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Abstract

In [1] and [2] we computed the lift and drag forces on a sphere,

subjected to a wall-bounded oscillatory flow. The forces were found

as a function of the Reynolds number, the forcing frequency, and the

gap between the particle and the ideally smooth rigid bounding wall.

Here we investigate how the forces change as a function of the above

parameters and its moment of inertia if the particle is allowed to freely

rotate.

Allowing the particle to rotate does not change appreciably the

drag force, as compared to the drag experienced by the particle when

it is held fixed. Lift differences between the rotating and non-rotating

cases are shown to be primarily dominated in the mean by the pres-

sure component. The lift of the rotating particle varies significantly

from the fixed-particle case and depends strongly on the Reynolds

number, the forcing frequency and the gap; much less so on the mo-

ment of inertia. Of special significance is that the lift is enhanced for

small Reynolds numbers and suppressed for larger ones, with a clear

transition point.

We also examine how the torque changes when the particle is al-

lowed to rotate as compared to when it is held fixed. As a function of

the Reynolds number the torque of the fixed sphere is monotonically

decreasing in the range Re = 5 to Re = 400. The rotating-sphere

counterpart experiences a smaller and more complex torque, synchro-

nized with the lift transition mentioned before. As a function of the

gap, the torque is significantly larger in the fixed particle case.

Keywords: lift, drag, torque, Magnus effect, sphere, wall-bounded flow, oscil-
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latory flow.
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1 Introduction

The experimental determination of the lift and drag on a particle in a wall-

bounded flow is very challenging, as recounted by Rosenthal and Sleath ([3]).

In [1] and [2], hereafter referred to as FLR02 and FLR05, respectively, we

used instead numerical means to obtain these forces. Our results, which were

shown to be consistent with the fluid laboratory experiments of Rosenthal

and Sleath, significantly extend the range of parameters for which the lift

and drag are now known.

In FLR02 the particle was placed a small distance away from the wall

and the forces were then characterized as a function of the forcing frequency

and the Reynolds number. The dependence of lift and drag on the forcing

frequency, or Keulegan-Carpenter number, was dramatic. The key findings

were to show that the lift force is significantly enhanced by the choice of

Keulegan-Carpenter number and that the lift, even when compared to a

fairly wide range of buoyancy forces, is important in the physical setting.

In FLR05 we added the gap number, or distance between the sphere and

the bounding wall, to the parameter list. In doing so we found that the

sphere experienced suction and repelling effects, depending on the gap num-

ber and the forcing frequency. We also found that the nature of the lift force

changed from viscous-dominated to pressure-dominated when the Keulegan-

Carpenter number, the non-dimensional forcing period, is varied. We also

showed that there are only a few degrees of freedom in the spectrum of the

forces, suggesting that a reduced but fairly complete analytical model could

be formulated for these forces, and such model be accurate for a large range

of forcing frequencies.
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In the present study we add a rotational degree of freedom to the particle

and investigate how lift and drag are modified, as compared to the lift and

drag of the same particle, held fixed. We will also quantify the changes in

the torque. The primary focus, however, will be to characterize the lift,

which we want to describe as a function of the Reynolds number, the forcing

frequency, the gap between the sphere and the wall, and the moment of

inertia of the particle; the near-term goal is to determine whether rotational

freedom will change significantly the amount of lift experienced by a particle,

a sensible possibility, at the outset. To suggest that allowing for rotation in

the calculation of the lift and drag is of significance is inspired by the work

that has been done on flow around circular cylinders. Oscillatory flow around

a circular cylinder has been frequently studied: see [4], [5, 6], and references

contained in these works. However, as was demonstrated in FLR02 and

FLR05, lift and drag estimates from cylinders in an oscillatory flow cannot

be extrapolated to the spherical particle case, since the flow is fundamentally

different.

