
OpenAD/F: A Modular, Open-Source Tool for
Automatic Differentiation of Fortran Codes

JEAN UTKE

Argonne National Laboratory

UWE NAUMANN

Rheinisch Westfälische Techinische Hochschule Aachen

MIKE FAGAN, NATHAN TALLENT

Rice University

MICHELLE STROUT

Colorado State University

and

PATRICK HEIMBACH, CHRIS HILL, CARL WUNSCH

Massachusetts Institute of Technology

The OpenAD/F tool allows the evaluation of derivatives of functions defined by a Fortran pro-
gram. The derivative evaluation is performed by a Fortran code resulting from the analysis and
transformation of the original program that defines the function of interest. OpenAD/F has
been designed with a particular emphasis on modularity, flexibility, and the use of open source
components. While the code transformation follows the basic principles of automatic differenti-
ation, the tool implements new algorithmic approaches at various levels, for example, for basic
block preaccumulation and call graph reversal. Unlike most other automatic differentiation tools,
OpenAD/F uses components provided by the OpenAD framework, which supports a compara-
tively easy extension of the code transformations in a language-independent fashion. It uses code
analysis results implemented in the OpenAnalysis component. The interface to the language-
independent transformation engine is an XML-based format, specified through an XML schema.
The implemented transformation algorithms allow efficient derivative computations utilizing lo-
cally optimized cross-country sequences of vertex, edge, and face elimination steps. Specifically,
for the generation of adjoint codes, OpenAD/F supports various code reversal schemes with hier-
archical checkpointing at the subroutine level. As an example from geophysical fluid dynamics a
nonlinear time-dependent scalable, yet simple, barotropic ocean model is considered. OpenAD/F’s
reverse mode is applied to compute sensitivities of some of the model’s transport properties with
respect to gridded fields such as bottom topography as independent (control) variables.

Categories and Subject Descriptors: G.1.4 [Quadrature and Numerical Differentiation]:
Automatic differentiation; D.3.4 [Processors]: Code generation, Compilers; F.3.2 [Semantics
of Programming Languages]: Program analysis; G.1.6 [Optimization]: Gradient methods

J. Utke, Argonne National Laboratory, Argonne, IL 60439;
U. Naumann, Rheinisch Westfälische Techinische Hochschule Aachen, 52056 Aachen, Germany;
M. Fagan, N. Tallent, Rice University, Houston, TX 77251;
M. Strout, Colorado State University, Fort Collins, CO 80523;
P. Heimbach, C. Hill, and C. Wunsch, Massachusetts Institute of Technology, Boston, MA 02139;
Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 2006 ACM 0098-3500/2006/1200-0001 $5.00

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006, Pages 1–34.

2 · Utke et al.

General Terms: Algorithms, Performance

Additional Key Words and Phrases: Automatic differentiation, source transformation, adjoint
compiler

1. INTRODUCTION

The basic principles of automatic differentiation (AD) (see also Section 2) have been
known for several decades [Wengert 1964], but only during the past 15 years have
the tools implementing AD found significant use in optimization, data assimilation,
and other applications in need of efficient and accurate derivative information. As a
consequence of the wider use of AD, various tools have been developed that address
specific application requirements or programming languages. The AD community’s
website www.autodiff.org provides a comprehensive overview of the tools that
are available. One can categorize two user groups of AD tools. On one side are
casual users with small-scale problems applying AD mostly in a black-box fashion
and demanding minimal user intervention. This category also includes users of AD
tools in computational frameworks such as NEOS [NEOS 2006]. On the other side
are experienced AD users aiming for highly efficient derivative computations. Their
need for efficiency is dictated by the computational complexity of models that easily
reaches the limits of current supercomputers. In turn this group is willing to accept
some limitation in the support of language features.

1.1 A Large-Scale Example Application

One of the most demanding applications of AD is the computation of gradients for
sensitivity analysis and state estimation (sometimes referred to as data assimila-
tion) on large-scale models in oceanography and climate research. This application
clearly falls in the category requiring experienced users.

To demonstrate what can be achieved today with the availability of the gradient
computed in this manner, and to expose how AD has made a specific large-scale
optimization problem practical, we elaborate on this application. It takes advantage
of the so-called reverse mode of AD (see Section 2), which yields the transpose of the
tangent linear model, the so-called adjoint model. It has long been recognized that
for scalar-valued objective functions (such as energy, property transports, property
content, or least-squares model data misfits) the sensitivity or gradient of such a
determining function with respect to a large suite of n independent (or control)
variables can be calculated efficiently with a single adjoint integration, whereas as
many as n separate perturbation integrations would be required with the original
forward model. In the context of ocean and climate modeling the latter computation
quickly becomes prohibitive (n being of the order 104 to 108). On the other hand,
the generation of an adjoint model to a given fully fledged nonlinear time-dependent
general circulation model (GCM) is a major undertaking, similar in complexity to
the GCM development itself.

A major step forward was the implementation at MIT of a new ocean general cir-
culation model [Marshall et al. 1997] and simultaneous development of the AD tool
TAMC [Giering and Kaminski 1998] to fully support the GCM’s coding structures
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

OpenAD · 3

and to render efficient adjoint code in the context of a nonlinear time-dependent
problem. This led to the first sensitivity application based on fully AD-derived
adjoint code in which, for the first time, one could comprehensively address the
question of how North Atlantic heat transport (a scalar-valued objective func-
tion) depended on changes, separately, in every element of gridded two- or three-
dimensional fields, such as sea-surface temperature everywhere in the domain (i.e.,
a 104-dimensional control space) [Marotzke et al. 1999]. At the same time, the
Estimating the Circulation and Climate of the Ocean (ECCO) Consortium set out
to derive an ocean state estimate (OSE) covering the period of the World Ocean
Circulation Experiment and the beginning of the satellite altimetric record (1992)
[Stammer et al. 2002]. The availability of the AD-derived adjoint made practical
the application of the method of Lagrange multipliers in a gradient-based itera-
tive optimization that brings the numerical model to consistency with a plethora
of observations (today on the order of 100 million) by varying elements of a 108-
dimensional control space [Wunsch 2006]. Since then, both underlying code and the
type of observations available have evolved significantly. AD has permitted main-
tenance of an up-to-date adjoint code for the forward model undergoing vigorous
model development [Heimbach et al. 2005]. OSE is today developing in a number of
different directions, (see, e.g., the overview by [Wunsch and Heimbach 2006]), but
challenges remain, among others, with limitations in computational resources and
with limitations in the AD tools flexibility, code handling, derivation of efficient
code, and trade-offs between efficiency and approximations made to the exactness
of tangent linearity. Despite these limitations it has come as a surprise to ocean
and climate modelers that the potential enshrined in the reverse mode of AD has
not found much wider application in the large-scale optimization community.

1.2 Motivation

An evaluation of the available AD tools revealed shortcomings from the perspectives
of the tool users as well as the tool developers and was the rationale for designing
a new tool with particular emphasis on

—flexibility,
—the use of open source components, and
—modularity.

From the view point of AD tool users, there is a substantial need for flexibility of AD
tools. The most demanding numerical models operate at the limit of the computing
capacity of state-of-the-art facilities. Usually the model code itself is specifically
adapted to fit certain hardware characteristics. Therefore, AD tool code generation
ideally should be adaptable in a similar fashion. Since some of these adaptations
may be too specific for a general-purpose tool, the AD tool should offer flexibility at
various levels of the transformation – from simple textual preprocessing of the code
down to changes in the generic code transformation engine. This is the rationale
for developing an open source tool where all components are accessible and may be
freely modified to suit specific needs. A modular tool design with clearly defined
interfaces supports such user interventions. Since this design instigates a staged
transformation, each transformation stage presents an opportunity to check and
modify the results.

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

4 · Utke et al.

Fig. 1. Simplified overview of the
OpenAD/F components and the pipeline
of transformation steps. The input is
a numerical model f given as a Fortran
program. The Open64 compiler front-end
parses it into whirl, which is translated
into the language-independent XML-based
Xaif format. The Xaif representation then
is translated back into a Fortran program
f ′that computes derivatives.

whirl2xaif

Open64

xaif2whirl

whirl

xaifxaif

whirl

xaifBooster

OpenAnalysis

f f

f f

ff ’

’

’

From the view point of AD tool developers, many AD tools share the same basic
algorithms, but there is a steep hurdle to establish a transformation environment
consisting of a front-end that turns the textual program into a compilerlike internal
representation, an engine that allows the transformations of this internal represen-
tation, and an unparser that turns the transformed internal representation back
into source code. A modular, open-source tool facilitating the integration of new
transformations into an existing environment allows for a quick implementation and
testing of algorithmic ideas. Furthermore, a modular design permits the reuse of
transformation algorithms across multiple target languages, provided the parsing
front-ends can translate to and from the common internal representation.

These considerations motivated the Adjoint Compiler Technology & Standards
[ACTS 2006] project, a research and development collaboration of MIT, Argonne
National Laboratory, the University of Chicago, and Rice University. OpenAD/F
is one of its major results.

1.3 Overview

OpenAD/F is the Fortran incarnation of the OpenAD framework [OpenAD 2006].
OpenAD/F has a modular design, illustrated in Figure 1. Given as input a Fortran
program f, the Open64 (see www.hipersoft.rice.edu/open64) front-end performs
a lexical, syntactic, and semantic analysis and produces an intermediate represen-
tation of f, here denoted by fwhirl, in the so-called whirl format. OpenAnalysis
is used to build call and control flow graphs and perform code analyses such as
alias, activity, and side-effect analysis. This information is used by whirl2xaif to
construct a representation of the numerical core of f in Xaif format, shown as fxaif .
A differentiated version of fxaif is derived by an algorithm that is implemented
in xaifBooster, represented in Xaif as f ′xaif . The information in f ′xaif and the
original fwhirl is used by xaif2whirl to construct a whirl representation f ′whirl of
the differentiated code. The unparser of Open64 transforms f ′whirl into Fortran,
thus completing the semantic transformation of a program f into a differentiated
program f ′. The shaded area encloses the language-specific front-end that can po-
tentially be replaced by front-ends for languages other than Fortran. The C/C++
tool ADIC v2.0 (see [ADIC 2006]) is also based on OpenAD but is not discussed
here.

Our focus is on the design rationale and major features of OpenAD/F. Technical
details are left to the user manual [Utke and Naumann 2006]. In Section 2 we
cover the concepts of AD relevant to the description of OpenAD, in Section 3 the
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

OpenAD · 5

components that make up OpenAD/F, and in Section 4 tool usage. Two applica-
tions in Section 5 illustrate the tool usage. We conclude in Section 6 with future
developments.

2. AD CONCEPTS

In this section we present the terminology and basic concepts that we will refer to
throughout this paper. A detailed introduction to AD can be found in [Griewank
2000]. The interested reader should also consult the proceedings of AD conferences
[Corliss and Griewank 1991; Berz et al. 1996; Corliss et al. 2002; Bücker et al.
2006]. We consider first consecutive sequences of elemental numerical operations in
Section 2.1 , then their control flow context within a subroutine in Section 2.2, and
the entire program consisting of several subroutines in a call graph in Section 2.3.
The given numerical model is a vector-valued function

y = f(x) : IRn !→ IRm

implemented as a computer program, and the objective is to compute derivatives
such as products of Jacobians J =

[
∂yj

∂xi

]
with seed matrices S:

JS and J TS . (1)

2.1 Elemental Operations in Computational Graphs

Without loss of generality assume that an evaluation of f(x) for a specific value of
x can be represented by a sequence of elemental operations

vj = φj(. . . , vi, . . .) . (2)

The vi ∈ V represent the vertices in the corresponding computational graph G =
(V,E). The edges (i, j) ∈ E in this graph are the direct dependencies vi ≺ vj

implied by the elemental assignment vj = φj(. . . , vi, . . .). The elemental operations
φj are assumed to be differentiable on open subdomains. Each edge (i, j) ∈ E

is labeled with a local partial derivative cji = ∂vj

∂vi
. The central principle of AD

is the application of the chain rule to the partials of the elementals φ, that is,
multiplications and additions of the cji.

