
Mochi in practice:
Developing data services for high-energy physics and
elastic in situ visualization workflows

Argonne MCS Seminar – JUNE 20, 2023

MATTHIEU DORIER, Software Development Specialist in the RADIX-IO team

1

In last week’s episode: the Mochi concept

2

3

The Mochi methodology

How to rapidly develop data services

The HEPnOS storage service

A custom service for high energy
physics workflows

Autotuning a Mochi service

Using the DeepHyper AutoML
framework to tune HEPnOS

Towards elastic data services

The Colza elastic in situ visualization
framework

The Mochi methodology
Rapidly developing custom data services

Mochi: Composing Data Services for High-Performance Computing Environments, Robert B Ross, George
Amvrosiadis, Philip Carns, Charles D Cranor, Matthieu Dorier, Kevin Harms, Greg Ganger, Garth Gibson, Samuel K
Gutierrez, Robert Latham, Bob Robey, Dana Robinson, Bradley Settlemyer, Galen Shipman, Shane Snyder, Jerome
Soumagne, Qing Zheng, Journal of Computer Science and Technology (Springer JCST)

4

Services and Components

What is a Mochi component?

● Provides a single functionality (e.g., key/value storage)
● Accessible via RPC/RDMA
● Shares process resources with other components
● Multiple backend implementations for the functionality

What is a Mochi service?

● Specific composition of Mochi components
● Specific (usually application-tailored) interface on top
● Specific data semantics and access requirements

5

key/value
storage

RPC

Distributed Data Service

Interface

The Mochi methodology

The Mochi methodology
revolves around a dialogue
between service implementers
and service users to understand
their applications and use-cases,
craft a relevant API, reuse
existing components and
develop new ones as needed,
with composability, reusability,
and configurability in mind

Designing a Mochi service

Service
requirementsData organization
Metadata
organization
User interface

User requirements

Data model
Access Pattern
Consistency guaranties
Fault tolerance

Composition,
interfacing, evaluation

Bedrock or glue-code
API implementation
Evaluation and testing

Components

Existing components
New backends
New components

6

Components: don’t reinvent the wheel!

mochi-yokan Key/value and document storage

mochi-bake Blob storage

mochi-poesie Embedded scripting

mochi-abt-io Wrappers for POSIX I/O

mochi-remi File migration

mochi-ssg Gossip-based failure detection / group membership

mochi-raft Replicated state machine

mochi-bedrock Bootstrapping and configuration

7Sharing components in the community = everyone benefits from contributions

Oh, you want to implement a new component?
Starting project with the annoying
code already filled in so you can
focus on what matters:

● The API
● The features

The templates als provide
- Unit tests (catch2)
- Github actions for

automated testing and code
coverage (codecov.io)

Rely on spack for dependencies
(spack.yaml) and on cmake for
building the code

8

{

 "margo" : {

 "mercury" : { },

 "argobots" : {

 "abt_mem_max_num_stacks" : 8,

 "abt_thread_stacksize" : 2097152,

 "pools" : [

 {

 "name" : "my_rpc_pool",

 "kind" : "fifo_wait",

 "access" : "mpmc"

 }

],

 "xstreams" : [

 {

 "name" : "my_rpc_xstream",

 "cpubind" : 2,

 "affinity" : [2, 3, 4, 5],

 "scheduler" : {

 "type" : "basic_wait",

 "pools" : ["my_rpc_pool"]

 }

 }

]

 },

 "progress_pool" : "__primary__",

 "rpc_pool" : "my_rpc_pool"

 },

 "abt_io" : [

 {

 "name" : "my_abt_io",

 "pool" : "__primary__"

 }

],

 "ssg" : [

 {

 "name" : "mygroup",

 "bootstrap" : "init",

 "group_file" : "mygroup.ssg"

 }

],

 "libraries" : {

 "module_a" : "examples/libexample-module-a.so",

 "module_b" : "examples/libexample-module-b.so"

