00 E TCI;/IPE
:{00| |00

Few cores per node,

concurrency reduced further

by 1/O forwarding

Service reference:
/mnt/foo
(unified, static mount point)

Figure courtesy of
P. Carns

Argonne &

A PROGRESSIVE APPROACH TO HPC DATA
MANAGEMENT

» |Instead of a 'one-size-fits-all' PFS, provide
specialized services tailored for In-system service nodes
. . , . licati d : .
applications' specific data management .00 00T . | (possibly overiapping)

000000 0000000000

requirements : 000 1: NVRAM
— Approach based on composable, re-usable, : e T#h’ev'ces
and lightweight microservices for data : .
management : /#
- Services could be generic, supporting - 2888 [service reference(s)
: o o "Phil's K/V"
cIaSS|.caI HPC data managemeqt | == (. :>..Ph".s objects”
techniques (checkpoint-restart, in-situ) I el eceeceeces “phil's graph DB
. . Many cores per node, (multiple dynamic
 Or, app-specific services to handle high concurrency services in user space)
workloads that have traditionally been Figure courtesy of
problematic P. Carns

3 Argonne &

THE MOCHI PROJECT

» Vision: Enable rapid development/deployment of efficient HPC data management
services based on the microservice model we have described

— Develop re-usable building block microservices that form the foundation of many

distinct HPC data services
« Key-val stores, distributed object stores, pub-sub systems

— Adapt generic microservices to satisfy application needs (e.g., scale, consistency
model) and to efficiently utilize available system resources (storage hierarchies, burst
buffers)

— Present a coherent data management API that supports an application's native data
model while abstracting low-level service details

The Mochi project is a collaboration between ANL, The HDF Group, LANL, & CMU
http://www.mcs.anl.gov/research/projects/mochi/

4 Argonne &

MOCHI: ENABLING TECHNOLOGY

Argonne &

COMMUNICATION: MERCURY
A high-performance RPC framework for HPC systems

= Mercury is an RPC system for use in the development of high performance
system services.
— Portable across systems and network technologies
— Efficient bulk data movement to complement control messages
— Provides simplifications for service implementers:

* Remote procedure calls » No client/server role restrictions
« RDMA abstraction (or emulation) * No global fault domain
* Protocol encoding (MPI_COMM_WORLD)
» Clearly defined progress/event model
D SR r rue R et

RPC proc :

-— - \——
§ Bulk Data (RMA transfer) %

§ ?

Network Abstraction Layer 6 Argonneo

Developed by The HDF Group & ANL.
https://mercury-hpc.github.io/

CONCURRENCY: ARGOBOTS
A lightweight threading/tasking framework

= User-level threading: lightweight context switching t Argobots t
among many concurrent threads f Private Shared poo Prvte "\

Programming Models
(MPI, OpenMP, Charm++, PaRSEC, ...)

» Use multiple cores and control delegation of work
to those cores

= Key features for data services:

— Lets us track state of many concurrent operations
with simple service code paths and low OS resource
consumption

— Custom schedulers (i.e., to implement priorities, or
limit CPU usage) —

Lightweight

— Primitives that facilitate linkage to external WorkUnits | U] Usertevel @ Taskdet

resources

Execution |
Stream

Ctream

OEEE
Stream

- =

Processor core

http://argobots.org/
7 Argonne &

FAULT DETECTION AND GROUP MEMBERSHIP AS
A MICROSERVICE

Argonne &

SSG

Scalable Service Groups

= A generic group membership service developed as part of the Mochi project

= Allows for organizing sets of Mercury endpoints into logical, fault-tolerant
process groups
— These groups provide basis for deploying and referencing distributed services

= Key functionality:

— Bootstrapping process groups
 Available now: MPI communicator and config file based bootstrapping routines
» Future work: PMIx bootstrapping for production systems

— Maintaining collective group membership state as members dynamically join/leave
« At minimum, state includes the membership view, a mapping of group member