Using a specific numbering scheme for the vertices vi we presume q intermediate
values vj = φj(. . . , vi, . . .) for j = 1, . . . , q + m and i = 1 − n, . . . , q, j > i. The
n independent variables x1, . . . , xn correspond to v1−n, . . . , v0. We consider the
computation of derivatives of the dependent variables y1, . . . , ym represented by m
variables vq+1, . . . , vq+m with respect to the independents. The dependency vi ≺ vj

implies i < j. Using the edge labels cji = ∂vj

∂vi
, the forward mode of AD propagates

directional derivatives as

v̇j =
∑

i

cjiv̇i for j = 1, . . . , q + m. (3)

In reverse mode we compute adjoints of the arguments of the φj as a function of
local partial derivatives and the adjoint of the variable on the left-hand side:

vi =
∑

j

cjivj for j = q, . . . , 1− n. (4)

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

6 · Utke et al.

Fig. 2. Code example of a sequence of assignment statements
that can form a basic block. Here x(1) and x(2) are the
independent, y(1) and y(2) the dependent variables.

1 t1 = x(1) + x(2)

2 t2 = t1 + sin(x(2)

3 y(1) = cos(t1 * t2)

4 y(2) = -sqrt(t2)

c
+=

c41

*c
43

31

c32

c
+=

c41

*c
43

31

c
+=

c41

*c
43

31

c41

c1 −1 c1 −1 c1 −1 c1 −1
c10c10 c10 c10 c20c20c20c20

c64 c64 c64c64c75 c75c75c75

(a) (b) (c) (d)

c53

c32c31

43c

0

21

3

54

6 7

1−

c
=c

* c
53

52
32

c = c *c51

c42
= c *c

6 7

4 5

1 2

1− 0

53 31

43 32

c53

c51

6 7

4 5

1 2

1− 0

3

c43
c53

c32

6 7

54

3

1 2

0−

31c

1

c42

Fig. 3. (a) Computational graph G for the representation in equation (5). Elimination steps are
categorized as follows: (b) eliminate vertex 3 from G, (c) front eliminate edge (1, 3) from G with
c51 = c53 ∗ c31, and (d) back eliminate edge (3, 4) from G with c42 = c43 ∗ c32

In practice, the sum in (4) is often split into individual increments associated with
each statement in which vi occurs as an argument vi = vi + vj · cji. Equations
(3) and (4) can be used to accumulate the (local) Jacobian J(G) of G; see also
Section 2.2.

In a source transformation context we want to generate code for all possible
inputs x. In general, there is no single representative G already because of the
presence of control flow. Instead we simply consider the statements contained in a
basic block as a section of code below the granularity of control flow and construct
our computational (sub)graph for a basic block.

2.2 Elimination Methods and Preaccumulation

Let f represent a single basic block for which we compute a local Jacobian (preac-
cumulation). For notational simplicity and w.l.o.g. we assume that the dependent
variables are mutually independent (can always be enforced by introducing auxil-
iary assignments). Consider the small example in Figure 2. Expressing it in terms
of results of elemental operations φ assigned to unique intermediate variables v, we
have

v1 = v−1 + v0; v2 = sin(v0); v3 = v1 + v2; v4 = v1 ∗ v3;
v5 =

√
v3; v6 = cos(v4); v7 = −v5 .

(5)

In OpenAD/F this modified representation is created as part of the linearization
transformation; see Section 3.1.2.2. In Figure 3(a) we show the computational
graph G for this representation. The edge labels cji are the local partial derivatives,
for example, c64 = − sin(v4). With the tool, this graph is generated as part of the
algorithm described in Section 3.1.2.3. Jacobian preaccumulation can be interpreted
as eliminations in G. The graph-based elimination steps are categorized in vertex,
edge, and face eliminations. In G a vertex j ∈ V is eliminated by connecting its
predecessors with its successors [Griewank and Reese 1991]. An edge (i, k) with
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

OpenAD · 7

v1 = v−1 + v0;

v2 = sin(v0);

v3 = v1 + v2;

v4 = v1 ∗ v3;

v5 =
√

v3;

v6 = cos(v4);

v7 = −v5;

c1,−1 = 1;

c2,0 = cos(v0);

c3,1 = 1;

c4,1 = v3;

c5,3 = (2
√

v3)−1;

c6,4 = − sin(v4);

c7,5 = −1;

c1,0 = 1;

c3,2 = 1;

c4,3 = v1;

Fig. 4. Pseudo code for comput-
ing f from Figure 2 as done in (5)
together with the computation of
the cji for each vj .

i < j and j < k is labeled with cki + ckj · cji if it existed before the elimination of
j (absorption). Otherwise, (i, k) is generated (fill-in) and labeled with ckj · cji The
vertex j is removed from G together with all incident edges. Figure 3(b) shows the
result of eliminating vertex 3 from the graph in Figure 3(a).

An edge (i, j) is front eliminated by connecting i with all successors of j, followed
by removing (i, j) [Naumann 2002]. The corresponding structural modifications of
G in Figure 3(a) are shown in Figure 3(c) for front elimination of (1, 3) together
with the new edge labels. Edge-front elimination eventually leads to intermediate
vertices in G becoming isolated; that is, these vertices no longer have predecessors.
Isolated vertices are simply removed from G together with all incident edges. Back
elimination of an edge (see Figure 3(d)) is symmetric to front elimination.

Numerically, the elimination is the application of the chain rule, that is, a se-
quence of fused-multiply-add (fma) operations

cki = cji ∗ ckj (+cki) (6)

where the additions in parentheses take place only in the case of absorption; other-
wise, fill-in is created as described above. Aside from special cases, a single vertex
or edge elimination will result in more than one fma. Face elimination was in-
troduced as the elimination operation with the finest granularity of exactly one
multiplication (additions are not necessarily directly coupled) per elimination step.

Vertex and edge elimination steps have an interpretation in terms of vertices and
edges of G, whereas face elimination is performed on the corresponding directed
line graph G. A face elimination is the elimination of an edge in G. The result
may be absorbed, as with vertex and edge eliminations, or may generate fill-in. A
complete face elimination sequence yields a tripartite directed line graph that can be
transformed back into the bipartite graph representing the Jacobian f ′. We note that
any G can be transformed into the corresponding G but that a back transformation
generally is not possible once face elimination steps have been applied. A detailed
description of face elimination is given in [Naumann 2003]. In OpenAD all these
eliminations are implemented in the algorithms described in Section 3.1.2.3.

In the context of source transformations the operations (6) are expressed as code
(the Jacobian accumulation code). For our example code from Figure 2 the code
computing the local partials in conjunction with the function value is shown in Fig-
ure 4 (for readability we write the cji with commas). In OpenAD/F the operations
in Figure 4 are generated by the linearization algorithm discussed in Section 3.1.2.2.
The operations induced by the eliminations on the graph can be expressed in terms
of the edge labels cji. For our example, a forward vertex elimination in G (Fig-
ure 3), leads to the Jacobian accumulation code shown in Figure 5. In the tool these

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

8 · Utke et al.

v1: c3,−1= c3,1 ∗ c1,−1; c3,0 = c3,1 ∗ c1,0; c4,−1 = c4,1 ∗ c1,−1;
c4,0= c4,1 ∗ c1,0;

v2: c3,0= c3,2 ∗ c2,0 + c3,0;
v3: c4,−1= c4,3 ∗ c3,−1 + c4,−1; c4,0 = c4,3 ∗ c3,0 + c4,0; c5,−1 = c5,3 ∗ c3,−1;

c5,0= c5,3 ∗ c3,0;
v4: c6,−1= c6,4 ∗ c4,−1; c6,0 = c6,4 ∗ c4,0;
v5: c7,−1= c7,5 ∗ c5,−1; c7,0 = c7,5 ∗ c5,0;

Fig. 5. Pseudo code for eliminations of v1 . . . v5 for (5) in forward order.

Fig. 6. Toy example code with control flow. As-
signment statements are contained in basic blocks,
B(2) (lines 1–2), B(4) (line 4), B(6) (lines 7–10), and
B(9) (line 13); see also Figure 7(a). The sequence
of assignment statements from Figure 2 forms B(6)
except that instead of assigning y(1) and y(2) we
overwrite x(1) and x(2).

1 y(k) = sin(x(1)*x(2))

2 k = k+1

3 if(mod(k,2) .eq. 1) then

4 y(k) = 2*y(k-1)

5 else

6 do i=1,k

7 t1 = x(1)+x(2) }

8 t2 = t1+sin(x(1))

9 x(1) = cos(t1*t2)

10 x(2) = -sqrt(t2)

11 end do

12 end if

13 y(k) = y(k)+x(1)*x(2)

operations are generated by the preaccumulation algorithms (see Section 3.1.2.3).

2.3 Control Flow Reversal and Taping

The code for f generally contains control flow constructs. Therefore, in general, no
single computational graph G represents the computation of f for all possible values
of x. Section 2.1 considers computational graphs constructed from the contents of
a basic block. In the example shown in Figure 6 we put the basic block code
shown in Figure 2 into control flow context. A representation of the control flow
graph (CFG) [Aho et al. 1986] resulting from the code in Figure 6 is depicted in
Figure 7(a). All assignment statements are contained in basic blocks. Because
the loop body B(6) is executed k times, the additional (compile-time) effort of
optimizing the derivative code by optimizing the elimination sequence (as illustrated
in Section 2.2) is justified. For a sequence of l basic blocks that are part of a path
through the CFG for a particular value of x, the equations (3) and (4) can be
generalized as follows:

ẏj = Jj ẋj for j = 1, . . . , l (7)

and

x̄j = JT
j ȳj for j = l, . . . , 1 , (8)

where xj = (xj
i ∈ V : i = 1, . . . , nj) and yj = (yj

i ∈ V : i = 1, . . . ,mj) are the
inputs and outputs of the basic blocks, respectively. In forward mode a sequence
of products of the local Jacobians Jj with the directions ẋj is propagated forward
in the direction of the flow of control together with the computation of f. In our
example basic block B(6) is the third basic block (j = 3), and we have x3 = yj =
(x(1),x(2)) and consequently have the operations for the Jacobian vector product
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

OpenAD · 9

(a)

Entry(1)

B(2)

Branch(3)

B(4)

 T

Loop(5)

 F

EndBranch(8)

B(9)

Exit(10)

F

B(6)

 T

EndLoop(7)

(b)

Entry(1)

B(2)’

Branch(3)

B(4)’

T

iLc

 F

pB T

EndBranch(8)

B(9)’

Exit(10)

Loop(5)

B(6)’

T

pLc

F

+Lc

EndLoop(7)

pB F

(c)

Entry(10)