 },

 "clients" : [

 {

 "name" : "ClientA",

 "type" : "module_a",

 "config" : {},

 "dependencies" : {}

 }

],

 "providers" : [

 {

 "name" : "ProviderA",

 "type" : "module_a",

 "provider_id" : 42,

 "pool" : "__primary__",

 "config" : {},

 "dependencies" : {}

 },

 {

 "name" : "ProviderB",

 "type" : "module_b",

 "provider_id" : 33,

 "pool" : "__primary__",

 "config" : {},

 "dependencies" : {

 "ssg_group" : "mygroup",

 "a_provider" : "ProviderA",

 "a_local" : ["ProviderA@local"],

 "a_client" : "module_a:client"

 }

 }

]

}

Composition with Bedrock: example configuration

9

Advantages of Bedrock

Composition
● Describe it in JSON (or programmatically in Python or Jx9)
● Decouples threading/scheduling aspects from functionalities aspects

Interface
● Query the configuration any time via RPC
● Change the configuration (add/remove components, wire them differently)
● Critical when exploring the parameter space of a service

10

Ok, do you have a concrete example of
applying this methodology?

11

The HEPnOS storage service
A custom service for high energy physics workflows

HEPnOS: a Specialized Data Service for High Energy Physics Analysis, Sajid Ali, Steven Calvez, Philip Carns, Matthieu
Dorier, Pengfei Ding, James Kowalkowski, Robert Latham, Andrew Norman, Marc Paterno, Robert Ross, Saba Sehrish,
Shane Snyder, Jerome Soumagne. ESSA Workshop, May 14th, 2023, St. Petersburg, Florida, USA

12

Fermilab’s accelerator complex produces the
most intense (muon) neutrino beam in the world
and sends it through the earth to northern
Minnesota.

Moving at close to the speed of light, the
neutrinos make the 800-km journey in less than
three milliseconds.

When a neutrino interacts in the NOνA detector
in Minnesota, it creates distinctive particle
tracks.

The NOvA experiment

Credit: Maria Manrique Plata, NOvA in 10 minutes,
 New Perspectives 2022 13

Credit: Maria Manrique Plata, NOvA in 10 minutes, New Perspectives 2022

Scintillator detectors

14

● Classify types of interactions based on patterns found in the detector:
■ Is it a muon or electron neutrino?
■ Is it a charged current or a neutral current interaction?

● Classify a detector event by comparing its cell energy pattern to a library of 77M
simulated events cell energy patterns, choosing 10K that are “most similar”.

● Compare the pattern of energy (hit) deposited in the cells of one event with the
pattern in another event.

● Note: the “most similar” metric is motivated by an electrostatic analogy: energy
comparison for two systems of point charges laid on top of each other.

Physics task at hand

15

Present day analysis maps the work onto computer cores by assigning each core one file
(which contains many events).

This limits the maximum number of cores that can be used for analyzing a dataset.

The goal is to remove this bottleneck and allow for faster processing of datasets by
harnessing HPC resources.

HPC clusters have nodes that are connected by low latency, high bandwidth
interconnects.

Goals: Harness HPC resources

16

Enters HEPnOS

17

High-Energy Physics' new Object Store: Architecture

Architecture of HEPnOS: (Left) Client stack, (Right) Server stack

18

High-Energy Physics' new Object Store: Architecture

Architecture of HEPnOS: (Left) Client stack, (Right) Server stack

● Write-once, read-many access
● Bulk ingest and iterative access
● Eliminates software artifacts related to the filesystem

and grid computing.
● Parallelism expressed at the event level instead of file

level, allowing for better load balancing

19

Dataset A

Run 1

SubRun 1

Event 1

Event 2

SubRun 2

Product P2

Product P1

C++ object, stored without orderingStored with lexicographic ordering

Dataset DB

Run DB

Subrun DB

Event DB

Product DB

Product DB

Product DB

Product DB

Data organization

Yokan providers in a HEPnOS server instance

Dataset DBDataset DB

Run DBRun DB

Subrun DBSubrun DB

Event DBEvent DB

20

Example of HEPnOS’s interface

21

// initialize a handle to the HEPnOS datastore

auto datastore = hepnos::DataStore::connect("connection.json");

