
A Repository Service for Grid Workflow Components

Gregor von Laszewski1,2,• and Deepti Kodeboyina1
1Argonne National Laboratory, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL 60440

2University of Chicago, Computation Institute, Research Institutes Building #402, 5640 South Ellis Avenue, Chicago, IL 60637-1433
•Corresponding author: gregor@mcs.anl.gov

http://www.mcs.anl.gov/˜gregor/papers/vonLaszewski-workflow-repository.pdf

Abstract

As part of the Java CoG Kit we have defined a so-
phisticated workflow framework. This workflow frame-
work projects an integrated approach towards executing
tasks in Grid and non-Grid environments. One of the
services needed is a convenient service to store, retrieve,
and modify workflow components defined by the commu-
nity similar to systems such as the comprehensive perl
archive network. The availability of such a service will
not only allow the definition of components useful for
the greater grid community, but it will also be possible
that it can be reused to support dynamically changing
workflows managed by collaborative groups. In this pa-
per, we present a simple extensible framework to design,
build, and deploy a workflow repository service. This
repository is intended to be used in ad-hoc Grids or in
community Grids.

1 Introduction
Grids have become a valuable asset to many projects

for conducting complex scientific discovery or business
processes. In [10] we have introduced an extensible
workflow framework that can easily interact with in-
frastructures using Grid and also commodity execution
frameworks. The question arises how can we encour-
age and foster the reuse of components that are shared
among a user group? In many projects, it is common
to use repositories to share information or components
with a community. As our dynamic workflow system
introduces a module concept with namespaces and in-
cludes it is possible to utilize this feature as part of a
comprehensive repository framework for Grids. In this
paper, we will discuss the architecture of such a frame-
work and what it will take to implement it. The pa-
per is structured as follows. First, we present a short

overview of some prominent projects and products for
repositories. Next, we analyze our specific requirements
based on the utilization within Grid frameworks. We
have augmented them with a number of use cases. We,
then present an architecture that addresses these require-
ments. Finally, we conclude the paper and point to fu-
ture activities that we will conduct.

2 Repositories
While building a repository for our workflow compo-

nents, we reviewed a number of existing solutions and
related research. The use of repository-like systems has
evolved from a simple directory where files are stored
and managed by a single user to todays peer-to-peer file-
sharing methods (see Figure 1).

Selected
Repository trends

File duplication
⇓

File sharing
⇓

Object codes
⇓

Centralised repositories
⇓

Distributed repositories
⇓

P2P File sharing

Selected Grid Repository
trends

Information Service
⇓

Grid CVS
⇓

Machine code repository
⇓

File Replica Service
⇓

Workflow Repository Service

Figure 1. Several trends that influence the
development of repositories and lead to a
variety of repository supporting technolo-
gies in Grid and non-Grid environments.

We observe that the development of source code
and object code libraries motivated their management
in repositories to manage them for or within a commu-

1

http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-workflow-repository.pdf

nity. On the object code level, we see simple rules for
archiving, building, and deployment in order to encour-
age reuse by other code developers. Issues that are of
concern are different object and source code that must
be managed for different architectures. An example for
such a system is the well-known ar command in UNIX.
The development of shared-code repositories with ver-
sion control has enabled the development of code that
is maintained by a group of people. Examples for such
systems with central repositories are CVS [3] and Sub-
version [9]. In contrast, systems such as Bitkeeper [1]
and git [4] allow us to distribute the code management
on different servers.
Another important aspect is the dynamic inclusion of

code during runtime. Besides object libraries, systems
such as the comprehensive Perl archive network (CPAN)
[2] and jEdit [7] enhance this concept by being able to
download source code or precompiled objects from a
repository and integrate them in running applications.
For Grids, modified versions to cvs were at one point

available to be able to authenticate against CVS with
Grid credentials. A more elaborate framework was de-
veloped as part of the Cactus code as it enhanced the
simple Grid repository with so called “thorns” that rep-
resent reusable components within the Cactus frame-
work [8]. Based on an idea by the first author, the En-
trada [?] system used a modified version of jedit to do
component integration into a GUI for Grids. A later
version of Entrada replaced the logic of dynamic com-
ponent integration with its own implementation. Both
systems are no longer maintained.
Additional commodity tools that are typically associ-

ated with code development are listed in [5].