B(9)’’

pB

Branch(8)

B(4)’’

 T

pLc

 F

Loop(7)

B(6)’’

 T

EndBranch(3)

F

EndLoop(5)B(2)’’

Exit(1)

Fig. 7. CFG of Figure 6 (a) original, (b) trace generating, (c) for reversed control flow

t1 = ẋ(1);

t2 = ẋ(2);

ẋ(1) = c6,−1 ∗ t1;

ẋ(1) = ẋ(1) + c6,0 ∗ t2;

ẋ(2) = c7,−1 ∗ t1;

ẋ(2) = ẋ(2) + c7,0 ∗ t2;

Fig. 8. Pseudo code for the (sparse) product J3ẋ3

for the loop body in Figure 6. This follows the state-
ments from Figure 4 and Figure 5. Note that x(1)
and x(2) are overwritten, and therefore we have to
preserve the original derivatives in temporaries t1
and t2.

push(c6,−1);
push(c6,0);
push(c7,−1);
push(c7,0);

t2 = pop() ∗ x̄(2);
t1 = pop() ∗ x̄(2);
t2 = t2 + pop() ∗ x̄(1);
t1 = t1 + pop() ∗ x̄(1);

x̄(2) = t2;

x̄(1) = t1;

Fig. 9. Pseudo code for writing the tape
(left) and consuming the tape for JT

3 ȳ3
(right) for the loop body B(6) in Figure 6.
Writing values to the tape follows the state-
ments in Figure 4 and Figure 5, and to-
gether they constitute B(6)’ in Figure 7(b).
Consuming the tape constitutes B(6)” in
Figure 7(c).

shown in Figure 8.
In reverse mode, products of the transposed Jacobians JT

j with adjoint vectors
yj are propagated reverse to the direction of the flow of control. The JT

j can be
computed by augmenting the original code with linearization and Jacobian accu-
mulation statements; see Section 2.2. The preaccumulated JT

j are stored during
the forward execution on a stack, also called the tape; see Figure 9(a) for an exam-
ple. In order to compute (8), they are retrieved during the reverse execution; see
Figure 9(b) for an example. To find the proper path through the reversed control
flow, we also have to generate a trace. We do so with an augmented CFG; for our

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

10 · Utke et al.

1 subroutine A()

2 call B()

3 call D()

4 call B()

5 end subroutine A

6 subroutine B()

7 call C()

8 end subroutine B

9 subroutine C()

10 call E()

11 end subroutine C

B D B

CEC

A1

1 1 2

211

A A

D B B D B

CECCEC

B

1

1 1

1 1

1

1

1

1

1

2 2

22

(a) (b) (c)

Fig. 10. Simple example code (a) with a (static) calling hierarchy, the corresponding DCT (b),
and the DCT for the adjoint via split reversal (c).

toy example, see Figure 7(b). This augmented CFG keeps track of which branch
was taken and counts how often a loop was executed. This information is pushed
on a stack and popped from that stack during the reverse sweep; see also [Naumann
et al. 2004]. Because the control flow trace adheres to the stack model, it often is
considered part of the tape. In the example in Figure 7(b) the extra basic blocks
pBT and pBF push a Boolean (T or F) onto the stack depending on the branch.
In iLc we initialize a loop counter, increment the loop counter in +Lc, and push
the final count in pLc.

Figure 7(c) shows the CFG for the reversed control flow for our toy example.
The parenthesized numbers in the node labels relate the nodes across the three
graphs. The exit node becomes the entry, loop becomes endloop, branch becomes
endbranch, and vice versa. Each basic block B is replaced with its reversed version
B’. Finally, all control flow conditions are decided with the information recorded
in Figure 7(b). The extra nodes pB and pLc pop the branch information and the
loop counter, respectively. We enter the branch and execute the loop as indicated
by the recorded information. The process of the control flow reversal is described
in detail in [Naumann et al. 2004].

2.4 Call Reversal and Checkpointing

Generally, the computer program induces a call graph (CG) [Aho et al. 1986] whose
vertices are subroutines and whose edges represent calls potentially made during
the computation of y for all values of x in the domain of f.

For a large number of problems it is possible to statically predetermine either
split or joint reversal [Griewank 2000] for any subroutine in the call graph. These
concepts are more easily understood with the help of a dynamic call tree (see also
[Naumann and Utke 2005]), where each vertex represents an actual invocation of
a subroutine for a given execution of the program; see Figure 10(a) and (b) and
Figure 11 for an explanation of the symbols. The order of calls is implied by
following the edges left to right. Split reversal for all subroutines in the program
implies we first write the tape for the entire program, followed by the reverse sweep
that consumes the tape; see Figure 10(c).

Joint reversal as introduced in [Faure and Papegay 1997] for all subroutines in a
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

OpenAD · 11

Sn n-th invocation of subroutine S run forward and tape (2)

subroutine call run adjoint (3)

order of execution store checkpoint (4)

run forward (1) restore checkpoint (5)

Fig. 11. Symbols for call tree reversal

1
C

B

A

D

E C

B

A

B

C C

B

C E

D D

E E

B

C C

B

C

1

2

1

1 1 2 2

1 1 2 2 2 2 1

1 1

1 1

1 1

1 1

Fig. 12. DCT of adjoint obtained by joint reversal mode

program implies that the tape for each subroutine invocation is written immediately
before the reverse sweep for that particular invocation. In our example we have to
generate a tape for C2 while the caller B2 is being reversed. Because in the reversal
we have no guarantee that the data used by C2 is correct (variables may have
been overwritten), we cannot simply reexecute C2. We could reexecute the entire
program up to the C2 call and start taping, or we could store the input of C2 during
the regular forward execution and restore it for the taping sweep. The ensuing
dynamic call tree for our example is shown in Figure 12. For many applications
neither an all-split nor all-joint reversal is efficient. Often a mix of split and joint
reversals statically applied to subtrees of the call tree is suitable; see Section 5.2.2.

3. COMPONENTS OF OPENAD/F

OpenAD/F is built on components that belong to a framework designed for code
transformation of numerical programs. The components are tied together either
by programmatic interfaces or by communication using the Xaif language. The
modular design of the tool aims to reuse the components for different types of
source transformation of numerical codes and for different programming languages
in which these tools are written. Uses of some components outside of OpenAD/F
further improve their utility and reliability. The flexibility of the tool afforded by
the modular design is of equal importance. The transformation of the source code
follows the pipeline shown in Figure 13. A fundamental design decision is the sep-
aration of programming-language-independent components. The pipeline as shown
here and the use of a canonicalizer and postprocessor are a consequence of the de-
sign. Section 3.1.1 motivates the language-independent component design followed
by sections on the language-independent transformation and analysis engine. The
language-dependent components introduced in Section 3.2 are to be seen in the con-
text of this design. The components are connected in multiple ways. For instance,
the activity analysis is performed within whirl2xaif, but the independent and de-

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

12 · Utke et al.

canonicalized Fortran

whirl

runtime library

OpenAnalysis

prepared Fortran

(i) code preparation

(v) xaifBooster

(ii) canonicalizer

(iii) mfef90

(iv) whirl2xaif

(viii) postprocessor

(ix) compile/link

(vi) xaif2whirl

(vii) whirl2f

xaif xaif ’

whirl ’

Fortran ’

postprocessed Fortran ’

3.2.1

3.2.2

3.2.3 3.1.3

3.2.4

3.2.2

3.2.3

3.1.2

3.1.1 3.1.1

Fortran inline/templates

Fig. 13. OpenAD pipeline of components and relevant section numbers

pendent variable designation is done via a pragma mechanism implemented in the
mfef90 front-end, and the results of the analyses are used with the transformation
engine. The following sections contain numerous cross-references to ease following
these connections. Figure 13 should be used as a reference for positioning any of the
components within the tool pipeline. The regular setup procedure for OpenAD/F
(see also Section 4) will retrieve all components into an OpenAD/ directory, to which
we refer from here on.

3.1 Language-Independent Components (OpenAD)

This section describes OpenAD’s language-independent components. They are also
used by ADIC v2.0.

3.1.1 Representing the Numerical Core (Xaif). To obtain a language-independent
representation of programs across multiple programming languages, one might
choose the union of all language features. On the other hand, one can observe
that most differences between languages do not lie with the elemental numerical
operations that are at the heart of AD or other numerical transformations. This
more narrow representation is a compromise permitting just enough coverage to
achieve language independence for the numerical core across languages. Conse-
quently, certain program features are not represented and have to be filtered and
preserved by the language-specific front-end in order to reassemble the complete
program after the transformation. Among these are

—user type definitions and member access (see also Section 3.2.1),
—pointer arithmetic,
—I/O operations,
—memory management, and
—preprocessor directives.
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

OpenAD · 13

A more detailed discussion regarding this compromise can be found in [Utke and
Naumann 2004]. Certain aspects of the adjoint code, such as checkpointing (see
Section 2.4) and taping (see Section 2.3), can involve memory allocation and vari-
ous I/O schemes and therefore are not amenable to representation in the Xaif. At
the same time, the concrete handling of memory and I/O for taping and check-
pointing is typically determined by the problem size at run-time and not by static
information available during the transformation. Therefore, OpenAD handles these
transformation aspects by special code expansion for subroutine-specific templates
and inlinable subroutine calls in the postprocessor; see Section 3.2.4. Not only does
this approach avoid any language-specific I/O and memory management constructs,
it also affords additional flexibility.

The format of choice in OpenAD is an XML-based hierarchy of directed graphs,
referred to as Xaif [Hovland et al. 2002]. This is motivated by the ability to describe
the Xaif with an XML schema and the existence of XML parsers that can validate
any given Xaif representation against the schema. The annotated Xaif schema is
documented at www.mcs.anl.gov/xaif. The building blocks of Xaif are structures
commonly found in compilers, starting from the top with a call graph containing
scopes and symbol tables, CFGs as call graph vertices, basic blocks as CFG vertices,
statement lists contained in basic blocks, assignments statements with expression
graphs, and variable references and intrinsic operations as expression graph vertices.
Xaif elements are associated by containment. In the graph, edges refer to source
and target vertices by vertex ids. Variable references contain symbol references that
are associated to symbol table entries via a scope and a symbol id. An example
can be found in Section 3.2.3, Figure 20.

The Xaif contains the results of the code analyses provided by OpenAnalysis;
see Section 3.1.3, for instance, for activity information as additional attributes on
certain Xaif elements. Side-effect analysis provides lists of variable references per
subroutine; du/ud-chains are expressed as lists of identifiers of assignment elements.
Alias information is expressed as sets of virtual addresses. Du/ud-chains and alias
information are collected in maps. Individual entries held in these maps are refer-
enced via foreign key attributes.

The transformation algorithms change the Xaif contents at almost all levels. It
would in principle be possible to express the result entirely in plain Xaif. However,
we already mentioned the code expansion approach introduced for added flexibility.
The transformed Xaif therefore adheres to a schema extended by elements repre-
senting inlinable subroutine calls as well as groups of CFGs that the postprocessor
places into predefined locations in subroutine templates. The Xaif schema and
examples can be found in subdirectory xaif/.

3.1.2 Transforming the Numerical Core (xaifBooster). The transformation en-
gine that differentiates the Xaif representation of f is called xaifBooster. It is
implemented in C++ based on a data structure that represents all information
supplied in the Xaif input together with a collection of algorithms that operate on
this data structure, modify it, and produce transformed Xaif output as the result.
All sources for xaifBooster can be found under xaifBooster/. The xaifBooster data
structure resembles the information one would find in a compiler’s high-level inter-
nal representation using the boost graph library (see www.boost.org) and the GNU

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

14 · Utke et al.