// access a nested dataset

hepnos::DataSet ds = datastore["path/to/dataset"];

hepnos::Run run = ds[43]; // access run 43 in the dataset

hepnos::SubRun subrun = run[56]; // access subrun 56

hepnos::Event ev = subrun[25]; // access event 25

// iterate over the subruns in a run

// using a C++ range-based for

for(auto& subrun : run) { ... }

Example of HEPnOS’s interface

22

struct Hit {

float energy; // member variables

 …
// serialization function for boost to use

template<typename A>

void serialize(A& a, unsigned long version) {

ar & energy;

 …
 }

};

...

hepnos::Event ev = subrun[25]; // access event 25

// store data (an std::vector of Hits)

st::vector<Hit> vh1 = ...;

ev.store("mylabel", vh1);

// load data

std::vector<Hit> vh2;

sv.load("mylabel", vh2);

Set aside some of the compute nodes to run the
HEPnOS Server.

Load the data into the HEPnOS server.

Call the processing function on “events” on the
client nodes, with the HEPnOS Parallel Event
Processor.

Re-run the analysis as needed, without needing
to reload data into the server!

New workflow with HEPnOS

23

Parallel Event Processor
Task distribution

Client Nodes

HEPnOS server

Loader MPI process
Non-loader MPI process

Server Nodes

Subset of the MPI ranks are designated as
“loader” ranks

Loader ranks fetch the “events” from the
datastore (in batches) and collectively
provide a distributed queue

All cores fetch events (in batches) from the
queue

Implicit load-balancing at the event level

Desired products are pre-loaded by all the
ranks, in batch, in the background

Remaining ranks
pull from distributed
queue

Loader ranks
fetching events

All the caller has to provide is a processing function to invoke on all the events! 24

Experimental Setup: Dataset and Platform

Dataset of 1929 files containing 4,359,414 events and
17,878,347 slices; size: ~0.2TB, representing ~1.1% of the
total data (duplicated 4x for scaling studies).

File-based workflow with the Python multiprocessing
module used to map files to cores, with cores being idle at
larger node counts.

HEPnOS-based workflow using two storage backends via
the Yokan provider:

○ In-memory backend (using the C++ std::map)

○ Node-local SSD backend via the RocksDB library
25

Throughput as a function of # nodes

Performance of HEPnOS with either
backend is better than the
file-based workflow.

In-memory backend of HEPnOS
achieves ~85% scaling efficiency at
128 nodes.

Typical data sizes for this workflow
in production would allow for the
usage of the in-memory backend.

26

Throughput as a function of # files

File-based workflow is unable to harness
all the available cores with 1929 files
where only ~24% of cores are used.

By using the HEPnOS-based workflow,
we are better able to utilize compute
resources.

27

How did you tune this thing?

28

Manual tuning efforts (it’s hard!)

Callpath ancestry appended to RPCs
allows tracking and ranking distributed
callpaths (e.g., by time in the callpath)

Performance
variables exported
by Mercury in
conjunction with ULT
data allow detailed
analysis of timing.

29

29

Autotuning a Mochi service
Using the DeepHyper framework to tune HEPnOS

MATTHIEU DORIER, ROMAIN EGELE, PRASANNA BALAPRAKASH, JAEHOON KOO,
SANDEEP MADIREDDY, SRINIVASAN RAMESH, ALLEN D. MALONY, and ROB ROSS

30

Event Selection Workflow Parameter Space

31

Let’s automatize: black-box tuning with DeepHyper

Parallel Asynchronous Bayesian Optimization

● Many instances evaluated in parallel
● Asynchronous updates

https://deephyper.readthedocs.io
32

https://deephyper.readthedocs.io

But ML-based autotuning is not new…

Contribution: use transfer learning to
leverage past autotuning!