3 Abstraction for a Repository Model
All of the existing tools and systems define a compo-

nent repository model [11] that addresses a number of
management issues ranging from managing just an ob-
ject repository to managing the deployment of compo-
nents from a repository. Each of these issues require the
definition of a model that describes the behavior of the
repository framework with regards to issues identified to
be important for a particular use case. We have identi-
fied and distinguishe between the following models.

Product model. It describes the products that are in-
cluded in the repository and their relationship with
each other. A product may consist of multiple ob-
jects. An example for a product model would be
to organize products by topics and to assign the ob-
jects to the appropriate topics.

Object model. describes what kind of objects are in-
cluded in a product. This may include documen-
tation including requirements, specifications, de-
signs, manuals, models, but also the source code,
test cases, and examples or a combination thereof.

Object composition model. It describes the relation-
ships and dependencies between the objects. This
composition model may go beyond the product
model and may also describe the set of allowed
compositions without specifying a product.

Version model. It describes how items are to be ver-
sioned.

Distribution Model. It describes in which way the
repository is distributed. Typical distribution mod-
els are centralized and decentralized. Along with
the access model, more complex distributions can
be described as for example that introduced by the
peer-to-peer community.

Access model. It describes how, what, which, and when
users are allowed to access and modify the objects
stored in the repository.

Operation Model. It describes how the repository is
administered and how backups are being con-
ducted.

Deployment Model. It describes how the repository is
deployed in a production environment. Ease of de-
ployment is of special importance to groups that
like to set up their own repositories.

In the following sections, we will specify models for
a Grid-based workflow component repository that fo-
cuses on our Karajan workflow engine. Before we do
so, we will first review the architecture of the Java CoG
Kit as it significantly influences our repository architec-
ture.

4 The Java CoG Kit Architecture
In order to support our vision of integration work-

flows management tools into the Java CoG Kit, we
have identified a number of higher level abstractions in-
cluding Grid tasks, transfers, jobs, queues, hierarchical
graphs, schedulers, and workflows, and control flows,
which make the development of Grid programs easier
[10]. However, in contrast to other Grid efforts we
have provided a mechanism in our workflow manage-
ment framework that allows the integration of a vari-
ety of Grid and commodity middleware in an easy-to-
comprehend framework based on the concepts of pro-

tocol independent abstractions, providers, and bindings.
These are discussed below.

Providers. We have introduced the concept of Grid
providers that allow different Grid middleware to
be used as a part of an instantiation of the Grid ab-
stractions. Hence the programmer does not have to
worry about the particularities of the Grid middle-
ware. Through dynamic class loading, we have the
ability to do late binding against an existing pro-
duction Grid. This includes the implementation of
the Grid (task) abstractions, version binding against
existing Grid Toolkits, and resource binding.

Abstractions. We have identified a number of useful
abstractions that help in the development of ele-
mentary Grid applications. These abstractions in-
clude job executions, file transfers, workflow ab-
stractions, job queues and can be used by higher
level abstractions for rapid prototyping. As the Java
CoG Kit is extensible users can include their own
abstractions and enhance the functionality of the
Java CoG Kit.

Bindings. Through these concepts, the Java CoG Kit
protects your development investments by protect-
ing you from changes to the Grid middleware.

Based on these elementary concepts, we designed
a layered architecture that allows the gradual enhance-
ment of workflow capabilities within our application
(see Figure 2).

GT2

CoG 'it Abstraction Layer

CoG

GT3.62

CoG

GT4
8S-RF

CoG

Applications

Data and Task
Management Layer

Gridfaces Layer

SSH

CoG

Nano
materials

Bio-
Informatics

Disaster
Management Portals

GT3.62

CoG

GT3.62

CoG

CoG

local

CoG

8ebDAK

CoGCo# %it providers

Workflow
Abstractions

8orkflow
Abstractions

'araMan

8orkflow
KizualizerPEditor

8orkflow
Portlet

RueuePSet
Abstractions

GridAnt
Workflow
Frameworks

Workflow
Design <
=onitoring

Workflow
Applications

#rid =iddleware <
Commodity
Technologies

Figure 2. The layered approach of the
Java CoG Kit provides mechanisms for in-
crementally enhancing workflow manage-
ment components.