The long term goals of this line of inquiry are to provide robust data and

functional trends of the basic forces on ideal particles, with which to: (1)

infer the mechanics of particle dislodgement and suspension in oscillatory

flows, such as those ocurring under the action of of tidal motion, rhythmic

sedimentation, and some industrial processes; (2) improve the parametric

description of models for what are commonly referred to as “inertial particles”

in the sedimentation literature. With regard to the first goal, it would seem

that extrapolating sediment dynamic models from what occurs to a single

particle is unrealistic. Yet, the basis of some of the most often cited models

for the motion of sedimentary/erodible beds in these natural settings rely
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on a real or perceived understanding of how individual particles move under

the influence of the surrounding fluid, how particles respond to fluid stresses,

and how the energy dissipation balance plays out. Of note is that the lift

and buoyancy forces enter in the parametrization of dislodgement and/or

suspension of the sediment. (See [7] and references contained therein; also

see the original work of Bagnold [8], and the extension of this model to the

oceanic setting by Bailard in [9]). In any event a thorough study of the

single particle in oscillating boundary layer bounded by an ideally smooth

bounding wall, we feel, is a necessary first step in tackling the more physically

relevant case of a bed of multidispersive particles subjected to oceanic/fluvial

hydrodynamics. With regard to the second goal, inertial particle models

depend critically on our understanding of how individual as well as finite

collections of particles move and interact in a flow (see [10]. Also, [11] for

references to the inertial particle literature).

Several studies have considered the forces on a sphere in a free flow. Of

note are recent papers on flows over particles forced to rotate. For example,

[12] and [13]. See also [14] for an experimental report on the matter. The

results from these studies have important practical applications as well as

popular interest, for example, the role played by forced spin on the trajectory

of baseballs, tennis balls, golf balls. In our study, however, we do not force

the particle to spin, but rather, we allow it to freely spin in response to the

shearing forces and we ask how the basic forces change by allowing for this

degree of freedom.

In [15, 16, 17] the effect of free rotation on the motion of a solid sphere

in an unbounded steady shear flow was examined (see also [18]). For flows

with moderate Reynolds numbers, from 0.5 to 200, the results most relevant
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to our work were their findings that: (1) rotation has little effect on the

drag; (2) there is a range of flows wherein the effect of allowing the particle

to freely rotate leads to outcomes that are different from existing analytical

estimates; (3) the effect of rotation on the lift is Reynolds-number (Re)

dependent: for small Re the effect is very small, in accordance with Saffman’s

results [19, 20]; beyond Re ≈ 200 the effect again becomes negligible. In the

range Re = 5− 100, in particular, they found that the torque-free condition,

i.e. steady-state, generates a significant increase in the lift. This excess

lift is attributed to a Magnus lift effect –of a sphere forced to spin at a rate

Ωst = T

8πµD3 , the terminal value in a steady shear flow (T is the torque, D the

diameter of the sphere, µ is the viscosity)– and that this excess is additive;

(4) at moderate Re they observe that Ωst can be uniquely parameterized by

Re alone, yielding a simple power law expression for Ωst as a function of Re.

We show in this study that the results obtained for a sphere that is freely

rotating in a wall-bounded oscillatory flow are unlike the results obtained

in [15] for the steady shear flow case. Notably, we did not find an obvious

way to decompose the forces into a fixed and rotational component, i.e. it

could not be expressed as the sum of two fields, because the forces change

qualitatively with parameters.

Wall-bounded forces on a rigid sphere were examined in [21]. They found

that for flows with Reynolds number smaller than 100 the lift decreases with

Reynolds number and increases for larger Reynolds number flows. This is

unlike the oscillatory flow case we will present. However, the steady flow

case they considered and ours have a qualitative similarity with regard to

the tendency of the lift to drop as the gap separating the sphere from the

wall is increased.
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2 Preliminaries

In order to calculate the forces as well as the flow we will be using a high-

order spectral element time-dependent Navier-Stokes equations solver. The

domain is infinite away from an ideally smooth rigid wall of infinite extent on

which the no-slip boundary condition is applied. No-slip boundary conditions

for the fluid are applied at the boundary of the sphere as well. The flow is

forced to oscillate in time, so that in the absence of the sphere the velocity

reverses direction smoothly. The sphere has a fixed diameter of 1 and the

fluid has a density of ρ0 := 1 in appropriate dimensional units.

