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Abstract

Systems software for clusters typically derives from a multiplicity of sources: the
kernel itself, software associated with a particular distribution, site-specific purchased
or open-source software, and assorted home-grown tools and procedures that attempt
glue everything together to meet the needs of a particular cluster. Whether a cluster is
a general-purpose resource serving multiple users or dedicated to a single application,
getting everything to work together is a challenge. The challenge is partially met by
special software distributions for clusters such as OSCAR or ROCKS. Here we discuss
another approach (although it is not inconsistent with existing distributions), in which a
small number of concepts are deployed to facilitate the customized integration of various
software tools for cluster management, operation, and user jobs. The concepts include
(1) a component approach to basic system software such as schedulers, queue man-
agers, process managers, and monitors; (2) a software development kit for constructing
networks of system software components, either from scratch or by wrapping ”foreign”
software, and (3) the use of explicit parallelism in building system tools for high perfor-
mance. We illustrate this approach with a description of a mid-sized general-purpose
cluster operated entirely by software built this way.

1 Introduction

This paper describes an experimental approach to systems software. The approach is that of
software components, an approach used often in application development but not heretofore
in the area of systems software. Our experience has been in architecting, implementing,
and deploying such software on clusterlike parallel computing systems, but the approach
appears to be generally applicable, and our plans include using it on very large scale systems
such as IBM’s Blue Gene systems. We describe the basic ideas, a general framework for
systems software development in this environment, and our experience with the approach.

In Section 2 we define what we mean by systems software and characterize the current
common system software environment, particularly for clusters. In Section 3 we discuss the
component approach in general and a multi-institution project whose goal is to apply this
approach to systems software. Section 4 describes a layered architecture for systems software
that fosters component development. Section 5 covers other components and particularly
the advantages of using explicit, scalable parallelism in systems software. Section 6 describes
our experiences deploying this framework on a mid-sized cluster used for both production
and research, and Section 7 outlines the potential for future development of these ideas.
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2 Systems Software for Clusters

By “cluster systems software” we mean the collection of programs, invoked by both systems
administrators and users, for configuring and maintaining individual nodes, together with
software involved in submission, scheduling, management, monitoring, and termination of
parallel user jobs. We don’t include single-node, cluster-agnostic software such as compilers
or single-node operating systems, although exceptions occur in the case of kernel modules
related to parallelism, such as those necessary for the implementation of parallel files systems
or collective system calls. Cluster systems software can include ’grid” middleware, but we
do not discuss that here. We consider it to include parallel user tools, such as parallel
versions of common shell commands and an MPI implementation (which must necessarily
interact with scheduling and process management).

In general, cluster systems software is what makes a cluster a cluster instead of a col-
lection of individual computers. In some cases, a key ingredient is the scalability of system
management functions. Operations that would be straightforward on a single machine need
to be done differently if they are to be repeated consistently on a large number of nodes.

The traditional approach to cluster system software is ad hoc. That is, system ad-
ministrators assemble a workable collection of tools that are developed without an overall
system architecture that involves parallelism. Low-level tasks are often accomplished by
shell scripts that “parallelize” sequential utilities by looping over rsh or ssh to a set of
nodes, which is inherently nonscalable. Some general-purpose tools, like pdsh [16], have
emerged to improve the scalability of this approach.

A number of monolithic “resource management systems” are in use, such as PBS [15]
and LSF [10], which handle a subset of systems tasks, particularly management of user
parallel jobs. A small amount of component-like functionality is available, such as the
Maui scheduler, which provides a sophisticated parallel job scheduling capability without
being necessarily integrated with other functions such as process initiation or monitoring.
A number of “packages of packages” are available, such as OSCAR [14] and ROCKS [11],
which attempt to provide a consistent collection of cluster software, a difficult goal in its
own right. Finally, some nontraditional approaches, such as bproc [8], provide an unusual
abstraction for cluster software execution. In all these approaches, software integration
occurs “manually”; that is, the global collection of system software depends on individual
implementations rather than on a well-defined set of interfaces.

The work described here was motivated by the operation of two clusters at Argonne
National Laboratory, one for research and one for production use. A year ago we were using
OpenPBS and the Maui scheduler on our research cluster, called Chiba City, along with
other aspects of the traditional paradigm. On the production cluster, Jazz, we use PBSPro,
the supported version of OpenPBS. These tools have been satisfactory for traditional users,
but we became increasingly dissatisfied with this monolithic, inflexible approach, especially
on the research cluster. There the normal administrative overhead was augmented by
unusual requirements, such as the need to build special kernel versions for the duration
of a scheduled job or to provide root access for the nodes scheduled for a job. These
requirements were in addition to the needs common to all clusters: elimination of manual
sequential tasks on a several-hundred-node cluster, support for thinking “collectively” in
order to have a scalable conceptual approach to systems management, and the need for
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simplicity and “elasticity” (the opposite of brittleness).