On the bottom of the architecture, we have the typi-
cal Grid middleware. Above it lies our Java CoG Kit ab-
straction layer that focuses on job submission file trans-
fer and authentication. With the help of CoG providers,
we can now access a number of different Grid middle-
ware.
The simplest form of workflow abstractions that we

support are embedded in the definition of a task. This
may include a file transfer, a job submission, an authen-
tication or any other task that has to be done. Our tasks
are defined to have a status that can be queried. Based
on this elementary definition, we define task queues and
sets.
On the next higher level, we define APIs, tools, and

services that help in the coordination of such tasks. It is
handled by a workflow engine that we have derived from
GridAnt. However, the scalability of GridAnt was lim-
ited. Hence, we designed a complete new workflow en-
gine with many more advanced language features. This
workflow engine is also called Java CoG Kit workflow
Karajan engine.
At the next level, we define Gridfaces that are visual

abstractions shared amongst stand-alone applications or
portals. With the help of Gridfaces, it will become easy
to develop visuals for either portals or stand-alone appli-
cations. The value of the Java CoG Kit workflow solu-
tion lies in its simplicity and its ability to be integrated
in a solution that allows us to expose workflow to a va-
riety of users. As indicated in Figure 3, we are proto-
typing a system that provides an API based on abstrac-
tions and the integration of services. Command line in-
terfaces, web portals, and a Grid Desktop that expose the
workflow functionality in a convenient user interface are
also under development. The integration of these tools is
possible through an integrated but modular architecture
as depicted in Figure 4. Our workflow system contains
at its heart the workflow engine that is augmented by a
variety of tools, our workflow specification languages,
and programing frameworks to reuse workflows and the
engine. It is important to note that the workflow engine
is itself an abstraction and could for example be replaced
by a specialized version suitable and customized for a
particular community.
In the rest of the paper, we will focus on the architec-

ture of our workflow repository service.

5 Repository Requirements
In our repository architecture design we would like to

address the following requirements. The repository must
be easy to maintain and setup. It should support single
or multiple users. We should be able to replicate the
repository. The database backend should be replicable.

Increased exposed Functionality

In
cr

ea
se

d
ex

po
se

d
Us

ab
ili

ty

Java CoG Kit

Standalone
Applications

Desktop

Web Portals

Command line
tools

Abstractions

APIs
Services

Figure 3. The Java CoG Kit integrates
several mechanisms that together build
a powerful workflow management system
for Grids.

An easy programming interface must be available that is
exposed through a Java interface [6] as well as through
Java CoG Kit workflow elements [10]. A Web services
or Grid services schema will be easily derivable from
this interface.
In addition to these elementary requirements, we

have identified a number ofmore sophisticated require-
ments and project the in simple use cases. These require-
ments influence our architecture and its implementation
significantly. We depict the use cases in Figure 5. Here
the symbols U represent users, R represents a reposi-
tory, and P represents a provider that uses commodity
or Grid technologies as backend. Relationships between
the components are indicated with an arrow. The use
cases are numbered from i-xi).

i) A user maintains his own repository.

ii) Several users share a repository.

iii) A User maintains a repository that can be replicated
to a remote resource.

iv) Several users maintain a shared repository, but the
repository is actually distributed.

v) A repository has one provider.

vi) A repository has multiple providers.

vii) A distributed repository has different providers for
the distributed parts of the repository when the
repository is replicated.

Instantiation and Execution

ProgrammingSpecificationTools

Workflow XML

Command line
tools

Workflow
Abstractions

Workflow
Services

Workflow
Engine

Grid

Editor

Monitor

Debugger

Simple Workflow
Language

Workflow
APIs

Workflow
PortletsTranslators

Figure 4. Components of the Java CoG Kit
workflow framework

U … U

R

U

R

P … P

R

P

R

RR R R

U U

…

U

P P

R R

i) ii) iii) iv)

v) vi) vii)

Figure 5. Use cases of the repository inte-
gration into the infrastructure.

As is obvious certain combinations can occur be-
tween the use cases listed in i-iv and v-vii. An example
would be the combination of i and vii. Let us demon-
strate a use case that requires the combination of both
models. Consider a user that maintains a repository on
his local client machine, a laptop. The repository is
stored in memory. In case he wants to travel from point
A to point B, he may be forced to shutdown the machine.
To do so he needs to be able to replicate the repository
normally stored in memory into a checkpointed state. A
simple way to create such a state is to store the contents
in a file save the file to a location that can be retrieved at
a later time. Next time the user is working, he refreshes
his local repository form the file and continues with his
work.

