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▪ A distributed service aggregates a collection of on-

demand capabilities into a coherent whole, outside 

of the scope of an application.

▪ This is an increasingly important part of the

runtime ecosystem for scientific computing.

▪ Why is this concept useful?

– Manage state beyond the lifetime of a single 

application execution

– Mediate shared access to that state

– Decouple functionality from the application

( . ., “  f w                  ”)

– Enable access to off-node resources



PARALLEL FILE SYSTEMS 

▪ Anyone who has used a large-scale HPC system has also used

a parallel file system.

▪ They are usually presented as large, high-performance storage volumes.

▪ I    ’    O           w          ;   ’           y            f     y    ,            

a much more flexible distributed object store.

▪ Parallel file systems are mission critical due to their broad use and stewardship 

of persistent data.

▪ Fortunately, there are several mature,

sophisticated designs available!

The most successful examples of distributed services in HPC
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IT’S A LOT OF RESPONSIBILITY
Design implications for broad PFS adoption
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Crouching Figure of 

Atlas, Baldassare 

Tommaso Peruzzi 

(MET, 1992.304) 

▪ A platform- or facility-wide file system must present a

general-purpose API (usually POSIX files and directories).

▪ Conservative semantics are needed for the set of applications that 

might         ( . .,         y    k    f                      “j           ”).

▪ The software must be sophisticated to manage concurrent storage, network, and 

server access, redundancy, security, high concurrency, and much more.

▪ The Unix/Linux OS model calls for file systems to be closely tied to the operating 

system for coherent access control.

Against all odds: parallel file systems  are incredibly successful!

Why would we want anything different?



THE CASE FOR (DATA) SERVICE 
SPECIALIZATION
Is one file system enough?
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https://ar22.alcf.anl.gov/science/allocation-programs

▪ T   y’         f                                    z   

by a wild diversity of applications, often several 

combined into one workflow.

▪ I ’        ff                         y  f                

better served by a special-purpose service built to suit 

their use case, API, and semantics.

▪ Simultaneously, hardware is changing quickly: how can 

we quickly incorporate node-local storage, smart 

devices, and persistent memory?

▪ PFSs have historically required decades of 

                       .  I ’                f      y 

science communities to take this on.



… ENTER MOCHI



WHAT IS MOCHI, EXACTLY?

Mochi seeks to transform this data service monoculture into an ecosystem of 

specialized services that are tailored to suit specific use cases and problem 

domains. It accomplishes this by providing methodologies and tools for the rapid 

development of distributed HPC data services. 

▪ A collection of reusable, robust, performant microservices and components

▪ A methodology for composing them into novel, domain-specific services

▪ API bindings in C, C++, or Python

Mochi services are intended to augment, not replace, mission-critical parallel file 

systems in the HPC runtime ecosystem.
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MOCHI
A framework and methodology for customizable services
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THE TEAM
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Phil Carns, Matthieu Dorier, Rob Latham, 
Shane Snyder, and Rob Ross (PI)
Argonne National Laboratory

Tyler Reddy, Kyle Roarty, Galen Shipman,
and Qing Zheng
Los Alamos National Laboratory

George Amvrosiadis, Chuck Cranor, and Ankush Jain
Carnegie Mellon University

* also long-time contributions from Jerome Soumagne of Intel, formerly The HDF Group



MOCHI’S TECHNICAL ROOTS

Mercury

▪ HPC-oriented RPC framework

▪ Developed by ANL and THG

▪ Enables efficient access to native network 

transports for remote execution

Argobots

▪ User-level threading framework

▪ Developed by ANL & collaborators

▪ Enables efficient management of concurrent, 

asynchronous execution paths

Mochi launched in 2015, but two key underpinnings predate it
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Sangmin Seo Et al., 

“Argobots: A lightweight 

low-level threading and 

   k    f    w  k”, 2018

Jerome Soumagne Et 

  ., “              

for Data Services at 

Exascale”, 2020



EXAMPLES OF CURRENT
MOCHI COMPONENTS
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Component Summary

Core

Argobots Argobots provides user-level thread capabilities for managing concurrency.