As in FLR02 and FLR05 the Reynolds number is defined as

Re := UD/ν,

where the characteristic length-scale D is the particle diameter, and the

convective time-scale is D/U . U is the amplitude of oscillation in the far-

field velocity and ν is the kinematic viscosity. The nondimensional forcing

period, otherwise known as the Keulegan-Carpenter number, is

τ := TU/D,

where T is the period of the forcing. The gap number is

ǫ := d/D,

and it represents the ratio of the distance between the edge of the sphere and

the wall and D.

In adding a rotational degree of freedom to the particle the flow config-

uration is now characterized by four parameters: the Keulegan-Carpenter

number, the Reynolds number, the gap, and the moment of inertia of the
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sphere (which in turn depends on the relative density, for a given diameter

D). The dependence of the forces on the relative density

R := ρ/ρ0,

will be briefly examined in this study. Here ρ0 is the density of the fluid.

The computational scheme and parameters are described in FLR02, FLR05.

We thus only summarize how the original computational framework is mod-

ified to account for the rotating degree of freedom of the sphere. A no-slip

boundary condition is enforced at the sphere’s surface. The sphere’s angular

acceleration is derived from

T = I
dΩ

dt
, (1)

where the torque T is evaluated by integrating the contributions of the shear

stress over the sphere and I is the moment of inertia of the sphere. A second-

order Adams-Bashforth scheme

Ωn = Ωn−1 +
∆t

I
(
3

2
Tn−1 −

1

2
Tn−2), (2)

is used to integrate the angular acceleration. For the density ratios and

timestep sizes considered (the latter governed by the standard CFL restric-

tions arising from explicit treatment of the nonlinear terms in the Navier-

Stokes equations no additional stability restrictions on (2) were encountered

(see [22]).

The dimensionless torque coefficient, hereon called the normalized torque,

is reported in what follows as

CT :=
2|T|

SD
,

where

S :=
1

2
ρ0AU2,
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and A = πD2/4. In what follows we mean by lift and drag the coefficients

CL = Fz/S and CD = Fx/S, respectively.

In the absence of the sphere the flow field is described analytically as

ub =
(

sin(
2πt

τ
) − e−z/δ sin(

2πt

τ
− z/δ), 0, 0

)

, (3)

which corresponds to a unit-amplitude velocity field oscillating back and

forth in the x-direction with nondimensional period τ . For viscous flows,

this results in a time-periodic boundary layer with characteristic thickness

δ =

√

τ

πRe
.

In this study the period is in the range 40 ≤ τ ≤ 260, and thus the Stokes

layer range is 0.2 < δ < 0.96, for Re = 100, which overlaps somewhat with

the range of the gap, 0.25 ≤ ǫ ≤ 1.0.

As in FLR02, we use u = 0 as an initial condition in all cases. Mean

quantities are reported once the flow has established periodicity in time.

The base flow is established by specifying Dirichlet conditions on either end

of the domain. When the far-field base flow is in the positive x direction,

we set u(−Lx, y, z, t) = ub and use a homogeneous Neumann condition at

x = +Lx. When the far-field base flow is in the negative x direction, we

reverse these conditions. The Neumann condition corresponds to the usual

outflow (natural) boundary condition associated with the Stokes subproblem

that is solved in each step. Note that the required hydrostatic forcing results

directly from application of the boundary conditions and that the auxiliary

pressure p
0

is not needed.
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3 Torque, Drag, and Lift

Figure 1 depicts the dimensionless velocity profiles (heavy lines) in the bound-

ary layer at different times over the course of the forcing period for Re = 100.