Although most of this work was carried out in the context of finding a replacement
architecture for cluster systems software, the ideas apply to any computer system where
parallelism, flexibility, and scalability are required.

3 The Component Approach

Clemens Szyperski [20] has defined software components as follows:

A software component is a unit of composition with contractually specified inter-
faces and explicit context dependencies only. It can be deployed independently
and is subject to composition by third parties.

The expected benefits of components include

1. localization of functionality to encourage reuse,

2. the ability of components to evolve or be replaced without affecting the overall system,
and

3. the possibility of assembling disparate components in ways not envisioned by the
individual component implementers.

The Scalable Systems Software SciDAC Project [19] has as its goal the exploration of a
component approach to systems software with the objective of achieving precisely these
benefits. The work described here is the result of our participation in that project and the
process of applying its approach to our own systems. The result has been a new paradigm
for the development and deployment of systems software.

The central idea is to replace monolithic resource management systems with a collection
of simple, single-function components with published interfaces to other components. These
components can be wrappers for existing programs, all-new software designed to deliver new
functionality, or even throwaway, lightweight components designed for temporary use. This
third type of component motivates our desire to make it particularly easy to implement a
component.

Essential for this approach is a uniform but flexible communication infrastructure that
makes component interconnection simple, reliable, and secure. Furthermore, the process
management component needs to provide scalable support for parallel jobs, whether initi-
ated by a user, a system administrator, or another component.

We make component creation convenient by supplying a software development kit (SDK),
described in Section 4.4. Certain parallel tools and components are written in MPI for scal-
ability and performance (See Section 5.4). The net result is that systems management
becomes easier. Since one can easily substitute individual components into the system to
adapt it to varying requirements, intercomponent communication code needs to be done
only once, and individual components can be adapted to local requirements.
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4 The “Stack”

In this section we describe the environment in which components operate and how the are
written. We present this environment from the bottom up: wire protocols, the communica-
tion library, an XML syntax style, the SDK for creating components, and the components
themselves. We provide some detail on the process manager because it is a critical compo-
nent.

4.1 Wire Protocol

The SSS Project decided at an early stage that intercomponent communication would be
over sockets and would consist of character data in XML format. This decision reflected the
ubiquity of sockets on most machines and operating systems, together with the availability
of XML parsing libraries in most languages. Thus, components would not be constrained by
platform or language, and tedious input editing could be eliminated by choosing an XML
style that allows validating parsers to do most of the work, operating from published XML
schemas.

This approach to communication still leaves other decisions to be made (or avoided).
The exact XML schemas that define the interfaces to each component must be agreed to;
defining these APIs has been a primary activity of the SSS project. The XML “style” can
vary greatly: which data items are entities and attributes, the types of values, and so on. In
Section 4.3 we discuss some of the issues involved in choosing an XML style. The framing
of messages needs to be defined: what constitutes a complete XML message to be parsed.
Moreover, security issues need to be addressed, including the possible use of passwords and
encryption.

The approach we have taken is allow multiple wire protocols in the communication
library and make it easy to add more to meet local requirements. The communication
library (Section 4.2) hides the choice of wire protocol from the component implementor.
Example protocols currently included are “basic” (with a challenge/response mechanism for
security), HTTP, and SSSRMAP (used by a subcollection of the SSS project components.)
Others can be added by contributing a simple module to the communication library. (In
each case, interaction between components consists of a message and its response, after
which the socket connection is broken.)

4.2 Communication Library

The purpose of the communication library is to hide the details for intercomponent commu-
nication from the component implementor. The send/receive library handles synchronous
communication. It currently has bindings for Python, Perl, C, C++, and Java, permitting
components to be written in any of these languages. In addition to the library itself, two
specific components support it:

• The service directory maintains contact information for each running component.
When components begin execution, they register themselves with the service direc-
tory. Any component can contact the service directory (at a “well-known” host/port
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address) and ask by name for communication information on other components. The
information consists of the state of that component, a host/port on which it can be
contacted, and the wire protocol used by that component. Once this information is
stored in the component, under ordinary circumstances the service directory does not
have to be contacted again.