6 Architecture
The architecture of our repository follows that of the

Java CoG Kit layered architecture. This proven concept
allows us to gradually enhance the functionality of the
repository framework, while at the same time project
reusable interfaces that can be adapted to a variety of
implementations and backends.
Figure 6 depicts the architecture of our repository

framework. We identify several layers and proceed from
the bottom up. On the bottom of the architecture is the
infrastructure layer that contains the Grid and services
as well as frameworks that can be used to implement the
backend on which the repository may be implemented.
Possible backend systems of interest are WS-RF based
services, gridftp, regular file systems, http, webdav, cvs,
subversion, and naturally a database such as SQL. Other
systems such as Grid RFT and db are naturally also op-
tions. Providers build the next layer in our architecture.
For each of the backends, we can develop a provider that
bridges between the infrastructure backend to our higher
level abstractions. The abstraction layer defines a num-
ber of interfaces that simplify the development of Java
code accessing the repository. Naturally, it will be sim-
ple to derive service descriptions from these interfaces as
to provide web service or Grid service based protocols.
Our abstractions have the advantage that the developer
does not necessarily have to know anything about XML
in order to develop programs for the repository. We have
shown that this concept is quite effective in other efforts
conducted by us [6].
The workflow engine that we designed is part of the

execution layer. It makes use of the interfaces to the
repository. In order to support the specification of work-
flow using the repository, we have added several ele-
ments to our workflow specification language that make
the reuse of the repository directly within a workflow
simple. The application layer consists of applications
that may use the specifications that are executed by the
workflow engine.
Within the repository abstractions we define inter-

faces for creating the repository schema, joining repos-
itories, browsing and searching the contents, updating
the repository, check pointing, and so on.
Figure 7 shows the pseudo code for connecting and

interacting with the repository. As expected, we have
provided methods for the connection, the retrieval of
components, the upload of components, and the search
of components. The components that are part of the
repository are represented through additional interfaces.
Figure 8 depicts the pseudo code of the interface to a
component. It is important to note that we have at-

Application

Specification

Repository Abstractions

Workflow
Engine

Grid

Search UpdateBrowse

fil
e:

//

ht
tp

://

W
eb

DA
V

m
yS

Q
L

CoG CoG CoG CoG

Restrict …Join

gr
id

ftp
://

CoG CoG

Inf
ras
tru
ctu
re

Other
Abstract-

ions

Ex
ec
uti
on

Sp
ec
ific
ati
on

Ap
pli
ca
tio
n

Ab
str
ac
tio
ns

Pr
ov
ide
r

CV
S

CoG

sv
n

CoG

W
S-

RF

CoG

Figure 6. The architectural design of the
Workflow repository follows the layered
approach introduced by the Java CoG Kit.

tributes that are defined as name value attributes. The
interface pseudo-code for creating a component reposi-
tory schema defining the attributes is shown in Figure 9.
It allows us to maintain an arbitrary number of string-
based fields that are contained within the repository.
Based on these simple interfaces it is possible to in-

tegrate a number of providers through implementations
into our framework. This variability is important as it
protect us from changes to the backend repository com-
ponents due to version upgrades and allows the potential
integration of not only Grid services but also of com-
modity services, such as bit torrent and other well ac-
cepted non Grid solutions.

7 Workflow Repository Model
In the previous section we have identified a general

architecture for Grid repositories. Furthermore, we in-
troduced in Figure 9 how to manage attributes that are
to be stored as parts of components. In this section, we
apply this architecture to the definition of a model and
implementation of a workflow repository.
As we have chosen an extensible architecture, we will

use a very simple repository model to support our work-
flow. This will allow us to quickly proceed and to expose
minimal functionality to our user community. At a later
stage, we will revisit our repository model and enhance
this where appropriate.
Our product model is defined by the storage of com-

ponents that relate to the Java CoG Kit workflow spec-
ifications. Each component in the repository refers to
a component that can be included within the workflow
through an enhanced include element.

package org.globus.cog.repository;

interface repository {

setProvider(String type,
String hostname,
String port)

// Sets the appropriate provider for the
// component repository.

connect ()
// Connects to the repository.

disconnect()
// Disconnects from the repository.

boolean isConnected ()
// Returns the status of the connection.

add (component name)
// add the component to the repository.

remove(String name)
// Removes the named component.

component search(String query)
// returns the component that matches the
// search expression.

component get (String name)
// Gets the Component Object from
// the repository.

load(File filename)
// loads all components from a file with
// the filname. The contents of the file
// is an XML representation of the
// components.

save(String filename)
// Saves the contents of the repository to
// a named file.