CallGraph

CallGraphVertex

ControlFlowGraph

ControlFlowVertex

BasicBlock

ForLoop

PreLoop

PostLoop

If

Expression

VariableReferenceVariableReferenceVertex

Graph

Vertex:class
Edge:class

<CallGraphVertex,CallGraphEdge>

Vertex

<VariableReferenceVertex,VariableReferenceEdge>

<ExpressionVertex,ExpressionEdge>

<ControlFlowVertex,ControlFlowEdge>

ExpressionVertex

Intrinsic

FunctionCall

Constant

SymbolReference

ArrayReference

ScopeHierarchy<Scope,ScopeEdge>

Scope

CallGraphEdge

ControlFlowEdge

VariableReferenceEdge

Edge

ExpressionEdge

ScopeEdge

CallGraphVertex

ControlFlowGraph

ForLoop

PreLoop

PostLoop

If

Condition

Initialization

Update

Expression

Assignment

LHS RHS

VariableReference

Graph

Vertex:class
Edge:class

Vertex Edge

Scope

SymbolTable

Symbol

Fig. 14. Simplified class inheritance (left) and composition (right) in xaifBooster

Fig. 15. Schematic dependencies of the
transformation algorithms implemented in
xaifBooster. Note that the inheritance hi-
erarchy of the individual classes constitut-
ing the algorithms may skip some of these
dependencies depicted here.

Read/Write xaifLinearizationBasic Block Preaccumulation

Mem/Ops TradeoffBasic Block Tape Basic Block Adjoint

CFG ReversalBasic Block Preaccumulation Reverse

Standard C++ Library (see gcc.gnu.org/libstdc++). Figure 14 shows simplified
subsets of the classes occurring in the xaifBooster data structure in the inheritance
as well as the composition hierarchy. A doxygen-generated documentation (see
www.doxygen.org) of all data structures can be found in [OpenAD 2006]. The
class hierarchy is organized top down with a single CallGraph instance as the top
element.

The transformation algorithms are modularized to enable reuse in different con-
texts. Figure 15 shows dependencies between some of the implemented algorithms.
In order to avoid conflicts between transformations, all data representing the input
are preserved. The data representing modifications or augmentations of the orig-
inal input element in a class <name> (e.g., Variable) are held in algorithm-specific
instances of class <name>Alg (e.g., VariableAlg). They are associated via mutual ref-
erences accessible through get<name>AlgBase() and getContaining<name>(), respec-
tively. The instantiation of the algorithm-specific classes follows the factory design
pattern. The factory instances in turn are controlled by transformation-specific
AlgFactoryManager classes that ensure instantiation of the <name>Alg subclass ap-
propriate for a given transformation. Further details can be found in [Utke and
Naumann 2003].

In the following sections we highlight the role of particular algorithms. Each
algorithm has a driver t.cpp that is compiled into a binary t. Both can be found
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

OpenAD · 15

1

1 2
1 2

2
1

2

division

square unary minus

2

division

1
1

1

division

n d

division

2
"1"

Intrinsics Catalogue

integer literal

Fig. 16. Partial expressions for the division
operator. The expression is given in terms of
argument positions, here 1 for the numerator
and 2 for the denominator. Applied to z=n/d

this yields ∂z
∂n= 1/d and ∂z

∂d= −n/(d ∗ ∗2). The
format also permits the reuse of the intrinsic
result in the partial computation, resulting in
savings for some intrinsics such as exp().

in algorithms/<algorithm name>/test/. The driver encapsulates the algorithm in a
stand-alone binary that provides the functionality described in the following sec-
tions.

3.1.2.1 Reading and Writing Xaif. Reading and writing the Xaif are part of the
basic infrastructure found in the source code in system/. The Xerces C++ XML
parser (see xml.apache.org/xerces-c) uses XML element handlers implemented
in system/src/XAIFBaseParserHandlers.cpp to populate the xaifBooster data struc-
tures from the top down. All OpenAD/F components that read Xaif data can
perform validation according to the schema. Beyond the schema-based validation
are additional consistency checks; therefore, manual modifications of Xaif data
should be done judiciously. The transformed data is unparsed into Xaif through a
traversal of the data structure and calls to virtual functions implemented by the
transformation algorithms.

The catalog of inlinable intrinsics, supplied as a separate XML file following a
specialized schema in Xaif (see Sections 3.1.2.2 and 3.2.3), is parsed prior to the
Xaif program representation. It contains the declarations of intrinsics and defines
the partial derivative expressions. The driver found in system/test/t.cpp provides
only parsing and unparsing functionality. It can be used to establish that the tool
preserves the semantics of the original program when no transformation is involved.

3.1.2.2 Linearization. Section 2.1 explained the computation of the local partial
derivatives cji, the edge labels in the computational graph G. For each elemental
φ (see (2)) we find definitions of the respective partials in the inlinable intrinsics
catalog (see above). An example for division is given in Figure 16.

Because partials are defined in terms of positional arguments, the right-hand-
side expression may have to be split into subexpressions to assign intermediate
values (positional arguments for the partial computation) to temporary variables,
for example, v3 and v4 in Figure 4. In cases of the left-hand-side variable occur-
ring on the right-hand side (or being may-aliased to a right-hand-side variable, see
Section 3.1.3), conservative correctness requires an additional assignment to de-
lay the (potential) overwrite until after the partials depending on the variable’s
original value have been computed. The result of the linearization is a repre-
sentation for code containing the potentially split assignments along with assign-
ments for each nonzero edge label cji. These representations are contained in the
xaifBoosterLinearization::AssignmentAlg instances associated with each assign-
ment in the Xaif. The generated code, after unparsing to Fortran, is compilable

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

16 · Utke et al.

but by itself does not compute useful derivative information for the target function
f.

3.1.2.3 Basic Block Preaccumulation. Basic block preaccumulation generates a
code representation that can be used to compute derivatives in forward mode. It
builds on the linearization done in Section 3.1.2.2. The first step constructs the com-
putational graphs G for contiguous assignment sequences in any given basic block.
To ensure semantic correctness of the graph being constructed in the presence of
aliasing, it relies on alias analysis and du/ud-chains supplied by OpenAnalysis; see
Section 3.1.3. The algorithm itself is described in detail in [Utke 2006]. Because
of aliasing as analyzed by OpenAnalysis, it may not be possible to cover all as-
signments by the construction of a single G. In such cases a sequence of graphs is
created. Likewise, the occurrence of a subroutine call leads to a split in the graph
construction. In the context of Section 2 one may think of the sets of assignments
forming each of these graphs as a separate basic block. The driver for the algorithm
allows one to disable the graph construction across assignments and restrict it to
single right-hand sides.

Based on the constructed G, an elimination sequence has to be determined. In
order to allow a choice for the computation of the elimination sequence, the code
uses the interface coded in algorithms/CrossCountryInterface/ and by default calls
the Angel library [Albrecht et al. 2003; Naumann and Gottschling 2003]. Angel
determines an elimination sequence and returns it as fused multiply-add expressions
in terms of the edge references. Several heuristics implemented within Angel control
the selection of elimination steps and thereby the preaccumulation code that is
generated. The algorithm code calls a default set of heuristics. All heuristics
use the CrossCountryInterface, however and therefore different heuristics can be
selected.

The second step in this transformation is the generation of preaccumulation
code. First it concretizes the abstract expression graphs returned by Angel into
assignments and resolves the edge references into the labels cji. The resulting
code resembles what we show in Figure 5. Then the transformation generates the
code that performs the saxpy operations (a · x + y) shown in (7). Considering
the input and output variables xj and yj of a basic block, the code generation
also ensures proper propagation of ẋj

i of variables xj
i ∈ xj ∩ yj by saving the ẋj

i
in temporaries. The example in Figure 8 illustrates this case. The detection of
the intersection elements relies on the alias analysis provided by OpenAnalysis.
To reduce overhead, we generate saxpy calls following the interface specified in
algorithms/DerivativePropagator/ for four cases:

(a): ẏ =
∂y

∂x
· ẋ, (b): ẏ =

∂y

∂x
· ẋ + ẏ, (c): ẏ = ẋ, (d): ẏ = 0 . (9)

The generated code is executable and represents an overall forward mode according
to (7) with basic block-local preaccumulation in cross-country fashion.

3.1.2.4 Control Flow Reversal. Section 2.3 explains the principal approach to
the reversal of the CFG. The CFG reversal as implemented in this transformation
is, by itself, not useful as unparsed code other than to check the correctness without
interference from other transformations. It is a building block for the adjoint code
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

OpenAD · 17

generator described in Section 3.1.2.6. The loop counters and branch identifiers
are stored in the same stack data structure that is used for the tape (introduced in
Section 2.3, see Figure 9, and also used in Section 3.1.2.5). The reversal of loops and
branches as detailed in [Naumann et al. 2004] assumes CFGs to be well structured,
that is, essentially to be free of arbitrary jump instructions such as GOTO or CONTINUE.
It is of course possible to reverse such graphs, for instance by enumerating all basic
blocks, recording the execution sequence, and invoking them according to their
recorded identifier in reverse order. Such a reversal is obviously less efficient than a
code that, by employing proper control flow constructs, aids compiler optimization
and yields much more efficient adjoint code. For the same reason well-tuned codes
implementing the target function f will avoid arbitrary jumps, and therefore we
have not seen sufficient demand to implement a CFG reversal for arbitrary jumps.

The reversal of loop constructs such as do i=1,10 replaces the loop variable i

with a generated variable name, for example, t, and we iterate up to the stored
execution count, for example, c. Then the reversed loop is do t=1,c. Often the
loop body contains array dereferences such as a(i), but i is no longer available in
the reversed loop. We call this kind of loop reversal anonymous. In order to access
the proper memory location, i will have to be stored along with the loop counters
and branch identifiers in the tape stack. In order to avoid this overhead, the loop
reversal may be declared explicit by prepending !$openad xxx simple loop to the
loop in question. With this directive the original loop variable will be preserved;
the reversed loop in our example is constructed as do i=10,1,-1 and no index values
for the array references in the loop body are stored. In general, the decision when
an array index needs to be stored is better answered with a code analysis similar
to to-be-recorded analysis [Hascoët et al. 2005]. Currently we do not have such
analysis available and instead, as a compromise, define the simple loop that can
reversed explicitly as follows:

—loop variables are not updated within the loop,
—the loop condition does not use .ne.,
—the loop condition’s left-hand side consists only of the loop variable,
—the stride in the update expression is fixed,
—the stride is the right-hand side of the top level + or - operator, and
—the loop body contains no index expression with variables that are modified

within the loop body.

While these conditions can be relaxed in theory, in practice the effort to implement
the transformation will rise sharply. Therefore they represent a workable compro-
mise for the current implementation. Because multidimensional arrays often are
accessed with nested loops, the loop directive when specified for the outermost
loop will assume the validity of the above conditions for everything within the loop
body, including nested loop and branch constructs. Details can be found in [Utke
et al. 2006].

3.1.2.5 Writing and Consuming the Tape. Section 2 explains the need to store
the cji on the tape. The writing transformation1 stores the nonzero elements of

1See algorithms/BasicBlockPreaccumulationTape/ .