• The event manager handles asynchronous intercomponent communication. As part of
its interface, each component documents what events it generates. For example, the
process manager generates an event (notifies the event manager) when a job completes.
Other components can register with the event manager to receive notification of certain
events they are interested in that are generated by other components, and then act
on them accordingly.

4.3 XML Style

The messages that flow among components accomplish three things:

1. Match a set of objects in the target component’s data store, either identifying them
or constructing them.

2. Apply a function (with arguments) to that set of objects.

3. Specify the content of a return message.

The XML content of these messages can vary from quite short and simple to long and highly
structured (such as when an object-creation message or the response to a query is large.)
For such cases scalability is an important aspect of the XML schema design.

The choice of XML style is governed by a number of considerations, not all of them
consistent with one another.

Completeness. It is important to be able to express in syntax all of the semantics that
the components need or can supply.

High Value of Validation. XML validation is a powerful tool but can be weakened by
a poor choice of XML style. A schema that is too abstract can reduce the value of
validation by considering too many messages to be valid, so that significant input
editing must be done by the component itself. We prefer a concrete style that permits
function signature checking as part of XML validation. This simplifies component
code and allows a significant amount of the interface definition to be expressed in the
formal language of an XML schema.

Readability. It is not essential, but certainly desirable, that a human be able to read and
understand the XML text.

Conciseness. XML is wordy enough as it is. One wants messages to be no longer than
necessary, although this goal can conflict with that of readability. Here one has choices
that affect scalability, and a good XML style will allow one to refer to many objects
collectively.
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Atomicity. It is necessary to avoid the race conditions that arise when one first queries a
component and then sends a separate command based on the response. Rather, one
wants the syntax to support race-free semantics, in which objects are identified and
acted upon as the result of a single message, as described above in the three functions
of a message.

An example of the XML syntax that we use is the following:

<SignalProcessGroup signal=’SIGINT’>
<ProcessGroup>

<PGID>72</PGID>
</ProcessGroup>

</SignalProcessGroup>

This example sends the signal “SIGINT” to the process group with PGID 72.

4.4 Software Development Kit

The idea of a software development kit is to accelerate application development by providing
prepackaged versions of functions that any application will need. The goal is to allow
the application writer to focus solely on the application logic that cannot be anticipated
by the developer of the infrastructure. We consider the lower level of the SDK to be
the communication infrastructure, consisting of the service directory component, the event
manager component, and the communication library. There remain, however, a set of
necessary component services that are independent of any particular component. These
include the following:

• Registration/deregistration with the service directory

• Initiating/terminating logging

• Setting up error reporting

• The basic select loop, with connection error handling

• Socket setup/cleanup

• XML parsing

• XML validation

• Message parsing

Our approach has been to encapsulate these services in two Python classes that are available
for subclassing:

• Server

• Event Receiver – a special case of the Server class
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Thus the SDK currently supports writing components in Python, although the same ap-
proach could be taken for other languages.

We give an example of a minimal component. This is an “echo server” that simply
sends back whatever text message is sent to it. We illustrate its use by also writing an
“echo client” to try out the echo server. Here is the server:

#!/usr/bin/env python

from sss.server import Server
class Echo(Server):

__implementation__ = ’echo’ # set log name
__component__ = ’echo’ # component answers to ’echo’
__dispatch__ = {’echo’:’HandleEcho’} # call HandleEcho method

# for echo messages
__validate__ = 0 # no schema for this component

def HandleEcho(self, xml, (peer,port)):
return xml

if __name__ == ’__main__’:
e = Echo()
e.ServeForever()

This example server makes extensive use of the Server class from the SDK. It provides
all steps common to component setup and operation. Instances of the Server class use a
dispatch table to find handlers for messages. In this case, the function “HandleEcho” is
used to process messages with the top-level tag “echo.”

Here is the client:

#!/usr/bin/python

from os import getpid
from sss.ssslib import comm_lib

c = comm_lib()

h = c.ClientInit(’echo’)
c.SendMessage(h, "<echo><pid id=’%s’/></echo>" % (getpid()))
response = c.RecvMessage(h)
c.ClientClose(h)

print response

This example client connects to the component “echo” and sends a varying message to
it. It reads the response, completes communication with the “echo” component, and prints
the response it received.
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5 Parallel Systems Software for Clusters

While a component architecture provides a number of useful software-engineering properties,
none of them are inherently parallel (or scalable) in nature. This component architecture
mainly provides scalability benefits through the process management system. In traditional
Unix-based systems, many process management systems are typically used in the course
of a single user session. Users may use ssh to initially log in, while their jobs may use a
spawning mechanism integrated into the queuing system. Once their jobs are executing,
they may use yet another process management system such as rsh to start their parallel
processes.