}

Figure 7. The pseudo code of the interface
that describes the repository

package org.globus.cog.repository;

interface component {

String toString()
// Converts the component to a string.

String toXML()
// Converts the component to an XML
// string.

String getMetadata(String name)
// returns all the attributes in an XML
// less uString.

setAttribute(String attribute,
String value)

// Sets attribut to value.

Enumeration getAttributes()
// returns an enumeration of all defined
// Attributes

}

Figure 8. The pseudocode of the interface
to access a component

package org.globus.cog.repository;

interface componentAttributes {

add (String name)
// adds a named attribute and sets
// its value to null

add (String name, String description)
// adds a named attribute and ist
// description

String get (String name)
// returns the value of the named attribute

set (String name, String value)
// sets the value of a named attribute
// by default it is null

remove (String name)
// removes the named attribute

Enumeration list()
// returns a list of all its attribute names.

}

Figure 9. The pseudo code of the interface
that describes the repository

Our object model defines the workflow components.
The components include a number of attributes and can
be defined through a simple XML file. Without changes,
these files can be included in other workflows. The at-
tributes that are part of our object schema are defined as
follows.

Name specifies the name of the component to call it in
a workflow.

Short description is a one line description that simpli-
fies the creation of a list function for the compo-
nents included in the repository.

Description is an extensive description about what the
component does and how it is used. It is essentially
the manual page.

License specifies the license under which the workflow
component is distributed. If left empty the Globus
Toolkit license is used

Author List the list of authors and contributors or is a
pointer to a reference describing a team.

Code specifies the source code of the component.

Signature is a digital signature that can be used to iden-
tify if the downloaded component is the same.1

Version is the version number.

Date entered specifies the date when the component
was entered.

Date modified specifies the date when the component
was last modified.

Deprecated by in case the component is deprecated.

Language specifies if the component is written in xml.

Type specifies the type of the component such as docu-
mentation, source code.

Keywords specifies a number of keywords this compo-
nent is associated with.

Our object composition model is based on simple in-
clude statements that can be placed in the Java CoG Kit
workflow specification. The include statement fetches
the component from the repository and includes the con-
tents at runtime into the location. At this time, only the
current version is stored in our repository. In the future

1This field is added by default und is assumed to be under restricted
write access.

we plan to work on more extensive version models in
collaboration with a user and group based access model.
The distribution model is at this time only local or cen-
tralized. In the local case, the repository is stored on the
local hard drive. In the distributed case, the repository is
stored remotely and can be shared by authorized users.
As we like to have an easy deployment and operations
model we will use initially only a local file provider and
a mySQL database. The later is easy to install, and actu-
ally often already installed on default operating systems.

8 Karajan language extension
In order for the repository to be used by our user com-

munity, we have developed a number of predefined ele-
ments that access the repository and are stored in the file
repository.xml. Once this file is included in a workflow,
we can use the appropriate repository functions. Within
this file we define the namespace cog:repository:. Ac-
cording to the interfaces defined in earlier sections,
we define corresponding elements with the appropriate
names. For example, the following code snippet repre-
sents the definition of the get component as depicted in
Figure 10. We left of the details of the implementation
and just indicated them with

<element name="cog:repository:get"
arguments="name"
types="java.lang.String">

...
</element>

Figure 10. The pseudo code for defining an
element in Karajan

Instead of listing each of the definitions we list a
simple example to demonstrate the ease of use in a
workflow specification. We assume that we have de-
fined a workflow element called ”task:gaussian” that we
store in the repository that is located on the host reposi-
tory.mcs.anl.gov through the port 4711. In our script we
get the blast routine and execute it. The script realizing
this is listed in Figure 11.

9 Schema representation
To enable a mechanism to describe components eas-

ily and to move them between our different layers in the
architecture, we have defined a simple XML schema. In
Figure 13 we show an example of a workflow compo-
nent written by the Java CoG Kit group. It includes the
attributes that we heave identified to be useful for our
initial prototype of the repository. As the schema is ex-
tensible we can include customised tags as necessary.