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

18 · Utke et al.

Forward Adjoint

(a) ẏ = ∂y
∂x · ẋ x = ∂y

∂x · y + x, y = 0

(b) ẏ = ∂y
∂x · ẋ + ẏ x = ∂y

∂x · y + x
(c) ẏ = ẋ x = y, y = 0
(d) ẏ = 0 y = 0

Fig. 17. Saxpy operations from (9) and their corresponding adjoints

local Jacobians Jj . It is implemented as an extension of the preaccumulation in
Section 3.1.2.3, but instead of using the Jacobian elements in the forward saxpy
operations as in (7), we store them on a stack as shown for the example code in
Figure 8(a). The tape consuming transformation algorithm2 reinterprets the saxpy
operations generated in Section 3.1.2.3 according to Figure 17. The tape writing
and consumption implemented in these transformations are by themselves not useful
as unparsed code other than for checking the correctness without interference from
other transformations. They are, however, part of the adjoint code generator in
Section 3.1.2.6.

3.1.2.6 Basic Block Preaccumulation Reverse. This transformation3 represents
the combination of the various transformations into a coherent output that, un-
parsed into code and postprocessed, compiles as an adjoint model. For the post-
processing steps, see Section 3.2.4. Additional functionality is the generation of code
that is able to write and read checkpoints at a subroutine level; see also Section 2.4,
which relies heavily on the results of side-effect analysis (see Section 3.1.3) and the
inlinable subroutine call mechanism of the postprocessor (see Section 3.2.4.2) to
accomplish the checkpointing. The transformation has various options that control
subroutine argument intents (needed to accomplish checkpointing) and the renam-
ing of subroutines. Details can be found in [Utke and Naumann 2006].

3.1.3 Static Code Analyses (OpenAnalysis). The OpenAnalysis toolkit (see [Strout
et al. 2005]) separates program analysis from language-specific or front-end-specific
intermediate representations. This separation enables a single implementation of
domain-specific analyses, such as activity analysis, to-be-recorded analysis [Hascoët
et al. 2005], and linearity analysis [Strout and Hovland 2006] in OpenAD/F. Stan-
dard analyses provided by OpenAnalysis include CFG and call graph construction,
alias analysis, reaching definitions, ud- and du-chains, and side effects [Aho et al.
1986]. Because these analyses require lower-level information (e.g., pointer deref-
erences) not represented in the numerical core (see Section 3.1.1), OpenAnalysis
primarily interacts with the language-dependent OpenADFortTk component (see
Section 3.2.3).

A brief description of alias analysis illustrates this interaction. The alias map
data structure in Xaif maps each variable reference to a set of virtual memory loca-
tions that it may or must reference. For example, if a global variable g is passed into
subroutine foo through the reference parameter p, variable references g and p will
reference the same location within the subroutine foo and therefore be aliased to
another. OpenAnalysis determines the aliasing relationships by querying the front-

2See algorithms/BasicBlockPreaccumulationTapeAdjoint/ .
3See algorithms/BasicBlockPreaccumulationReverse/ .

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

OpenAD · 19

end’s intermediate representation of the program through an abstract, analysis-
specific interface called the alias IR interface. This is a language-independent
interface between OpenAnalysis and any intermediate representation for an imper-
ative programming language. Within OpenADFortTk the whirl2xaif subcomponent
implements the alias IR interface for the Fortran intermediate representation given
in whirl. The interface includes iterators over all the procedures, statements in
those procedures, memory references in each statement, and memory reference ex-
pression and location abstractions that provide further information about memory
references and symbols. The analysis result (i.e., the alias map needed to create
Xaif) is returned to whirl2xaif through an alias results interface.

For the activity analysis performed by OpenAnalysis, the independent and de-
pendent variables of interest are communicated via the front-end through the use
of pragmas; see Section 3.2.2. The analysis indicates which variables are active
(i.e., have nonzero derivatives) at any time, which memory references are active,
and which statements are active. The current activity analysis is based on the for-
mulation in [Hascoët et al. 2005], but the implemented data-flow engine does not
take advantage of structured data-flow equations yet. It can handle unstructured
as well as structured programs. The source code can be found in subdirectory
OpenAnalysis/.

3.2 Language-Dependent Components (OpenADFortTk)

For simplicity we consider all language-dependent components part of the OpenAD
Fortran Tool Kit (OpenADFortTk). The following sections provide details for the
various subcomponents used in the transformation pipeline in the following se-
quence.

(1) The canonicalizer converts programming constructs into a canonical form de-
scribed in Section 3.2.1.

(2) The compiler front-end mfef90 parses Fortran and generates an intermediate
representation (IR) in the whirl format; see Section 3.2.2.

(3) The bridge component whirl2xaif
—drives the various program analyses (see Section 3.1.3) and
—translates the numerical core of the program and the results of the program

analyses from whirl to Xaif; see also Section 3.2.3.
(4) The bridge component xaif2whirl translates the differentiated numerical core

represented in Xaif into the whirl format; see Section 3.2.3.
(5) The unparser whirl2f converts whirl to Fortran; see Section 3.2.2.
(6) The postprocessor is the final part of the transformation that performs template

expansion as well as inlining substitutions; see Section 3.2.4.

3.2.1 Canonicalization. In Section 3.1.1 we explained how the restriction to
the numerical core contributes to the language independence of the transforma-
tion engine. Still, even for a single programming language, the numerical core
often exhibits a large variability in expressing semantically identical constructs. To
streamline the transformation engine, we reduce this variability by canonicalizing
the numerical core. Because the canonicalization is done automatically, it does not
restrict the expressiveness of the input programs supplied by the user. Rather, it

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

20 · Utke et al.

(a) y = x * foo(a,b) (c)

real function foo(a,b)

! declarations, body etc.

foo = ...

end

(b)

! type matching foo’s return

real oad_ctmp0

! transform the assignment

call oad_s_foo(a,b,oad_ctmp0)

y = x * oad_ctmp0

(d)

subroutine oad_s_foo(a,b,oad_ctmp0)

! type matches foo return

real oad_ctmp0

! old declarations, body etc.

oad_ctmp0 = ...

end

Fig. 18. Canonicalizing a function call (a) inside an assignment statement into a subroutine call
(b). The function definition (c) is turned into a subroutine definition (d).

Fig. 19. Before (a) and
after (b) hoisting a non-
variable parameter and
canonicalizing a common
block (c) into a module
(d).

(a) call foo(x*y)} (c)
integer,parameter :: n=10

real :: a,b

common /foo/ a(n),b

(b)

real ad_ctmp0

! ...

ad_ctmp0 = x*y

call foo(ad_ctmp0)

(d)

module oad_m_foo

private n

integer,parameter :: n=10

real :: a(n),b

end module

is a means to reduce the development effort of the transformation engine. In the
following we describe the canonical form. The canonicalizer is written in Python
and can be found under OpenADFortTk/tools/canonicalize/.

Canonicalization 1. All function calls are canonicalized into subroutine calls.

For the transformations, in particular the basic block-level preaccumulation, we
want to ensure that an assignment affects a single variable on the left-hand side.
Therefore, the right-hand-side expression must to be side-effect free. While rarely
enforced by compilers, this is also a requirement for Fortran programs. Rather
than determining side effects of user-defined functions, we pragmatically hoist all
user-defined functions; see Figure 18(a) and (b). Subsequently, assignment right-
hand-side expressions consist only of elemental operations typically defined in the
programming language as built-in operators and intrinsics. The canonicalizer also
performs the accompanying transformation of the function definitions (Figure 18(c))
into subroutine definitions (Figure 18(d)). The oad s prefix is adjustable. A par-
ticular canonicalization of calls without canonicalization of definitions is applied to
the max and min intrinsics because Fortran cannot express their partials in closed
form. OpenAD/F provides a run-time library containing definitions for the respec-
tive subroutines called instead.

Canonicalization 2. Nonvariable actual parameters are hoisted.

Expressions as actual parameters may need to be differentiated, but we differentiate
only assignment right-hand sides. Consequently, we hoist all nonvariable actual
parameters into temporaries; see Figure 19(a) and (b).

Canonicalization 3. Common blocks are converted to modules.
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

OpenAD · 21

In order to ensure proper initialization of active global variables, the elements of the
common block (Figure 19(c)) are declared as module variables (Figure 19(d)). Care
must be taken to privatize and declare any symbolic size parameters for elements
of the common block. None of the above canonicalizations are intended to produce
manually maintainable code. Therefore we prefer simplicity to more sophisticated
transformations, for example, a common block converter that modularizes dimen-
sion information shared between common blocks.

3.2.2 Compiler Front-End Components (from Open64). The choice of Open64
for some of the programming-language-dependent components ensures some initial
robustness of the tool that is afforded by an industrial-strength compiler. The
Center for High Performance Software Research (HiPerSoft) at Rice University
develops Open64 as a multiplatform version of the SGI Pro64/Open64 compiler
suite, originally based on SGI’s commercial MIPSPro compiler.

OpenAD/F uses the parser, an internal representation, and the unparser of the
Open64 project. The classical compiler-parser mfef90 produces a representation of
the Fortran input in a format known as “very high level” or “source-level” whirl.
The whirl representation can be unparsed to Fortran with whirl2f. The source-
level whirl representation is a typical abstract syntax tree with the addition of
machine type deductions. The original design of whirl, in particular the descent to
lower levels closer to machine code, enables good optimization for high-performance
computing. HiPerSoft’s main contribution to the Open64 community has been the
source-level extension to whirl that is geared toward source-to-source transforma-
tions. It has invested significant effort in the whirl2f unparser.

For the purpose of AD, user-supplied hints and required input are typically not
directly representable in the programming language. For example, an AD tool must
know which variables in the code for f are independent and which are dependent; see
Section 3.1.3. While one can supply this information externally, for instance with a
configuration file, we introduced a special pragma facility, encoded within Fortran
comments. Pragmas are intrusive but they have the advantage of being parsed by
the front-end and being associated with a given context in the code. Thus, code and
AD information are easily kept in sync. For OpenAD/F we extended the Open64
components to generate and unparse these pragma nodes represented in whirl. The
behavior is similar to many other special-purpose Fortran pragma systems such as
OpenMP [OpenMP 2006]. To specify a variable y as a dependent, the user writes
!$openad dependent(y), where $openad is the special prefix that identifies OpenAD
pragmas. To provide flexibility, we introduced a generic !$openad xxx <some text>

pragma,4 which can communicate arbitrary pieces of text through the pipeline.
These generic pragmas can be associated with whole procedures, single statements,
or groups of statements. They provide an easy way to implement additional user
hints while eliminating the significant development costs associated with modifying
Open64.

3.2.3 Translating between whirl and Xaif. The translation of whirl into Xaif
(whirl2xaif), feeding it to the transformation engine, and then backtranslating the

4The mnemonic behind the name is that as x is the typical variable name, so !$openad xxx is
the variable pragma.

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

22 · Utke et al.

Fig. 20. Section of Xaif rep-
resenting an array derefer-
ence Y(I)

<xaif:VariableReference vertex_id="2">

<xaif:SymbolReference vertex_id="1" symbol_id="Y"/>

<xaif:ArrayElementReference vertex_id="2">

<xaif:Index>

<xaif:VariableReference vertex_id="1" ... "I" />

</xaif:Index>

</xaif:ArrayElementReference>

<xaif:VariableReferenceEdge source="1" target="2"/>

</xaif:VariableReference>

differentiated Xaif into whirl (xaif2whirl) are crucial parts of the tool pipeline. Two
distinguishing features of Xaif shape the contours of whirl2xaif and xaif2whirl.