34

Five experimental setups

1. Initial: only the first step of the workflow, on 4 nodes per instance
○ 11 parameters

2. Full workflow: 2-steps workflow on 4 nodes per instance
○ 16 parameters, w/ and w/o transfer-learning from setup 1

3. More parameters: 2-steps workflow on 4 nodes with more parameters
○ 20 parameters, w/ and w/o transfer-learning from setup 2

4. Full workflow with 8 nodes per instance
○ 20 parameters, w/ and w/o transfer-learning from setup 3

5. Full workflow with 16 nodes per instance
○ 20 parameters, w/ and w/o transfer-learning from setup 4

35

Highlight: transfer-learning to larger search space

From 1-step to 2-step workflow
(11 to 16 parameters) on 4 nodes per instance

2-step workflow on 4 nodes per instance
From 16 to 20 parameters

37

The competition

● GPTune (https://github.com/gptune/GPTune)
○ [Liu et al, 2021] GPTune: multitask learning for autotuning exascale applications

(PPoPP 2021)
○ Uses a Gaussian Process surrogate model (O(n3) complexity)
○ Only parallelizes the initial random search

● HiPerBOt (code provided privately by its authors)
○ [Menon et al, 2020] Auto-tuning parameter choices in HPC applications using

Bayesian optimization (IPDPS 2020)
○ No parallelization

● We also implemented Gaussian Process in DeepHyper for
comparison with the default Random Forest

40

https://github.com/gptune/GPTune

Highlight result: DeepHyper outperforms its
competitors

DeepHyper outperforms GPtune and
HiPerBOt because of its use of parallelism
and its asynchronous model updates

Transfer learning is beneficial to both
DeepHyper and GPtune, but (strangely)
damaging to HiPerBOt’s results

With parallelism enabled, DeepHyper allows
doing many more evaluations than its
competitors

42

Bringing elasticity to Mochi services
Colza: an elastic in situ visualization framework

43

Deep Water Impact

● Asteroid crashing into the ocean
● Unstructured meshes getting

increasingly complex as the
simulation progresses

● More and more data to store
● More and more complicated to render

We need to be able to add
in situ resources
incrementally as the
simulation progresses

44

Current in situ frameworks are not built for elasticity

Static algorithms

● Analysis and visualization algorithms
assume a fixed number of processes

● But they have been optimized for
decades, we can’t just throw them away

● Restart the workflow?
● Change the number of processes

between simulation iterations?

Reliance on MPI

● All the in situ libraries and frameworks
today rely on MPI, which doesn’t allow
adding and removing processes from a
communicator dynamically

● Some frameworks (e.g. Damaris) split
MPI_COMM_WORLD, making it hard to
rescale the analysis part without
changing the simulation

Solution: replace MPI in existing frameworks with a communication
layer that enables elasticity

45

How tightly coupled to MPI are existing frameworks?

Many frameworks already abstract communications, to some degree

● VTK/ParaView ⇒ vtkCommunicator, vtkMultiProcessController
● IceT ⇒ IceTCommunicator
● Damaris ⇒ Reactor, Channel

With a bit more work

● DIY ⇒ communicator class relying on MPI could be made abstract
● VisIt ⇒ relies on VTK but hides it under a C interface expecting MPI_Comm

Some are too tightly reliant on MPI
● Ascent ⇒ Solution: use PMPI interface to overwrite MPI functions

46

The Colza in situ framework
● Colza Provider: lives in each Colza server

node, responsible for managing pipelines,
receiving RPCs and directing them to
pipelines

● Pipelines: user-provided object, loadable
via plugins, implements
analysis/visualization tasks