Mercury Mercury is a library implementing remote procedure calls (RPCs). 

Margo Margo is a C library using Argobots to simplify building RPC-based services.

Thallium Thallium  allows development of Mochi services using modern C++.

SSG SSG provides tools for managing groups of providers in Mochi. 

Utilities

ABT-IO ABT-IO enables POSIX file access with the Mochi framework.

Bedrock Bedrock is a bootstrapping and configuration system for Mochi components.

ch_placement ch-placement is a library implementing multiple hashing algorithms.

Shuffle Shuffle provides a scalable all-to-all data shuffling service.

Microservices

BAKE Bake enables remote storage and retrieval of named blobs of data. 

POESIE Poesie embeds language interpreters in Mochi services.

REMI REMI is a microservice that handles migrating sets of files between nodes.

Sonata Sonata is a Mochi service for JSON document storage based on UnQLite.

Yokan Yokan enables RPC-based access to multiple key-value backends.

Conveniently, the Spack 

project (LLNL) emerged 

around the same time as 

Mochi and has proven 

crucial for dependency 

management.
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AN RPC MODEL FOR MICROSERVICES
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Clients ServersCommunication

request

(optional) bulk data

response

remote
function

●     = “                     ”

● Clients ask servers to execute 

remote functions on their behalf.

● Function inputs and outputs are 

encoded as needed.

RPC systems have been around in various forms for decades.

W   ’     q           w M                ?

● Designed for very high concurrency

● Explicit data transfers (e.g., a fast path for bulk I/O operations)

● Support for HPC hardware and protocols

● User-space execution without escalated privileges

● Composability: combining and layering RPC-based components into a 

coherent whole
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AN EXAMPLE COMPOSITION
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The Mobject distributed object store



KEY TECHNICAL HURDLES AND SOLUTIONS
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FLEXIBLE COMPONENT PLACEMENT

Varying use case and deployment 

scenarios call for flexibility in component 

and microservice placement. 

Possibly options include:

● Services on set-aside (remote) nodes

● Services co-located (local) with the 

application

● Services embedded (same address 

space) within the application

● Or more likely: some combination of 

the three

Client Server

Node

Client Server

Node

Client Server

Node1 Node2
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FLEXIBLE COMPONENT PLACEMENT

How do you avoid API complexity and 

costly code changes when adapting 

services to different scenarios?

The Mochi approach: “Every service API 

call is an RPC”.

● API conventions and addressing do 

not change for different deployments 

or compositions. 

● Mochi handles transparent transport 

selection.

Client Server

Node

Client Server

Node

Client Server

Node1 Node2

RPC transport:
Function call & 
memory copy

RPC transport:
Local pipe & 
fast shared 
memory

RPC transport:
HPC network 
fabric & RDMA
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Varying use case and deployment scenarios also call for flexibility 

in mapping remote function execution to hardware execution units.

Possible concerns:

● Where should a server execute a

given RPC handler?

● Should you use more execution units? 

● Should you use less execution units

to reserve capacity for other

on-node tasks?

● Should you throttle execution

according to HW capabilities?

PROVISIONING AND MAPPING TO EXECUTION 
RESOURCES

rpc_handler_fn(...) {...}
RPC
handlers

OS threads

CPU cores
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How do you avoid rewriting service logic for different RPC execution 

scenarios?

The Mochi approach: “Every RPC handler is a user-level thread”.

● RPC handler functions are defined when

you register a new RPC type.

● Mochi will automatically execute these

handlers on user-level threads,

which map to operating system

threads, which map to CPU cores.

● In Mochi, the resource mapping

challenge is a configuration problem,

not a software architecture problem.

