
MCS CS SEMINAR SERIES

MOCHI PROJECT
OVERVIEW:

THE DEMOCRATIZATION OF
DATA SERVICES IN HPC

erhtjhtyhy

PHIL CARNS
Mathematics and Computer Science Division
Argonne National Laboratory

June 13, 2023

Virtual presentation

DISTRIBUTED SERVICES IN HPC

DISTRIBUTED SERVICES IN HPC

and the modern runtime ecosystem

3

▪ A distributed service aggregates a collection of on-

demand capabilities into a coherent whole, outside

of the scope of an application.

▪ This is an increasingly important part of the

runtime ecosystem for scientific computing.

▪ Why is this concept useful?

– Manage state beyond the lifetime of a single

application execution

– Mediate shared access to that state

– Decouple functionality from the application

(. ., “ f w ”)

– Enable access to off-node resources

PARALLEL FILE SYSTEMS

▪ Anyone who has used a large-scale HPC system has also used

a parallel file system.

▪ They are usually presented as large, high-performance storage volumes.

▪ I ’ O w ; ’ y f y ,

a much more flexible distributed object store.

▪ Parallel file systems are mission critical due to their broad use and stewardship

of persistent data.

▪ Fortunately, there are several mature,

sophisticated designs available!

The most successful examples of distributed services in HPC

4

IT’S A LOT OF RESPONSIBILITY
Design implications for broad PFS adoption

5

Crouching Figure of

Atlas, Baldassare

Tommaso Peruzzi

(MET, 1992.304)

▪ A platform- or facility-wide file system must present a

general-purpose API (usually POSIX files and directories).

▪ Conservative semantics are needed for the set of applications that

might (. ., y k f “j ”).

▪ The software must be sophisticated to manage concurrent storage, network, and

server access, redundancy, security, high concurrency, and much more.

▪ The Unix/Linux OS model calls for file systems to be closely tied to the operating

system for coherent access control.

Against all odds: parallel file systems are incredibly successful!

Why would we want anything different?

THE CASE FOR (DATA) SERVICE
SPECIALIZATION
Is one file system enough?

6
https://ar22.alcf.anl.gov/science/allocation-programs

▪ T y’ f z

by a wild diversity of applications, often several

combined into one workflow.

▪ I ’ ff y f

better served by a special-purpose service built to suit

their use case, API, and semantics.

▪ Simultaneously, hardware is changing quickly: how can

we quickly incorporate node-local storage, smart

devices, and persistent memory?

▪ PFSs have historically required decades of

 . I ’ f y

science communities to take this on.

… ENTER MOCHI

WHAT IS MOCHI, EXACTLY?

Mochi seeks to transform this data service monoculture into an ecosystem of

specialized services that are tailored to suit specific use cases and problem

domains. It accomplishes this by providing methodologies and tools for the rapid

development of distributed HPC data services.

▪ A collection of reusable, robust, performant microservices and components

▪ A methodology for composing them into novel, domain-specific services

▪ API bindings in C, C++, or Python

Mochi services are intended to augment, not replace, mission-critical parallel file

systems in the HPC runtime ecosystem.
8

MOCHI
A framework and methodology for customizable services

9

THE TEAM

10

Phil Carns, Matthieu Dorier, Rob Latham,
Shane Snyder, and Rob Ross (PI)
Argonne National Laboratory

Tyler Reddy, Kyle Roarty, Galen Shipman,
and Qing Zheng
Los Alamos National Laboratory

George Amvrosiadis, Chuck Cranor, and Ankush Jain
Carnegie Mellon University

* also long-time contributions from Jerome Soumagne of Intel, formerly The HDF Group

MOCHI’S TECHNICAL ROOTS

Mercury

▪ HPC-oriented RPC framework

▪ Developed by ANL and THG

▪ Enables efficient access to native network

transports for remote execution

Argobots

▪ User-level threading framework

▪ Developed by ANL & collaborators

▪ Enables efficient management of concurrent,

asynchronous execution paths

Mochi launched in 2015, but two key underpinnings predate it

11

Sangmin Seo Et al.,

“Argobots: A lightweight

low-level threading and

 k f w k”, 2018

Jerome Soumagne Et

 ., “

for Data Services at

Exascale”, 2020

EXAMPLES OF CURRENT
MOCHI COMPONENTS

12

Component Summary

Core

Argobots Argobots provides user-level thread capabilities for managing concurrency.

Mercury Mercury is a library implementing remote procedure calls (RPCs).