First, because Xaif represents only the numerical core of a program, many whirl
statements and expressions are not translated into Xaif. For instance, Xaif does
not represent dereferences for user-defined types because numerical operations sim-
ply will not involve the user-defined type as such but instead always the numerical
field that eventually is a member of the user-defined type (hierarchy). Derived type
references are therefore scalarized; that is, the derived type reference is converted
into a uniquely named scalar variable in Xaif. For example, u%v may be represented
as
<xaif:SymbolReference vertex id="1" scope id="4" symbol id="scalarizedref0">

and in the Xaif symbol table we would find scalarizedref0 as a scalar variable with
a type that matches that of v. This scalarization is reversed upon backtranslating
the transformed Xaif representation into whirl. Variable references of user-defined
type can appear in the Xaif as subroutine parameters and in these cases are given
a special opaque type attribute. Statements in the original code that do not have
an explicit representation in the Xaif, such as I/O statements, take the form of
annotated markers that retain their position in the representation during the trans-
formation of the Xaif. Given the original whirl and the differentiated Xaif (with
the scalarized objects, opaque type, and annotated markers preserved), xaif2whirl
generates a new whirl representation for the differentiated code while restoring
user-defined types, dereferences, and statements not shown in the Xaif. The dif-
ferentiated Xaif relies on postprocessing; see Section 3.2.4. Therefore the second
major challenge for xaif2whirl is the creation of whirl containing the postprocessor
directives related to three tasks to be accomplished by the postprocessor:

—Declaration and use of the active variables
—Placement of inlinable subroutine calls
—Demarcation of the various subroutine bodies used in the subroutine template

replacements

Second, Xaif provides a way to represent the results of common compiler analyses.
In order to provide these to the transformation engine, whirl2xaif acts as a driver for
the analyses provided by the OpenAnalysis package; see Section 3.1.3. In particular
it implements the abstract OpenAnalysis interface to the whirl IR. The results
returned by OpenAnalysis are then translated into a form consistent with Xaif.

3.2.4 Postprocessing. The postprocessor performs the three tasks outlined in
Section 3.2.3. The main rationale for its existence is the added flexibility it af-
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

OpenAD · 23

(a)

1 subroutine push(x)

2 !$openad$ inline DECLS

3 use OpenAD_tape

4 implicit none

5 double precision :: x

6 !$openad$ end DECLS

7 dTape(dTapePtr)=x

8 dTapePtr=dTapePtr+1

9 end subroutine

(b)
!$openad inline push(subst)

call push(OpenAD_Symbol_5)

(c)
dTape(dTapePtr) = OpenAD_Symbol_5

dTapePtr = dTapePtr+1

Fig. 21. Inlinable subroutine definition(a), a call (b), and the expanded call (c).

fords the tool, which would otherwise be achieved only at a substantially higher
implementation effort.

3.2.4.1 Use of the Active Type. The simplest postprocessing task is the con-
cretization of the active variable declarations and uses. The main rationale for
postponing the concretization of the active type is flexibility with respect to the
actual active type implementation. The current postprocessor is written in Perl5
and therefore is much easier to adapt to a changing active type implementation
than to find the proper whirl representation and modify xaif2whirl to create it.
However, the ease of adaptation is clearly correlated to the simplicity and in
particular the locality of the transformation: the advantage disappears with in-
creased complexity of the transformation. For an active variable, for example v,
the representation created by xaif2whirl in whirl and then unparsed to Fortran
shows up as TYPE (OpenADTy active) v. In whirl the type remains abstract because
the accesses to the conceptual value and derivative components are represented
as function calls value (v) and deriv (v), respectively. The concretized ver-
sions created by the postprocessor for the current active type implementation (see
runTimeSupport/simple/OpenAD active.f90) are type(active) v for the declaration
and simply v%v for the value v%d for the derivative component, respectively, and
each subroutine receives an additional USE statement that makes the type definition
in OpenAD active known.

3.2.4.2 Inlinable Subroutine Calls. The second task, the expansion of inlinable
subroutine calls, is more complex because any call expansion now has the scope of
a subroutine body. The calls unparsed from whirl to Fortran are regular subroutine
call statements. They are, however, preceded by an inline pragma
!$openad inline <name(parameters)>

that directs the postprocessor to expand the following call according to a definition
found in an input file;6 see also runTimeSupport/simple/ad inline.f. For example,
pushing a preaccumulated local Jacobian value as in Figure 9(a) might appear in
the code as shown in Figure 21(b), for which we have a definition in ad inline.f

as for instance in Figure 21(a). The postprocessor ignores the DECLS section (lines
2–6) and expands this to what is shown in Figure 21(c). Note that for flexibility
any calls with inline directives for which the postprocessor cannot find an inline

5The source code can be found under OpenADFortTk/tools/multiprocess/. A rewrite in Python
reusing the same Fortran parsing functionality of the canonicalizer is under way.
6specified with command line option -i, which defaults to ad inline.f

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

24 · Utke et al.

(a)
template variables
subroutine variables
setup

state indicates task 2

state indicates task 1

pre state change for task 2

post state change for task 2

wrapup

pre state change for task 1

post state change for task 1

S

S1

2

(b) 1 subroutine template()

2 use OpenAD_tape ! tape storage

3 use OpenAD_rev ! state structure

4 !$TEMPLATE_PRAGMA_DECLARATIONS

5 if (rev_modetape) then

6 ! the state component

7 ! ’taping’ is true

8 !$PLACEHOLDER_PRAGMA$ id=2

9 end if

10 if (rev_modeadjoint) then

11 ! the state component

12 ! ’adjoint’ run is true

13 !$PLACEHOLDER_PRAGMA$ id=3

14 end if

16 end subroutine template

Fig. 22. Subroutine template components (a), split-mode Fortran template (b)

definition remain unchanged. For example, we may compile the above definition
for push and link it instead.

3.2.4.3 Subroutine Templates. The third task, the subroutine template expan-
sion, is somewhat related to the inlining. In Figure 21, the tape storage referred to
in the push routine needs to be defined, and in our design the subroutine template
is the intended place for such definitions. In our example this is achieved through
including a use statement in the template code (see Figure 21(a), line 3) where a
module provides the taping space. The main purpose of the subroutine template
expansion, however, is to orchestrate the call graph reversal. The simple reversal
schemes introduced in Section 2.4 can be realized by carrying state while traversing
the call tree.

The basic building blocks from the transformations in Section 3.1.2 are variants
Si of the body of an original subroutine body S0, each accomplishing one of the tasks
(i) denoted with (1)...(5) in Figure 11. For instance, the taping variant S2 is created
by the transformation in Section 3.1.2.5 or the checkpointing by the transformation
in Section 3.1.2.6. To integrate the Si into a particular reversal scheme, we need
to be able to make all subroutine calls in the same fashion as in the original code
and, at the same time, control which task each subroutine call accomplishes. We
replace the original subroutine body with a branch structure in which each branch
body contains one Si. The execution of each branch is determined by a global
structure whose members represent the state of execution in the reversal scheme.
The branches contain code for pre- and poststate transitions enclosing the respective
Si. This ensures that the transformations producing the Si do not depend on
any particular reversal scheme. The postprocessor inserts the Si into a subroutine
template, schematically shown in Figure 22(a). The template is written in Fortran.
Each subroutine in the postprocessor Fortran input is transformed according to a
default subroutine template found in a ad template.f file or in a file specified in
a !$openad XXX Template <file name> pragma to be located within the subroutine
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

OpenAD · 25

body. The input Fortran also contains !$openad begin replacement <i> paired with
pragmas !$openad end replacement. Each such pair delimits a code variant Si and
the postprocessor matches the respective integer identifier i with the identifier given
in the template PLACEHOLDER PRAGMA.

Split reversal is the simplest static call graph reversal. We first execute the en-
tire computation with the augmented forward code (S2) and then follow with the
adjoint (S3). From the task pattern shown in Figure 10(c) it is apparent that, aside
from the top-level routine, there is no change to the state structure within the call
tree. Therefore, there is no need for state changes within the template. Since no
checkpointing is needed either, we have only two tasks: producing the tape and per-
forming the adjoint run. Figure 22(b) shows a simple split-mode template; see also
runTimeSupport/simple/ad template.split.f. The state is contained in rev mode, a
static Fortran variable; see runTimeSupport/simple/OpenAD rev.f90 of type modeType

also defined in this module. In order to perform a split-mode reversal for the entire
computation, a driver routine calls the top-level subroutine first in taping mode
and then in adjoint mode.

Figure 12 illustrates the task pattern for a joint reversal scheme that requires
state changes in the template and requires more code alternatives. Figure 23 shows
a simplified joint mode template together with a detailed explanation; see also
runTimeSupport/simple/ad template.joint.f.

4. TOOL USAGE

The following contains brief remarks about how to obtain and use OpenAD/F.
While the principal approach will remain the same, future development may intro-
duce slight changes.

All components are open source and readily available for download from the
HiPerSoft CVS server at Rice University. Instructions to set up for anonymous CVS
access are found at http://hipersoft.cs.rice.edu/cvs/index.html#anonymous.
The reader is encouraged to refer to the up-to-date instructions in [OpenAD 2006].

The components of OpenAD/F transform the code in a predetermined sequence
of steps, the pipeline. Depending on the particular problem, certain variations to
the pipeline achieve better performance of the generated code. The most common
pipeline setups are encapsulated in a Perl script OpenAD/tools/openad/openad. In-
voking it with the -h option displays the script usage, of which the mode choices
are the most important. For large projects it will be more appropriate to integrate
the sequence of customized transformation steps into a Makefile. The technical
details can be found in [Utke and Naumann 2006].

All Fortran produced by whirl2f needs definitions for kind variables referred to
within the generated code. These definitions can be found in runTimeSupport/all/

in w2f types.f90. The code produced by the transformation pipeline requires im-
plementations (OpenAD/F supplies samples in directory runTimeSupport/simple/)
for the following aspects:

—Active type (see OpenAD active.f90)
—Checkpointing (only for adjoint models, see OpenAD checkpoints.f90)
—Taping (only for adjoint models, see OpenAD tape.f90)
—State for call graph reversal (only for adjoint models; see OpenAD rev.f90)

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

26 · Utke et al.

Fig. 23. Joint-mode Fortran template with argu-
ment checkpointing. The state transitions in the
template directly relate to the pattern shown in Fig-
ure 12. Each prestate change applies to the callees
of the current subroutine. Since the argument store
(S4) and restore (S5) variants do not contain any
subroutine calls, they do not need state changes.
Looking at Figure 12, one realizes that the callees
of any subroutine executed in plain forward mode
(S1) never store the arguments (only callees of sub-
routines in taping mode do). This fact explains lines
18, 25, and 30. Furthermore, all callees of a routine
currently in taping mode are not to be taped but in-
stead run in plain forward mode, as reflected in lines
27 and 28. Joint mode in particular means that a
subroutine called in taping mode (S2) has its adjoint
(S3) executed immediately after S2. This is facili-
tated by line 33, which makes the condition in line
35 true, and we execute S3 without leaving the sub-
routine. Any subroutine executed in adjoint mode
has its direct callees called in taping mode, which
in turn triggers their respective adjoint run. This is
done in lines 37–39. Finally, we have to account for
sequence of callees in a subroutine; that is, when we
are done with this subroutine, the next subroutine
(in reverse order) needs to be adjoined. This process
is triggered by calling the subroutine in taping mode,
as done in lines 41–43. The respective top-level rou-
tine is called by the driver with the state structure
having both tape and adjoint set to true.