Figure 1a is representative of the flow for the smaller Keulegan-Carpenter

number range; the figure corresponds to τ = 80. Figure 1b, for τ = 300, is

representative of the large τ situation. The horizontal lines superimposed on
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Figure 1: Velocity profiles, given by (3), shown at equal intervals in time over

the course of one period of oscillation. Re = 100. (a) τ = 80, (b) τ = 300.

The horirontal lines depict the top and bottom positions of a unit-diameter-

sphere, in (a) for gaps ǫ = 0 (dashed), and ǫ = 0.5 (solid), and in (b) for

gaps ǫ = 1 (dashed) and ǫ = 0.5 (solid).

the flow indicate the top and bottom locations of a unit-diameter sphere for

several values of the gap ǫ. The vertical scale is D. The size of the boundary

layer is, by (3) and in terms of δ, directly proportional to the square root

of the velocity amplitude and inversely to the square-root of the period of

oscillation. Some aspects of the forces on particles in steady flows (see [15]

and references therein) are relevant to shearing flows near boundaries that

are more generally time dependent: the time-mean lift force is insignificant
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if the particle is placed sufficiently far away from the bounding wall –many

δ layer-thicknesses away; that is to say, if the particle is located outside of

the boundary layer, there is no shear and thus the lift is insignificant. By

the same argument, the larger the boundary layer is relative to the diameter

of the sphere provided the particle is close enough to the bounding wall, the

higher the shear forces. The presence of the rigid wall also contributes to a

Bernoulli effect, which as we shall show, is still evident when the sphere is 1

diameter away from the wall, even if the bulk of the boundary layer is much

smaller than the gap. There are fundamental differences between the steady

flow and the oscillatory flow situation: the shear rate as inferred from the

Figure 1a flow, should lead to a smaller lift than the one inferred from Figure

1b, by steady-flow arguments. Yet, the opposite is true. What is missing

from consideration is the addition of a Bernoulli effect in the gap. As we will

be showing in the following section, for the range of gaps considered and for

large Reynolds numbers, the lift is pressure-dominated.

Bagchi and Balachandar [15] found that the lift of a freely rotating sphere

in a steady shear flow will experience an additive lift associated with a Mag-

nus effect. They established this by comparison of their numerical results to

a theoretical estimate. When a particle is given a torque-free condition and

the flow is oscillating it is not clear how the lift is modified by the added

freedom in the motion of the particle. The two aspects that make the out-

come hard to predict using prior knowledge about the steady shear case are,

(1) if the particle is in a rapidly oscillating shearing flow the particle may

not achieve a torque-free condition before the flow reverses; (2) the flow may

not be symmetric when there is a reversal in the direction of the force, for

example, if vortical structures are generated during the course of the period
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and these persist beyond the time at which flow reversal takes place.

In what follows we shall define the Differential Mean Lift (DML) as the

difference between the mean lift of a particle allowed to rotate and the mean

lift of the same particle held fixed. In most instances we will report on

relative quantities. For an absolute reference we refer the reader to FLR02

and FLR05.

We describe now how the forces on a particle subjected to an oscillatory

boundary layer flow in a torque-free situation depend on the moment of

inertia (more specifically on the density ratio R), the Reynolds number Re,

the Keulegan-Carpenter number τ and the gap number ǫ.

3.1 Effect of the Density Ratio

We consider here a very small range of density ratios R, because outside

of this range we presume that the buoyancy force of a free particle would

prevail in the dynamics of a particle in a fluid when compared to the lift

force. The dependence of the torque on R was found to be weak. We tried

0.95 ≤ R ≤ 2, for Re = 100, ǫ = 0.5 and τ = 80. The maximum rotational

angle θmax on R is negligible and the peak torque force dependence on R is

nearly linear. See Figure 2.