PROVISIONING AND MAPPING TO EXECUTION 
RESOURCES

rpc_handler_fn(...) {...}
RPC
handlers

User-level 
threads

OS threads

CPU cores
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PERFORMANCE INTROSPECTION
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RPC invocation steps can be quite 

complex under the covers (i.e., 

encoding, decoding, asynchronous 

communication, context switches).

How should you approach 

performance profiling? 

Fortunately, the “Every service API 

call is an RPC” and “Every RPC 

handler is a user-level thread” 

principles present unique 

opportunities.
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PERFORMANCE INTROSPECTION
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Message header injection and 

thread-local storage enable implicit, 

transparent, uniform propagation of:

● Timing information

● Context identifiers

● Lineage of composed RPCs

Performance data can be emitted

in JSON format at runtime with no 

code changes.

The data can then be visualized in 

Python and Jupyter Notebook.



RUNTIME CONFIGURATION
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How to wire-up, group, and configure services



WHAT IS MOCHI USED FOR NOW,

AND WHERE DO WE GO FROM HERE?



EXAMPLE SERVICES BUILT WITH MOCHI
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Category Service Institution Summary

Specialized file 

systems

DeltaFS CMU Transient file system service fwith highly paralleled indexing 

of file data and metadata

Unify LLNL & 

ORNL

Suite of specialized, flexible file systems that can be included 

         ’  j  

GekkoFS JGU Mainz 

& BSC

Temporary distributed file system for HPC applications

CHFS U. Tsukuba Ad hoc file system for persistent memory based on consistent 

hashing

DelveFS JGU Mainz Semantic file system for object stores

Domain-specific 

data mgmt

HEPnOS ANL & FNL Transient, in-memory, distributed storage system for high 

energy physics (HEP) workflows

FlameStore ANL Storage for deep learning models



EXAMPLE SERVICES BUILT WITH MOCHI
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Category Service Institution Summary

Alternative 

data models

DAOS Intel HPC-oriented platform object store with support for 

persistent memory

HXHIM LANL Hexadimensional hashing indexing middleware

Proactive Data 

Containers

LBNL Object-centric data management system to take 

advantage of deep memory and storage hierarchy

Mobject ANL In-system distributed object storage conforming to the 

RADOS API

Data access 

methods

DataSpaces U. Utah Programming system and data management framework 

for coupled workflows

Hermes IIT, THG, & UIUC Hierarchical tiered storage and buffering management

Benvolio ANL I/O forwarding and transformation service



EXAMPLE SERVICES BUILT WITH MOCHI
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Category Service Institution Summary

Performance 

diagnostics

Chimbuko BNL Workflow-level scalable performance trace analysis tool

Symbiomon U. Oregon Integrated application/service performance monitoring

In situ analytics

Seer LANL Lightweight in situ wrapper library adding in situ capabilities to 

simulations

Kitware Platform for ubiquitous access to visualization results during 

runtime

Serviz U. Oregon Shared in situ visualization service

Colza ANL Elastic in situ visualization



▪ Elasticity:

– Dynamically reconfiguring and resizing services in response to application or 

workflow needs

– Two dimensions: Vertical (on-node resources) and horizontal (across nodes)

– Requires several new core technologies: reconfigurability, instrumentation, 

and resource migration

▪ Support for smart devices:

– Making use of programmable storage devices, network cards, and network 

switches in the data path

– Exploring what algorithms are amenable to this technology

– Developing methods to portably incorporate smart devices when present

27

CURRENT RESEARCH DIRECTIONS



We are always looking for new use cases and collaborators!

Feel free to reach out to any members of the team if you have any 

questions about Mochi or ideas for potential use cases.

    ,                     x  w  k’  f    w-on seminar entitled

“Mochi in Practice: Data Services for High-Energy Physics and 

Elastic In Situ Visualization Workflows” by Matthieu Dorier.

28

YOUR HPC
SERVICE

HERE
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