1 subroutine template()

2 use OpenAD_tape

3 use OpenAD_rev

4 use OpenAD_checkpoints

5 !$TEMPLATE_PRAGMA_DECLARATIONS

6 type(modeType) :: orig_mode

7

8 if (rev_mode%arg_store) then

9 ! store arguments

10 !$PLACEHOLDER_PRAGMA$ id=4

11 end if

12 if (rev_mode%arg_restore) then

13 ! restore arguments

14 !$PLACEHOLDER_PRAGMA$ id=5

15 end if

16 if (rev_mode%plain) then

17 orig_mode=rev_mode

18 rev_mode%arg_store=.false.

19 ! run the original code

20 !$PLACEHOLDER_PRAGMA$ id=1

21 rev_mode=orig_mode

22 end if

23 if (rev_mode%tape) then

24 ! run augmented forward code

25 rev_mode%arg_store=.true.

26 rev_mode%arg_restore=.false.

27 rev_mode%plain=.true.

28 rev_mode%tape=.false.

29 !$PLACEHOLDER_PRAGMA$ id=2

30 rev_mode%arg_store=.false.

31 rev_mode%arg_restore=.false.

32 rev_mode%plain=.false.

33 rev_mode%adjoint=.true.

34 end if

35 if (rev_mode%adjoint) then

36 ! run the adjoint code

37 rev_mode%arg_restore=.true.

38 rev_mode%tape=.true.

39 rev_mode%adjoint=.false.

40 !$PLACEHOLDER_PRAGMA$ id=3

41 rev_mode%plain=.false.

42 rev_mode%tape=.true.

43 rev_mode%adjoint=.false.

44 end if

45 end subroutine template

The compilation order for these various modules follows exactly the order given
here. The provided sample implementations work with the subroutine inlining and
templates found in the same directory.

We also require a driver that invokes the transformed routines and seeds and
retrieves the derivatives. Examples for such drivers can be found in Section 5.1 and
[Utke and Naumann 2006].
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

OpenAD · 27

(a)

subroutine head(x,y)
double precision,intent(in) :: x
double precision,intent(out) :: y

c$openad INDEPENDENT(x)
y=sin(x*x)

c$openad DEPENDENT(y)
end subroutine

(b)

SUBROUTINE head(X, Y)
use w2f__types
use OpenAD_active
type(active) :: X
INTENT(IN) X
type(active) :: Y
INTENT(OUT) Y

! function body etc.

END SUBROUTINE

Fig. 24. Toy example(a) and the modified signature for the tangent-linear model(b)

(a)

1 program driver

2 use OpenAD_active

3 external head

4 type(active):: x, y

5 read *, x%v

6 x%d=1.0

7 call head(x,y)

8 write (*,*) "J(1,1)=",y%d

9 end program driver

(b)

1 program driver

2 use OpenAD_active

3 use OpenAD_rev

4 external head

5 type(active):: x, y

6 read *, x%v

7 y%d=1.0

8 our_rev_mode%tape=.true.

9 our_rev_mode%adjoint=.true.

10 call head(x,y)

11 write (*,*) "J(1,1)=",x%d

12 end program driver

Fig. 25. Toy example tangent-linear (a) and adjoint (b) driver

5. APPLYING OPENAD/F

The following examples serve to illustrate some of the implementation strategies
chosen for OpenAD/F. The first is a simple example demonstrates the general
embedding approach of the transformed code within an overall driver. The second
example is taken from a complex real-life application.

5.1 Toy Example

Consider as a toy example the function y = sin(x2) whose code is depicted in
Figure 24(a), along with the user-defined dependent and independent declarations;
see Section 3.2.2. Transformed into a tangent linear model, head turns into a
subroutine that has active parameters, and the calling code (i.e., the driver) is
written to seed (x%d) and extract (y%d) the derivatives according to Eqn. (1). A
simple driver for the tangent-linear model is shown in Figure 25(a). Because of the
simplicity of the example, the adjoint model version does not provide much insight
other than the reversal of seeding (y%d) and extraction (x%d) of the derivatives; see
Figure 25(b).

5.2 Shallow Water Model

Implementation details rapidly become critical determinants for the practicality
of complex real-life applications. We illustrate some aspects by way of a model
common in geophysical fluid dynamics. The so-called shallow-water model for a
homogeneous inviscid fluid on a rotating sphere provides useful insights into time-
dependent large-scale flow regimes in the atmosphere and ocean. While simpler

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

28 · Utke et al.

than a fully-fledged, vertically stratified atmosphere or ocean general circulation
model, it retains many of its complexities, including, from a physical point of view,
the nonlinear momentum equations, and, from a computational point of view, the
scaling of the computational problem with domain size and resolution. The model
is thus well suited as an example for applications where (i) the control space scales
with the dimensionality of the model grid, and (ii) the model state is nonlinear and
time-evolving, requiring the full state for derivative evaluations. The present imple-
mentation was adapted from work by [Losch and Wunsch 2003] in which they study
the feasability of using bottom topography as a control variable for ocean state es-
timation. It is here extended to a global configuration at 2×2 degree horizontal
resolution with realistic bathymetry. The scalar-valued dependent variable (ob-
jective function) is the volume transport through Drake Passage in the Southern
Ocean, the control space spanned by the horizontal bathymetry field is 160*80-
dimensional. We seek the sensitivity of the Drake Passage transport to changes in
bottom topography everywhere (independently) in the domain, which we obtain by
means of the adjoint model (reverse mode AD)

5.2.1 Collect and Prepare Source Files. The entire model consists of many sub-
routines distributed over various source files, and the existing build sequence in-
volves C preprocessing. In order to perform the static code analysis as explained
in Section 3.1.3, all code that takes part in computing the model has to be visible
to the tool, which means it has to be concatenated into a single file. One can do so
for all source files of the model, but in many cases the result will include code for
ancillary tasks such as diagnostics and data processing not directly related to the
model computation. Often it is better to filter out such ancillary code.

—The static code analysis and subsequently the code transformation has to make
conservative assumptions to ensure correctness; for example, for alias analysis this
means an overestimate of the memory locations that can alias each other. One
of the effects of these potential aliases is additional assignments in the generated
code, which lead to a less efficient adjoint. Including ancillary sources may cause
more conservative assumptions to be made and therefore lead to an unnecessary
loss in efficiency.

—While the numerical portions frequently have been tuned and made platform
neutral, the ancillary portions often are platform dependent and may contain
Fortran constructs that the language dependent components handle improperly
or not at all. While all tools in principle strive for complete language coverage,
the limited development resources often cannot be spared to cover infrequently
used language aspects and rather need to be focused on features that actually
benefit capabilities and efficiency for a wide range of applications.

As for all AD tools in existence today, the above concerns also apply to OpenAD/F,
and users are kindly asked to keep them in mind when preparing the source code.

Section 5.1 indicates the need for a modification to the code that drives the
model computation to at least perform the seeding and extraction of the derivatives.
The easiest approach to organize the driver is to identify (or create) a top-level
subroutine that computes the model with a single call. This routine and all code it
requires to compute the model become the contents of the single file to be processed
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

OpenAD · 29

subroutine init

subroutine cost

subroutine top

call init

call cost

do i=1,t

call newState

call cost

end do

call finalCost

end subroutine

subroutine top

call init

call cost

subroutine init

subroutine cost

call newState

call cost

end subroutine

call finalCost

end subroutine

end do
end subroutine

end do

call O

do i=1,o do i=1,i
subroutine O

call I
subroutine I

(a) (b)

Fig. 26. Modification of the original code (a) to allow 2 checkpointing levels (b)

by the tool pipeline. The independent and dependent variables should be identified
in the top-level routine.

5.2.2 Orchestrate a Reversal and Checkpointing Scheme. Joint and split reversal
(see Section 2.4) are two special cases of a large variety of reversal schemes. The
model here involved a time-stepping scheme controlled by a main loop. OpenAD/F
supports automatic detection of the data set to be checkpointed at a subroutine
level. In order to use this feature, the loop body is encapsulated into an inner loop
subroutine I. To realize a nested checkpointing scheme, we select a number i for
the inner checkpoints, divide the original loop bound t by i, and encapsulate the
inner loop into an outer loop subroutine O schematically shown in Figure 26, which
is invoked o times.7 The state changes can be encapsulated in four templates, one
joint mode template for top and all its callees except O, one for all callees of I, and
one each for O and I. Figure 26(b) shows the cost subroutine called from I as well
as from top. According to Figure 26, however, we would need two versions of cost,
one that as callee of top is reversed in joint mode and one that as callee of I is
reversed in split mode. To maintain the static reversal approach,8 one needs to
duplicate cost.

5.2.3 File I/O and Simple Loops. The model code uses both the NetCDF li-
brary and the built-in Fortran I/O during the initialization and output of results.
Because during the model computation no intermediate values are written and read,
there is no loss of dependency information. The I/O can lead to problems, however,
for instance when an activated array is initialized, effectively setting the %v and %d

values in the first half of the array instead of setting only the %v values in the entire
array. This is a well-known consequence of the active type implementation and
the lack of type checks in Fortran compilers. While one could argue that the code
should be generated to avoid reading or writing the derivative information, this
is not always the desired behavior, in particular not if one reads or writes active
intermediate variables. A simple and effective measure to circumvent this prob-
lem is to encapsulate initializations in routines excluded from the transformation.

7for simplicity disregarding remainders o=t/i.
8A dynamic reversal scheme is forthcoming.

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

30 · Utke et al.

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

0 50 100 150 200 250 300 350

−80

−60

−40

−20

0

20

40

60

80

Longitude

La
tit

ud
e

resopenad2.addepth800000.bin.0000000095.2x2.lev1 min/max=0.00101 / 18.6

Fig. 27. Sensitivity (gradient) map for 2× 2 degree resolution

OpenAD/F will create conversion code for parameters to such external subroutine
that are active at the call site. We note, however, that this approach does not work
when, instead of passing a parameter, the external routine refers to active global
variables.

Early tests showed a considerable amount of run-time and memory spent on
taping array indices used in loops. The simple loop concept introduced in Sec-
tion 3.1.2.4 is designed to eliminate much of this overhead. Not all loops within
the given model code satisfy the corresponding conditions; hence, as an additional
step throughout the model code, we identified the conformant loop constructs to
the tool using the simple-loop pragma. The resulting efficiency gain was about a
factor 4 in run-time and more than a factor 10 in memory use.