3.2 Sensitivity to the Reynolds Number

The dependence of the lift on the Reynolds number for steady flows was

extensively investigated by Bagchi and Balachandar [15, 16]. The definition

of Reynolds number in their work is the same as the one adopted in the

present study. (See [21] for an investigation of the effect of a nearby wall
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Figure 2: Maximum rotation angle θmax (degrees) and peak normalized

torque CT as a function of R for Re = 100, ǫ = 0.5, and τ = 80.

on the lift and drag of a particle). Bagchi and Balachandar found that

the lift was sensitive to rotational effects when the Reynolds number was

intermediate, in the range 5 ≤ Re ≤ 100, approximately, but otherwise it

was insensitive to changes in the Reynolds number. They also found that the

difference between the fixed and free particles, with respect to the drag, was

negligible across the whole range of the Reynolds number. In Figure 3 we

show the time series of the drag and lift, angle of deflection (in degrees) and

normalized torque, as a function of time, for several values of Re. Figures

3e-f can be contrasted with 3c-d. The lift time series gets considerably more

complex as the Reynolds number is increased, developing relatively large

high frequency deflections. Comparison of Figures 3c and 3e, as well as

Figures 3d and 3f, shows that the complexity in the lift and drag is not as

much a function of whether the particle is fixed or torque-free, but primarily

a function of Reynolds number. Examination of the fluid flow time series

indicates that the complexity in the lift –and to a lesser extent in the drag–

has to do with the interactions of the sphere with its own vortical wake.

Another feature of the flow is that, as the Reynolds number increases, more
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Figure 3: Dependence on Reynolds number. R = 0.95, τ = 80, and ǫ = 0.25.

Time series of the drag, lift, torque, and angular deflection, for a freely

rotating particle: (a) Re = 5, (b) Re = 100, (c) Re = 200, (d) Re = 400.

For non-rotating particle: (e) Re = 200, (f) Re = 400.
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of the resulting lift and drag is created by the pressure contribution, as

compared to the viscous component of the stresses.

It is apparent that the DML in the oscillatory wall-bounded flow case is

sensitive in more complex ways to the Reynolds number than in the steady

flow case in [15]. Our results appear in Figure 4. The difference between the

torque of the non-rotating particle is much larger, for small Re than the rotat-

ing counterpart: Figures 4a-b show the torque dependence on the Reynolds

number, for the non-rotating and rotating cases, respectively. That it is much
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Figure 4: Dependence on the Reynolds number. R = 0.95, τ = 80, and

ǫ = 0.25. (a) Maximum torque, non-rotating particle, (b) maximum torque

of the rotating particle. (c) Maximum drag, with and without rotational

effects; (d) the mean lift of the freely rotating and non-rotating cases. The

DML is the difference between the two curves in (d).
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smaller in magnitude in the rotating case is not surprising, however, that it

has a non-monotonic structure is. In Figure 7 we show the dependence of the

maximum torque on the gap width and the Keulegan-Carpenter parameter:

the torque is small over a large range of Reynolds numbers appears to be

true only because the gap was chosen to be large. Figure 4c shows that the

drag is nearly equal in the rotating and non-rotating particle cases: symme-

try considerations dictate that if the flow is symmetric upon reversals then

the maximum and minimum torque values for either the rotating or non-

rotating particles should be the same in magnitude, and more importantly,

that the difference of the mean drags of both cases should be zero. Figure

4d displays the lift, as a function of the Reynolds number, for the rotating

and non-rotating cases: lift is enhanced by rotation for Reynolds numbers

below about 150, and a depressed by rotation for Reynolds numbers above

150. Inspection of the vortex field showed that the fields are similar for the

rotating and non-rotating cases below Re = 200, roughly. In particular, the

phase between the features in the vortical field and the forces is more com-

plex; and when a comparison is made between the vorticity of the rotating

and non-rotating cases well above Re = 200 the fields are different from the

lower Reynolds number cases by the appearance of vortical structures. See

Figure 5. For Re ≥ 300 we see that the sphere develops separating vortices

on the top of the sphere. Examination of the structure for Re = 300 shows

two vortex structures separating from the sphere top when the sphere is not

rotating. With rotation there are three vortex structures and these are less

intense. This also explains why the time series is far more complicated for

higher Re, as the passage of the vortices induce fluctuations in the lift and

drag.
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(a) (b)