Margo Margo is a C library using Argobots to simplify building RPC-based services.

Thallium Thallium allows development of Mochi services using modern C++.

SSG SSG provides tools for managing groups of providers in Mochi.

Utilities

ABT-IO ABT-IO enables POSIX file access with the Mochi framework.

Bedrock Bedrock is a bootstrapping and configuration system for Mochi components.

ch_placement ch-placement is a library implementing multiple hashing algorithms.

Shuffle Shuffle provides a scalable all-to-all data shuffling service.

Microservices

BAKE Bake enables remote storage and retrieval of named blobs of data.

POESIE Poesie embeds language interpreters in Mochi services.

REMI REMI is a microservice that handles migrating sets of files between nodes.

Sonata Sonata is a Mochi service for JSON document storage based on UnQLite.

Yokan Yokan enables RPC-based access to multiple key-value backends.

Conveniently, the Spack

project (LLNL) emerged

around the same time as

Mochi and has proven

crucial for dependency

management.

13

AN RPC MODEL FOR MICROSERVICES

13

Clients ServersCommunication

request

(optional) bulk data

response

remote
function

● = “ ”

● Clients ask servers to execute

remote functions on their behalf.

● Function inputs and outputs are

encoded as needed.

RPC systems have been around in various forms for decades.

W ’ q w M ?

● Designed for very high concurrency

● Explicit data transfers (e.g., a fast path for bulk I/O operations)

● Support for HPC hardware and protocols

● User-space execution without escalated privileges

● Composability: combining and layering RPC-based components into a

coherent whole

14

AN EXAMPLE COMPOSITION

14

The Mobject distributed object store

KEY TECHNICAL HURDLES AND SOLUTIONS

16

FLEXIBLE COMPONENT PLACEMENT

Varying use case and deployment

scenarios call for flexibility in component

and microservice placement.

Possibly options include:

● Services on set-aside (remote) nodes

● Services co-located (local) with the

application

● Services embedded (same address

space) within the application

● Or more likely: some combination of

the three

Client Server

Node

Client Server

Node

Client Server

Node1 Node2

17

FLEXIBLE COMPONENT PLACEMENT

How do you avoid API complexity and

costly code changes when adapting

services to different scenarios?

The Mochi approach: “Every service API

call is an RPC”.

● API conventions and addressing do

not change for different deployments

or compositions.

● Mochi handles transparent transport

selection.

Client Server

Node

Client Server

Node

Client Server

Node1 Node2

RPC transport:
Function call &
memory copy

RPC transport:
Local pipe &
fast shared
memory

RPC transport:
HPC network
fabric & RDMA

18

Varying use case and deployment scenarios also call for flexibility

in mapping remote function execution to hardware execution units.

Possible concerns:

● Where should a server execute a

given RPC handler?

● Should you use more execution units?

● Should you use less execution units

to reserve capacity for other

on-node tasks?

● Should you throttle execution

according to HW capabilities?

PROVISIONING AND MAPPING TO EXECUTION
RESOURCES

rpc_handler_fn(...) {...}
RPC
handlers

OS threads

CPU cores

19

How do you avoid rewriting service logic for different RPC execution

scenarios?

The Mochi approach: “Every RPC handler is a user-level thread”.

● RPC handler functions are defined when

you register a new RPC type.

● Mochi will automatically execute these

handlers on user-level threads,

which map to operating system

threads, which map to CPU cores.

● In Mochi, the resource mapping

challenge is a configuration problem,

not a software architecture problem.

PROVISIONING AND MAPPING TO EXECUTION
RESOURCES

rpc_handler_fn(...) {...}
RPC
handlers

User-level
threads

OS threads

CPU cores

20

PERFORMANCE INTROSPECTION

Client Server

M
e

rc
u

ry

E
S

M
e

rc
u

ry

E
S

20

RPC invocation steps can be quite

complex under the covers (i.e.,

encoding, decoding, asynchronous

communication, context switches).

How should you approach

performance profiling?

Fortunately, the “Every service API

call is an RPC” and “Every RPC

handler is a user-level thread”

principles present unique

opportunities.

21

PERFORMANCE INTROSPECTION

Client Server

M
e

rc
u

ry

E
S

M
e

rc
u

ry

E
S

21

Message header injection and

thread-local storage enable implicit,

transparent, uniform propagation of:

● Timing information

● Context identifiers

● Lineage of composed RPCs

Performance data can be emitted

in JSON format at runtime with no

code changes.

