A path-following method for linear complementarity problems based on the affine invariant Kantorovich Theorem

Florian A. Potra

A path following algorithm for linear complementarity problems is presented. Given a point $z$ that approximates a point $z(\tau)$ on the central path with complementarity gap $\tau$, one determines a parameter $\theta\in (0,1)$ so that this point satisfies the hypothesis of the affine invariant Kantorovich Theorem for the equation defining $z((1-\theta)\tau)$. It is shown that $\theta$ is bounded below by a multiple of $n^{-1/2}$, where $n$ is the dimension of the problem. Since the hypothesis of of the Kantorovich Theorem is satisfied the sequence generated by Newton's method, or by the simplified Newton method, will converge to $z((1-\theta)\tau)$. We show that the number of steps required to obtain an acceptable approximation of $z((1-\theta)\tau)$ is bounded above by a number independent of $n$. Therefore the algorithm has $O(\sqrt{n}L)$-iteration complexity. The parameters of the algorithm can be determined in such a way that only one Newton step is needed each time the complementarity gap is decreased.

ZIB-Report 00-30, August 2000, Konrad-Zuse-Zentrum, Berlin, 2000

Contact: potra@math.umbc.edu