<?xml version="1.0" encoding="ISO-8859-1" ?>
<xs:schema targetNamespace="http://cogkit.org/.../workflow/"
xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="stringType">
<xs:restriction base="xs:string"/>

</xs:simpleType>

<xs:complexType name="deprecatedType">
<simpleContent>
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="version" type="xs:string" use="required"/>

</simpleContent>
</xs:complexType>

<!-- definition of simple elements -->
<xs:element name="shortDescription" type="xs:string"/>
<xs:element name="description" type="xs:string"/>
<xs:element name="dateCreated" type="xs:date"/>
<xs:element name="dateModified" type="xs:string"/>
<xs:element name="language" type="xs:string"/>
<xs:element name="deprecates" type="xs:string"/>
<xs:element name="signature" type="xs:string"/>

<!-- definition of complex elements -->
<xs:element name="metadata">
<xs:complexType><!-- definition of attributes -->
<xs:attribute name="name" type="xs:string" use="required"/>
<xs:attribute name="author" type="xs:string" use="required"/>
<xs:attribute name="version" type="xs:string" use="required"/>
<xs:sequence>
<xs:element ref="shortDescription"/>

<xs:element ref="description" minOccurs="0"/>
<xs:element ref="dateCreated"/>
<xs:element ref="dateModified" minOccurs="0"/>
<xs:element ref="language"/>
<xs:element ref="deprecates" minOccurs="0" type="deprecatedType" />
<xs:element ref="signature" minOccurs="0"/>

</xs:sequence>
</xs:complexType>
</xs:element>
<xs:element name="source" type="stringType">
</xs:element>

</xs:schema>

Figure 12. Pseudocode of the general XML schema for the component description.

10 Collaborative and Dynamic Repository
Use Case

With the availability of a repository service a num-
ber of collaboratory use cases can be supported. We fo-
cus on two use cases. First, the repository is centrally
maintained by a group of dedicated administers and ex-
port components that are contributed by the community.
Second, a repository that is restricted to a particular user
group. Both repositories will have a number of over-
lapping requirements in regards to the organization and
maintenance of the repository. However, the access to

the repository is restricted. This can be achieved by us-
ing the Java CoG Kit abstraction mechanism for authen-
tication and choosing an appropriate provider such as a
Grid security enables WS-RF service. While control-
ling the access mechanism through a Grid solution, we
can provide secure access to a user group. In the first
case, we simply restrict the users that have access to the
repository to the set of administrators.

What can we now achieve with such a repository?
One of the issues of producing solutions to a complex
scientific or business process is the software engineer-

<?xml version="1.0"?>
<xmlns:k="http://cogkit.org/.../workflow/"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://cogkit.org/.../workflow/workflow.xsd">

<k:metadata name="job-submission-form.xml" author="The CoG Kit Group" version="1.0">
<k:shortDescription> Job-Submission </k:shortDescription>
<k:description>

Submission of a job to a Globus Service with input provided
interactively using dynamically generated dialogs.

</k:description>
<k:dateCreated> 18-10-2004 </k:dateCreated>
<k:dateModified> 10-05-2005 </k:dateModified>
<k:language> gridant </k:language>
<k:deprecates name="job-submission-form.xml" version="0.9"/>
<k:signature> UrXLDLBIta6skoV5/A8Q38GEw44... </k:signature>

</k:metadata>
<k:source>
<project>
<include file="cogkit.xml"/>
...
<while>
<set name="formData">
<form:form title="test" id="IDForm" waitOn="IDSubmit, IDQuit">
...

</while>
</project>

</k:source>
</xml>

Figure 13. Sample XML document confirming to the schema for the component description.

ing process to develop components that can be reused
by peers. Having a repository allows us to publish such
components easily. Not only can we store them, but
due to the ability of the workflow system to dynamically
load them it is possible to design dynamically changing
workflows dependent on the state a Grid is in. Assume
we have a Grid in which we like to conduct a parame-
ter study, but we are more interested in precise results
around certain parameters than others. In case enough
resources would be available, we can formulate a work-
flow that goes through the list of parameters one by one
sorted by priority. We apply the same algorithm (for-
mulated as workflow) on each of the parameters studies.
However when the resources become oversubscribed, it
may be advantageous to decrease the accuracy of the
calculations for parameters that we are not that inter-
ested in. Such a calculation could be included in the
workflow prior to the workflow being started. However,
experience shows that observations derived during such
experiments may lead to the change of certain boundary
conditions. This could be as simple as my collabora-
tor has provided me with a faster algorithm to solve a
study of one parameter. As a users parameter study may

run for month at a time it would be inconvenient to stop
the ongoing study. Instead, one could ingest the new al-
gorithm in the running system and the workflow would
dynamically adapt to this change.