(c) (d)

(e) (f)

Figure 5: Symmetry-plane velocity profiles and vorticity contours (unit spac-

ing on [-5,5]) during deceleration: (a) Re = 100, fixed, (b) Re = 100, rotat-

ing, (c) Re = 200, fixed, (d) Re = 200, rotating, (e) Re = 300, fixed, (f)

Re = 300, rotating. R = 0.95, τ = 80, and ǫ = 0.25.
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The change in the enhancing and depressing effect of rotation on the

DML is not as apparent in the vortical plots, but they are in plots of the

phase of the lift and drag, as a function of time. Figure 6 shows the lift

and drag, as a function of time and of the Reynolds number. These plots
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Figure 6: Phase portrait for the instantaneous lift and drag. Dependence on

Reynolds number. (a) Re = 5, (b) Re = 100, (c) Re = 200, (d) Re = 400.

Freely rotating (light), (dark) fixed. R = 0.95, τ = 80, and ǫ = 0.25.

do not explain the underlying phenomenon, but do point out that there is

a significant portion of the phase tracks (see Figure 6c) in which the lift is

considerably smaller in the rotating case than in the fixed case in the range

above Re = 300.

Parenthetically, in Figure 6d symmetry is significantly affected by the
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vortex shedding events.

3.3 Sensitivity to the Keulegan-Carpenter number and

the Gap

The angle of deflection θ is more sensitive to changes in the gap ǫ than to the

Keulegan-Carpenter number. This is shown in Figure 7a. The high frequency

and larger gap cases produce smaller deflection angles. However, as seen from

the figure of the maximum normalized torque, Figure 7b, the rate of change

of the deflection angle is greater for high frequencies and small gaps, leading

to higher torque force values. In Figure 7c we plot the normalized torque for

the rotating and non-rotating cases, as a function of τ for a fixed ǫ = 0.125.

The difference between the the freely rotating and non-rotating cases for

other ǫ is less pronounced.

Figure 8 shows how the DML depends on τ , for various values of ǫ. For

small gaps the DML is more important and nearly constant, as a function

of τ . Its mean is positive, meaning that the rotation plays a role for small

as well as large τ . As the gap is made larger the DML becomes more pro-

nounced as τ increases. For large gaps and small τ the difference between

the lift of the rotating and non-rotating cases is less pronounced. In fact, the

DML disappears, for a given ǫ and τ . The rightmost disappearance point is

approximated by the equation τc = 320ǫ − 100. Below this value rotation

adds suction. Above that line the DML is more prominent and gives extra

positive lift.

The DML and it pressure and the viscous components appear in Figure 9.

The plots indicate that the DML is nearly entirely captured by its pressure
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Figure 7: (a) Maximum rotational angle (degrees) and (b) peak normalized

torque for the freely rotating sphere, as a function of ǫ and τ . (c) peak

normalized torque, comparing the rotating and non-rotating cases for ǫ =

0.125 for all τ . R = 0.95, Re = 100.
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Figure 8: For Re = 100, R = 0.95, the DML dependence on τ . From top to

bottom: ǫ = 0.125, ǫ = 0.375, ǫ = 0.5, ǫ = 1.0.

component, regardless of the gap and period of forcing.