The data can then be visualized in

Python and Jupyter Notebook.

RUNTIME CONFIGURATION

22

How to wire-up, group, and configure services

WHAT IS MOCHI USED FOR NOW,

AND WHERE DO WE GO FROM HERE?

EXAMPLE SERVICES BUILT WITH MOCHI

24

Category Service Institution Summary

Specialized file

systems

DeltaFS CMU Transient file system service fwith highly paralleled indexing

of file data and metadata

Unify LLNL &

ORNL

Suite of specialized, flexible file systems that can be included

 ’ j

GekkoFS JGU Mainz

& BSC

Temporary distributed file system for HPC applications

CHFS U. Tsukuba Ad hoc file system for persistent memory based on consistent

hashing

DelveFS JGU Mainz Semantic file system for object stores

Domain-specific

data mgmt

HEPnOS ANL & FNL Transient, in-memory, distributed storage system for high

energy physics (HEP) workflows

FlameStore ANL Storage for deep learning models

EXAMPLE SERVICES BUILT WITH MOCHI

25

Category Service Institution Summary

Alternative

data models

DAOS Intel HPC-oriented platform object store with support for

persistent memory

HXHIM LANL Hexadimensional hashing indexing middleware

Proactive Data

Containers

LBNL Object-centric data management system to take

advantage of deep memory and storage hierarchy

Mobject ANL In-system distributed object storage conforming to the

RADOS API

Data access

methods

DataSpaces U. Utah Programming system and data management framework

for coupled workflows

Hermes IIT, THG, & UIUC Hierarchical tiered storage and buffering management

Benvolio ANL I/O forwarding and transformation service

EXAMPLE SERVICES BUILT WITH MOCHI

26

Category Service Institution Summary

Performance

diagnostics

Chimbuko BNL Workflow-level scalable performance trace analysis tool

Symbiomon U. Oregon Integrated application/service performance monitoring

In situ analytics

Seer LANL Lightweight in situ wrapper library adding in situ capabilities to

simulations

Kitware Platform for ubiquitous access to visualization results during

runtime

Serviz U. Oregon Shared in situ visualization service

Colza ANL Elastic in situ visualization

▪ Elasticity:

– Dynamically reconfiguring and resizing services in response to application or

workflow needs

– Two dimensions: Vertical (on-node resources) and horizontal (across nodes)

– Requires several new core technologies: reconfigurability, instrumentation,

and resource migration

▪ Support for smart devices:

– Making use of programmable storage devices, network cards, and network

switches in the data path

– Exploring what algorithms are amenable to this technology

– Developing methods to portably incorporate smart devices when present

27

CURRENT RESEARCH DIRECTIONS

We are always looking for new use cases and collaborators!

Feel free to reach out to any members of the team if you have any

questions about Mochi or ideas for potential use cases.

 , x w k’ f w-on seminar entitled

“Mochi in Practice: Data Services for High-Energy Physics and

Elastic In Situ Visualization Workflows” by Matthieu Dorier.

28

YOUR HPC
SERVICE

HERE

THANK YOU!

THIS WORK WAS SUPPORTED BY THE U.S. DEPARTMENT OF ENERGY, OFFICE OF
SCIENCE, ADVANCED SCIENTIFIC COMPUTING RESEARCH, UNDER CONTRACT DE-
AC02-06CH11357.

	Slide 1: Mochi project overview: the democratization of data services in HPC
	Slide 2
	Slide 3: Distributed services in HPC
	Slide 4: Parallel file systems
	Slide 5: It’s a lot of responsibility
	Slide 6: The case for (data) service specialization
	Slide 7
	Slide 8: What is Mochi, exactly?
	Slide 9: Mochi
	Slide 10: The team
	Slide 11: Mochi’s Technical roots
	Slide 12: Examples of current Mochi Components
	Slide 13: AN RPC model for microservices
	Slide 14: An example Composition
	Slide 15
	Slide 16: Flexible Component placement
	Slide 17: Flexible Component placement
	Slide 18: Provisioning and mapping to execution resources
	Slide 19: Provisioning and mapping to execution resources
	Slide 20: Performance introspection
	Slide 21: Performance introspection
	Slide 22: Runtime configuration
	Slide 23
	Slide 24: Example Services built with Mochi
	Slide 25: Example Services built with Mochi
	Slide 26: Example Services built with Mochi
	Slide 27: Current research Directions
	Slide 28
	Slide 29