11 Conclusion

We have presented a general architecture for Grid
repositories. The design is based on the layered archi-
tecture following practices used by the Java CoG Kit.
We can use such a repository as part of our Java CoG
Kit workflow system in order to enable a dynamically
changing workflow. Since our workflow is interpreted,
the execution of components is conducted during run-
time. The existence of such a repository is useful in or-
der to support the shared development of components or
to distribute components within a community. Replica-
tion of contents from a centralized to a local repository
can easily be achieved by our predefined commands.
Next steps will include setting up a component repos-
itory for a trusted community to allow the integration of
components by the community.

<project>

<include name="cog.xml">
<include name="cog-repository.xml">

<!-- set the provider to a mySQL server -->
<cog:repository:setProvider

type="mySQL"
host="repository.mcs.anl.gov"
port="4711"/>;

<!-- connect to the server -->
<cog:repository:connect/>

<!-- get task gaussian from repository -->
<cog:repository:get name="task:gaussian"/>

<!-- disconnect from the server -->
<cog:repository:disconnect/>

<!-- now call gaussian -->

<task:gaussian file="parameterfile.dat"/>

</project>

Figure 11. The workflow specification for a
simple use of the repository

Acknowledgments
This work was supported by the Mathematical, In-

formation, and Computational Science Division subpro-
gram of the Office of Advanced Scientific Computing
Research, Office of Science, U.S. Department of Energy,
under Contract W-31-109-Eng-38. DARPA, DOE, and
NSF support Globus Project research and development.
The Java CoG Kit is supported by DOE SciDAC and
NSF Alliance. We like to thank Deepti Kodeboyina for
her help in improving the presentation of this paper.

References
[1] Bitkeeper. Web Page. Available from: http://www.

bitkeeper.com/.
[2] Comprehensive Perl Archive Network. Web Page. Available

from: http://www.ptan.org.
[3] CVS - Concurrent Version System. Web Page. Available from:

http://www.gnu.org/software/cvs/.
[4] git - Global Information Tracker. Web Page. Avail-

able from: http://www.kernel.org/pub/software/
scm/cogito/README.

[5] CodeOrganizer.com: Software Tools for Code Develop-
ment. Web page. Available from: http://www.
codeorganizer.com/index.htm.

[6] Java Commodity Grid (CoG) Kit. Web Page. Available from:
http://www.cogkit.org.

[7] jEdit Programmers Text Editor. Web Page. Available from:
http://www.jedit.org/.

[8] Michael Russell, Gabrielle Allen, Ian Foster, Ed Seidel, Jason
Novotny, John Shalf, Gregor von Laszewski, and Greg Daues.
The Astrophysics Simulation Collaboratory: A Science Portal
Enabling Community Software Development. In Proceedings of
the 10th IEEE International Symposium on High Performance
Distributed Computing, pages 207–215, San Francisco, CA, 7-
9 August 2001. Available from: http://www.mcs.anl.
gov/˜gregor/papers/astro-hpdc10.pdf.

[9] Subversion - Version Control System. Web Page. Available
from: http://subversion.tigris.org/.

[10] Gregor von Laszewski and Mike Hategan. Grid Work-
flow - An Integrated Approach. In To be published, Ar-
gonne National Laboratory, Argonne National Laboratory,
9700 S. Cass Ave., Argonne, IL 60440, 2005. Available
from: http://www.mcs.anl.gov/˜gregor/papers/
vonLaszewski-workflow-draft.pdf.

[11] Wikipedia: Component Repository Management. Web
page. Available from: http://en.wikipedia.org/
wiki/Component_repository_management.

http://www.bitkeeper.com/
http://www.bitkeeper.com/
http://www.ptan.org
http://www.gnu.org/software/cvs/
http://www.kernel.org/pub/software/scm/cogito/README
http://www.kernel.org/pub/software/scm/cogito/README
http://www.codeorganizer.com/index.htm
http://www.codeorganizer.com/index.htm
http://www.cogkit.org
http://www.jedit.org/
http://www.mcs.anl.gov/~gregor/papers/astro-hpdc10.pdf
http://www.mcs.anl.gov/~gregor/papers/astro-hpdc10.pdf
http://subversion.tigris.org/
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-workflow-draft.pdf
http://www.mcs.anl.gov/~gregor/papers/vonLaszewski-workflow-draft.pdf
http://en.wikipedia.org/wiki/Component_repository_management
http://en.wikipedia.org/wiki/Component_repository_management