In component-based systems, there is a single, unified implementation of any given
function. In this particular system, the process management system provides all processes
with the bootstrapping information needed for their initialization as MPI processes. Hence,
any process can easily become an MPI process. MPI processes can use a variety of libraries
for tasks ranging for parallel algorithms to scalable I/O. This further eases the development
of highly scalable programs for all sectors of system programming. Systems software has
typically lagged behind applications in terms of sophistication; this approach allows system
software to take advantage of the same libraries as applications.

A number of systems are crucial to the overall environment on our test system yet do
not fit the component model we have focused on so far. We include them to give a complete
picture of the system environment seen by users.

5.1 MPI Library

Both user applications and the system tools rely on a robust MPI implementation. We use
MPICH2 [12] to provide a complete MPI-2 implementation. Startup of MPI applications in
batch mode occurs through the queue manager, scheduler, and process manager components
described above. Interactive MPI jobs can be started with the standard mpiexec. One
benefit of considering a process management component abstractly (rather than as part
of an MPI implementation, for example) has been that a large number of features were
defined, most of which have made their way into MPICH2’s mpiexec, rendering it more
powerful and flexible than it would have been otherwise.

5.2 Parallel I/O

For scalability and high performance, we use the parallel file system PVFS2 [17], the second-
generation of the Parallel Virtual File System. [2]. Users access parallel I/O either directly
through the parallel I/O functions in the MPI-2 Standard [6] or through application-oriented
libraries such as HDF5 [7] or PnetCDF [9].

5.3 MPI-Based User Tools

The Scalalbie Unix Tools exploit fast MPI startup [1] to provide parallel versions of familar
user commands such as ps, ls, cp, or find. For details, see [13].
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5.4 MPI-Based System Tools

The ease of MPI program integration has improved the adoption of MPI for system tasks.
On our development system, we have replaced all tools formerly using ad hoc parallelism
with MPI analogues.

Our development system has no global file system. To support user jobs, we have
implemented a file staging system that handles input staging and output return. We have
also implemented a parallel file tree synchronization tool, similar to rsync [18]. Moreover,
we have written a parallel shell that implements the PMI interface, which MPICH2 processes
use to bootstrap. This allows the shell, MPISH, to start MPI processes in an environment
similar to serial Unix shells.

In each case, we found that the MPI versions of these tools performed substantially
better than the pseudo-parallel versions. Code volume was smaller and error handling better
in the MPI versions as well. These experiences and performance numbers are detailed in
[4]. Details about MPISH and its execution model are available in [5].

6 Experiences with the New Paradigm

We have installed our collection of components on our 200-node research cluster as a com-
plete set of system software, replacing our PBS/Maui/homebrew collection of system soft-
ware. A list of components we are running includes the following:

• Service Directory – a component location component

• Event Manager – asynchronous messaging

• Node State Manager – tracks node states and runs diagnostics

• Build and Configuration Manager – manages node configurations

• Process Manager – starts parallel jobs, supports MPI

• Scheduler – simple scheduler with first-come, first-serve, backfill, and preemption.

• Queue manager – coordinates job execution with the scheduler, running multiple job
steps

• Account Manager – matches users with their projects

Overall, we characterize this experience as a success. The machine has been running
with our software, and users, for eighteen months. The code volume actually running
the system has been dramatically reduced; we estimate that our development system is
running with 18,000 lines of systems software code. For this reason, the systems software
has become a modifiable entity for systems managers. It is now far easier for them to tailor
system software to a particular system, while retaining compatibility through the use of the
component interfaces. This experience has been described in detail elsewhere [3].
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7 Conclusion

We have described a component-based approach to the design and implementation of system
software. We find this a promising architecture for building scalable computing environ-
ments, especially when combined with other approaches to scalable parallelism. Consider-
able work remains to be done in this area. Systems software in general, particularly for
large-scale systems, needs more attention paid to fault tolerance, security, and scalability.
We are confident that the component approach we have outlined here, by providing a way for
different parts of the system to evolve separately, can accelerate these developments. In ad-
dition, components make the entire system management enterprise more “programmable,”
while an MPI approach to systems operation can allow one to think and operate more
collectively and thus more scalably. One can envision a sequence of operations like

collective operation on nodes
allreduce on the local return codes
split nodes into "communicators"
collectively handle those where the operation succeeded
collectively handle those where the operation failed

This approach may even lead to high-level parallel language in which to write a program
for running a cluster autonomically. The implementation of this language is likely to build
on systems software components of the type we have described here.
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