5.2.4 Results. Figure 27 shows as an example output a map of sensitivities of
zonal volume transport through the Drake Passage to changes in bottom topog-
raphy everywhere in a barotropic ocean model computed from the shallow water
code. The integration period spans an interval of 50 years. Enhanced sensitivities
are manifest both locally in the vicinity of the Drake Passage as well as remotely,
e.g. over the Kerguelen Plateau, the South Pacific Ridge and in the Indonesian
Throughflow. Sensitivities are mediated through the adjoint variables (i.e. the La-
grange multipliers of the) flow field represented by the model dynamics. Instead of
one single adjoint model integration 160*80 = 14,400 forward integrations would
have been necessary to produce this map. The adjoint model generated with the
current version of OpenAD/F applied to the shallow water code achieves a run-
time that is only about 8 times that of normal model computation. We expect the
ongoing development of OpenAD/F(see also Section 6) to yield further efficiency
gains.
ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

OpenAD · 31

6. SUMMARY AND FUTURE WORK

OpenAD/F is an automatic differentiation tool built on a language-independent
infrastructure with well-separated components. It allows developers to focus on
various aspects of source-to-source transformation AD, including parsing and un-
parsing of different programming languages, data and control flow analysis, and
(semantic) transformation algorithms. The components have well-defined inter-
faces, and intermediate stages are retained as either Fortran or XML sources.

The largest portion of the ongoing work on OpenAD/F is devoted to improve-
ments needed for the application of the tool to a fully-fledged parallel nonlinear
ocean general circulation model used for ocean circulation and climate studies. The
currently applied configurations of the model yield adjoint codes with an overhead
factor of about 10 over the normal model computation.

OpenAD/F allows users a great amount of flexibility in the use of the code trans-
formation and permits interventions at various stages of the transformation process.
We emphasize that for large-scale applications the efficiency of checkpointing and
taping can be improved merely by modifying the implementation of the run-time
support, the template, and inlining code. They are not conceived to be just static
deliverables of OpenAD/F but rather are part of the interface accessible to the
user. It is not the intention to stop with a few prepackaged solutions as one would
expect from a monolithic, black-box tool. True to the nature of an open source
design, the interface is instead conceived as a wide playground for experimentation
and improvement.

Aside from the plain AD tool aspect, the intention of the underlying OpenAD
framework is to provide the AD community with an open, extensible, and easy-to-
use platform for research and development that can be applied across programming
languages. Tools that have a closer coupling with a language-specific, internal rep-
resentation have the potential to make the exploitation of certain language features
easier. Consequently we do not expect OpenAD/F to make obsolete existing source
transformation tools such as the differentiation-enabled NAG Fortran compiler,9
TAF,10 or TAPENADE.11 Rather, it is to complement these tools by providing
well-defined APIs to an open internal representation that can be used by a large
number of AD developers. Users of AD technology will benefit from the expected
variety of combinations of front-ends and algorithms that is made possible by Open-
AD/F.

As with any software project there is ample room for improvement. The ro-
bustness of the tool, in particular the coverage of some specific language features,
often is of concern to first-time users. While robustness is not to be disregarded,
it is rarely considered a research subject and as such cannot be made the major
objective of a tool development project in an academic setting. Robustness issues
affect mostly the language-dependent components, and the contributing parties
undertake a considerable effort to address concerns common to many applications.
Many issues specific to a particular input code can be addressed by minor adjust-
ments, which often happen to reflect good coding practices anyway (e.g., using

9 http://www.nag.co.uk/nagware/research/ad overview.asp
10 http://www.FastOpt.de
11 http://tapenade.inria.fr:8080/tapenade/index.jsp

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

32 · Utke et al.

well-structured versus unstructured control flow).
We are concerned with changes that affect many applications and yield improved

efficiency of the adjoint code. Currently the most important items on the develop-
ment list are the support for vector intrinsics and the handling of allocation/deallo-
cation cycles during the model computation for the generation of an adjoint model.
Because the tool provides a variety of options to the users, we are also working on
collecting data for efficiency estimates that permit an informed choice between the
code transformation options. The results of ongoing research into AD algorithms –
in particular dynamic call graph reversal, more efficient control flow reversal, and
improved elimination techniques in the computational graphs – will be incorporated
into OpenAD.

Acknowledgements

Funding for the first phase of the OpenAD project was provided by NSF under
ITR contract OCE-0205590. The current development is supported in part by
NSF under ITR contract OCE-0530867, by NASA, Modeling, Analysis and Pre-
diction (MAP), Earth-Sun Division, Science Mission Directorate, award number
NNG06GC28G and by the Mathematical, Information, and Computational Sciences
Division subprogram of the Office of Advanced Scientific Computing Research, Of-
fice of Science, U.S. Dept. of Energy under Contract DE-AC02-06CH11357.

REFERENCES

ACTS. 2006. http://www.autodiff.org/ACTS. Adjoint Compiler Technology & Standards
project.

ADIC. 2006. http://www.mcs.anl.gov/adicserver.

Aho, A., Sethi, R., and Ullman, J. 1986. Compilers. Principles, Techniques, and Tools.
Addison-Wesley, Reading, MA.

Albrecht, A., Gottschling, P., and Naumann, U. 2003. Markowitz-type heuristics for com-
puting Jacobian matrices efficiently. In Computational Science – ICCS 2003. LNCS, vol. 2658.
Springer, 575–584.

Berz, M., Bischof, C., Corliss, G., and Griewank, A., Eds. 1996. Computational Differenti-
ation: Techniques, Applications, and Tools. Proceedings Series. SIAM, Philadelphia.

Bücker, M., Corliss, G., Hovland, P., Naumann, U., and Norris, B., Eds. 2006. Automatic
Differentiation: Applications, Theory and Implementations. LNCS, vol. 50. Springer, New York.

Corliss, G., Faure, C., Griewank, A., Hascoet, L., and Naumann, U., Eds. 2002. Automatic
Differentiation of Algorithms – From Simulation to Optimization. Springer, New York.

Corliss, G. and Griewank, A., Eds. 1991. Automatic Differentiation: Theory, Implementation,
and Application. Proceedings Series. SIAM, Philadelphia.

Faure, C. and Papegay, Y. 1997. Odyssée version 1.6: The user’s reference manual. Tech.
Rep. available at http://www.inria.fr/recherche/equipes/safir.en.html, Sophia Antipolis,
Projet SAFIR.

Giering, R. and Kaminski, T. 1998. Recipes for adjoint code construction. ACM Transactions
on Mathematical Software 24, 437–474.

Griewank, A. 2000. Evaluating Derivatives. Principles and Techniques of Algorithmic Differ-
entiation. Number 19 in Frontiers in Applied Mathematics. SIAM, Philadelphia.

Griewank, A. and Reese, S. 1991. On the calculation of Jacobian matrices by the Markovitz
rule. In [Corliss and Griewank 1991]. 126–135.

Hascoët, L., Naumann, U., and Pascual, V. 2005. ”To be recorded” analysis in reverse-mode
automatic differentiation. Future Generation Comp. Syst. 21, 8, 1401–1417.

Heimbach, P., Hill, C., and Giering, R. 2005. An efficient exact adjoint of the parallel MIT
general circulation model, generated via automatic differentiation. Future Generation Computer
Systems 21(8), 1356–1371.

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

OpenAD · 33

Hovland, P., Naumann, U., and Norris, B. 2002. An XML-based platform for semantic trans-
formation of numerical programs. In Software Engineering and Applications (SEA 2002),
M. Hamza, Ed. ACTA Press, Anaheim,CA, 530–538.

Losch, M. and Wunsch, C. 2003. Bottom topography as a control variable in an ocean model.
20, 1685–1696.

Marotzke, J., Giering, R., Zhang, K., Stammer, D., Hill, C., and Lee, T. 1999. Construction
of the adjoint MIT ocean general circulation model and application to Atlantic heat transport
variability. J. Geophysical Research 104, C12, 29,529–29,547.

Marshall, J., Adcroft, A., Hill, C., Perelman, L., and Heisey, C. 1997. A finite-volume, in-
compressible Navier Stokes model for studies of the ocean on parallel computers. J. Geophysical
Research 102, C3, 5,753–5,766.

Naumann, U. 2002. Elimination techniques for cheap Jacobians. In Automatic Differentiation of
Algorithms – From Simulation to Optimization, G. Corliss, C. Faure, A. Griewank, L. Hascoet,
and U. Naumann, Eds. Springer, New York, 247–253.

Naumann, U. 2003. Optimal accumulation of Jacobian matrices by elimination methods on the
dual computational graph. Math. Prog.. Published online at http://www.springerlink.com.

Naumann, U. and Gottschling, P. 2003. Simulated annealing for optimal pivot selection in
Jacobian accumulation. In Stochastic Algorithms: Foundations and Applications, A. Albrecht
and K. Steinhöfel, Eds. LNCS, vol. 2827. Springer, 83–97.

Naumann, U. and Utke, J. 2005. Source templates for the automatic generation of adjoint
code through static call graph reversal. In Computational Science - ICCS 2005, V. Sunderam,
G. van Albada, P. Sloot, and J. Dongarra, Eds. LNCS, vol. 3514. Springer, Berlin, 338–346.

Naumann, U., Utke, J., Lyons, A., and Fagan, M. 2004. Control flow reversal for adjoint
code generation. In Proceedings of the Fourth IEEE International Workshop on Source Code
Analysis and Manipulation (SCAM 2004). IEEE Computer Society, Los Alamitos, CA, 55–64.

NEOS. 2006. http://www-neos.mcs.anl.gov/. Network Enhanced Optimization Server.

OpenAD. 2006. http://www.mcs.anl.gov/OpenAD.

OpenMP. 2006. http://www.openmp.org.

Stammer, D., Wunsch, C., Giering, R., Eckert, C., Heimbach, P., Marotzke, J., Adcroft,
A., Hill, C., and Marshall, J. 2002. The global ocean circulation and transports during 1992
– 1997, estimated from ocean observations and a general circulation model. J. Geophysical
Research 107(C9), 3118.

Strout, M. and Hovland, P. 2006. Linearity analysis for automatic differentiation. In Compu-
tational Science – ICCS 2006. LNCS, vol. 3994. Springer, 574–581.

Strout, M., Mellor-Crummey, J., and Hovland, P. 2005. Representation-independent pro-
gram analysis. In Proceedings of the Sixth ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering (PASTE).

Utke, J. 2006. Flattening basic blocks. In [Bücker et al. 2006]. 121–133.

Utke, J., Lyons, A., and Naumann, U. 2006. Efficient reversal of the interprocedural flow of
control in adjoint computations. Journal of Systems and Software 79, 1280–1294.

Utke, J. and Naumann, U. 2003. Software technological issues in automatizing the semantic
transformation of numerical programs. In Software Engineering and Applications (SEA 2003),
M. Hamza, Ed. ACTA Press, Anaheim, CA, 417–422.

Utke, J. and Naumann, U. 2004. Separating language dependent and independent tasks for
the semantic transformation of numerical programs. In Software Engineering and Applications
(SEA 2004), M. Hamza, Ed. ACTA Press, Anaheim, CA, 552–558.

Utke, J. and Naumann, U. 2006. OpenAD/F: User manual. Tech. Rep. available at http:

//www.mcs.anl.gov/openad/, Argonne National Laboratory.

Wengert, R. E. 1964. A simple automatic derivative evaluation program. Comm. ACM 7, 8,
463–464.

Wunsch, C. 2006. Discrete Inverse and State Estimation Problems: With Geophysical Fluid
Applications. Cambridge (UK).

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

34 · Utke et al.

Wunsch, C. and Heimbach, P. 2006. Practical global oceanic state estimation. Physica D in
press.

Received Month Year; revised Month Year; accepted Month Year

The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (”Argonne”). Argonne, a
U.S. Department of Energy Office of Science labo-
ratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.

ACM Transactions on Mathematical Software, Vol. V, No. N, October 2006.