● SSG (Scalable Service Groups): Group
membership component, based on the
SWIM gossip protocol, notifies the
providers when nodes are added/removed

● MoNA (Messaging over NA):
implementation of MPI-like collective
algorithms on top of NA, the networking
layer of the Mercury RPC library

47

Colza’s simulation API

activate(iteration): tells all the Colza servers that the iteration of analysis
is about to start. The group of Colza processes is no longer allowed to change.
Implements two-phase commit to ensure that all the Colza servers have a
consistent view of the group.

stage(iteration, data, metadata): sends data to the pipeline(s) using
RDMA. The receiving pipeline instance is determined using a user-provided
hashing function on the metadata.

execute(iteration): executes the pipeline’s code.

deactivate(iteration): tells all the Colza servers that the iteration of
analysis is completed. Processes may join and leave until the next activate call.

48

Collective communication with MoNA

Based on NA, Mercury’s networking layer

● Uses unexpected messages for small messages
● Switches to rendez-vous for larger messages
● Switches to RDMA for even bigger messages (thresholds are configurable)

Collective operations

● Same as MPI (bcast, reduce, gather, etc.)
● Currently implemented using naive algorithms or inspired by MPICH

In an elastic context

● No “World” communicator
● Communicators can be built from any list of Mercury addresses
● Easy to rebuild communicators when processes join and leave

49

Highlight: AMR-Wind on ANL’s Theta

Visualization pipeline implemented using
Ascent

MPI replaced by overloading PMPI functions
to redirect them to MoNA

AMR-Wind (MoNA vs MPI)
Colza deploying on 1 to 4 nodes, using
either MoNA or MPI

50

Highlight: AMR-Wind on ANL’s Theta

Visualization pipeline implemented using
Ascent

MPI replaced by overloading PMPI functions
to redirect them to MoNA

Elasticity experiment: we start with 1 Colza
server and add a new one every 120
seconds

Elasticity allows selecting the desired
performance level

AMR-Wind (elastic in situ)
Colza deploying on 1 to 4 nodes, adding one
node every 120 seconds

51

Highlight: Deep Water Impact on NERSC’ Cori

Visualization pipeline implemented using
ParaView Catalyst

Rendering time maintained below 20
seconds (for iterations that don’t have to
initialize a new server)

Overhead of initializing VTK in new
processes when they are added

Showcases the benefit of elasticity to
maintain in situ analysis time under some
time constraint

Deep Water Impact (elastic)
Starting with 1 server (8 processes), we add
a new server with 8 processes every other
iteration starting from iteration 13

52

Possible triggers of elasticity

User-driven

● Add/remove resources depending on what the user wants to do

Performance-driven

● Try to achieve full overlap between simulation and analysis

Data-driven

● Perform more complex analysis when interesting data appears

Platform-driven

● Allow the job scheduler to add/reclaim nodes to optimize resources
53

Conclusion

54

The future is bright!

Mochi, componentization, and composition have
accelerated our pace of R&D and collaborations

Smart devices, AI, and complex workflows set the stage
for another decade of interesting challenges

55

THIS WORK IS IN PART SUPPORTED BY THE DIRECTOR, OFFICE OF ADVANCED SCIENTIFIC COMPUTING
RESEARCH, OFFICE OF SCIENCE, OF THE U.S. DEPARTMENT OF ENERGY UNDER CONTRACT NO.
DE-AC02-06CH11357; IN PART SUPPORTED BY THE EXASCALE COMPUTING PROJECT (17-SC-20-SC); AND IN
PART SUPPORTED BY THE U.S. DEPARTMENT OF ENERGY, OFFICE OF SCIENCE, OFFICE OF ADVANCED SCIENTIFIC
COMPUTING RESEARCH, SCIENTIFIC DISCOVERY THROUGH ADVANCED COMPUTING (SCIDAC) PROGRAM.

Thank you!

56