IDs — Mercury address information
— Detecting and notifying users of group member faults

https://xgitlab.cels.anl.gov/sds/ssg 9 Argonne &

SSG API

= Group bootstrapped by collectively calling ssg_group_create at all members

— Returns opaque ID that uniquely references group, and that internally encodes address
info on at least one group member

= Processes can dynamically add/remove themselves from the group using
ssg group_join & ssg group leave

= Non-group member processes can access the group view using ssg_group attach
— Attachment is envisioned for group "clients" -- i.e., processes that do not want to
become proper group members

= Simple group accessor routines like ssg _get group _self idand ssg get group size
provide details on a caller's local group view, while ssg_get addr can be called to map a
group member's ID to its Mercury address

10 Argonne &

EXAMPLE SERVICES DEPENDENT ON SSG

= Group communication abstractions
— Build overlay networks over SSG groups
for efficient collective RPCs
— Useful for common data reduction or
broadcast operations

= Pub-sub
— SSG groups reference publisher groups
that subscribers can attach to

= Service registry
— Apps query a known server address to

get a list of services (i.e., SSG groups)
currently available (think DNS)

11

roupame [roupi0

Service B OxC28A...

Service C 0x19DD...

A Mochi service registry indicating
location of SSG service groups

Argonne &

SSG FAULT DETECTION & GROUP UPDATES

» SSG includes an implementation of SWIM, a
protocol for detecting faults and managing

group membership

— Faults detected by periodically probing
random group members for liveness, rather
than heartbeats

— Protocol includes a suspicion mechanism to
avoid marking unresponsive members as
dead until some timeout has elapsed

— Membership updates disseminated using a

. source
‘ target

O subgroup
member

<€—>» direct ping
< — » indirect ping

gossip protocol piggybacking on the protocol's

ping messages lllustration of SWIM-style failure

detection protocol
A. Das et al. "SWIM: Scalable Weakly-consistent Infection-

style Process Group Membership Protocol." DSN '02. 2002. 45 Argonne &

SWIM PROTOCOL EVALUATION

» Observations:
— Failure detection times are mostly constant, irrespective of group size
— Update dissemination completes in O(log(n)) time, with n = group size
— Network load scales linearly with subgroup size, accuracy scales exponentially
— Accuracy can be preserved even in cases of extreme message loss

2 expected (analytical model) —e— §2500 ‘ 5% msg loss —o—
B & 1500 ']
3 'r 21000 1
o o
08 SWIM protocol g5t \ 1 SWIM
2 failure detection » e protocol false

(s)
- &
H\
H

t_dissem
o s
[4,]

HIH

1 & dissemination W2 1 positive rate &
. & = - time %15 i // 1 network load
] 3o f |

@0 é%- 6}(,, ,0"; 7 30%9 70‘96‘
number of servers 1 2 3 4 5 6

Snyder et al. "A Case for Epidemic Fault Detection and Group K (subgroup size)
Membership in HPC Storage Systems." PMBS '14. 2014. 13 Argﬁﬂﬂ%ﬁ

o o
T

AUGMENTING SWIM

» SWIM uses gossip internally for collectively maintaining the group view -- but

could we expose it for maintaining any generic group state?
— E.g., in a pub-sub service, a publisher group needs to maintain a consistent view of

subscribers to push topic updates to
— Increases communication efficiency, as app-specific group state can just be

piggybacked on SWIM's internal messages

» What if an application needs a strongly-consistent view of group membership

(i.e., ordering of membership updates is important)?
— Designate subset of group members to run a RAFT cluster to reach consensus on

ordering of group state changes
— The RAFT cluster can then lazily propagate state changes out to regular group

members using SWIM's gossip protocol

D. Ongaro et al. "In Search of an Understandable Consensus

Algorithm." USENIX Annual Technical Conference. 2014. 14 Argonne &

THANK YOU!

THIS WORK WAS SUPPORTED BY THE U.S. DEPARTMENT OF
ENERGY, OFFICE OF SCIENCE, ADVANCED SCIENTIFIC COMPUTING
RESEARCH, UNDER CONTRACT DE-AC02-06CH11357.

www.anl.gov Argonne &

NATIONAL LABORATORY