Phase portraits of the forces can be constructed by plotting the drag

against the lift forces, for all time. The phase portraits are shown in Figures

10, for Re = 100, R = 0.95, and low, medium, and large τ . The phase

portraits in Figure 10a-c correspond to τ = 40, Figure 10d-f correspond to

τ = 120 and Figure 10g-i, to τ = 220. The plots include both the steady

state and the transient history and thus are not expected to trace perfectly

the same curve over every period. The overall lift decreases sharply with

increased gap size and with increased period τ . As the gap gets larger the

curves enclose less area and thus the forces are, overall, weaker. But more

importantly as the gap gets larger the force maxima go further out of phase,

and this effect is not dependent on whether the sphere is allowed to rotate or

not. As the τ is increased the two minimas in the lift are seen to flip above

τ = 120. For small gap ǫ, the qualitative difference between the rotating
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Figure 9: For Re = 100, DML (solid), its pressure (circles), and viscous

(dashed) components as a function of τ ; (a) ǫ = 0.125, (b) ǫ = 0.375, (c)

ǫ = 0.50, and (d) ǫ = 1.00.
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Figure 10: Phase portraits for τ = 40, Re = 100, R = 0.95, and (a) ǫ = 0.125,

(b) ǫ = 0.5, and (c) ǫ = 1.00. Phase portraits for τ = 120, (d) ǫ = 0.125,

(e) ǫ = 0.5, and (f) ǫ = 1.00. Phase portraits for τ = 220, (g) ǫ = 0.125, (h)

ǫ = 0.5, and (i) ǫ = 1.00. (light) Freely rotating, (dark) fixed.
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and non-rotating cases are less pronounced and the variation with τ less

pronounced. The small gap the larger differences in the lift occur at the

extremes of the drag. In the τ = 220 case we see that the difference between

the rotating and non-rotating cases are not topologically different for small

ǫ and below the τc. Figure 10h is below τ = τc. On the other hand, Figure

10i is radically different and this case is sitting closely to where τ = τc, for

this given gap case. For τ > τc and ǫ = 1 the topology of the phase curve is

similar to that of Figure 10h.

Bagchi and Balachandar [15] found negligible differences in the drag ex-

perienced by a freely rotating and a non-rotating sphere in a steady shear

flow. We find the same type of behavior in the oscillatory shearing case. We

thus refer the reader to FLR02 and FLR05 for a summary description on

how the drag is affected by the choices in τ and ǫ.

4 Summary

The lift, drag, and torque, on a spherical particle in a oscillatory wall-

bounded flow were calculated, as a function of the particle density ratio,

the Reynolds number, the Keulegan-Carpenter number and the relative gap

between the particle and the wall. The calculations were aimed at elucidating

how a rotational degree of freedom affects these forces. In order to do so we

calculate the forces on a particle that is held fixed and compare these to the

forces obtained when the particle is allowed to freely rotate. These calcula-

tions, performed by solving the Navier-Stokes equations in three-dimensions

and time, complement the overall picture presented in [1] and [2], on the

fundamental forces experienced by a particle in a wall-bounded oscillatory
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flow.

With regard to changes in the moment of inertia we found that the dif-

ference between the drag and lift of a fixed particle and one allowed to rotate

were small. In contrast, the difference between a fixed and freely rotating

particle with respect to torque were significant. The torque, not surprisingly,

was larger for the fixed particle. The maximum normalized torque is most

sensitive to the closeness of the bounding wall when the forcing frequency

is large, and is significant for Reynolds numbers smaller than 150, approxi-

mately. However, we found that the maximum torque, for low frequencies, is

relatively insensitive to the gap size. The maximum normalized torque of a

fixed particle was found to be a decreasing function of the Reynolds number.

This is not the case for the rotating particle.

The drag force of the freely rotating and the fixed particle are essentially

the same, for small Reynolds numbers and variations of all parameters, and

insignificantly different for larger Reynolds numbers.

The main focus of this study was the effect of rotation on the lift force.

In order to characterize the effect of allowing the particle to freely rotate in

response to the flow we focused on the difference between the mean lift of

the rotating particle and the mean lift of the particle, fixed in place. This

quantity we denoted here as the differential mean lift (DML). We found that

the DML is positive for all forcing periods when the gap number is small.

As the particle is placed further away from the bounding wall we found that

the effective lift is only positive for large Keulegan-Carpenter numbers. We

also found that the maximal lift occurs nearly in phase with the maximum

drag when the particle is placed close to the wall, but this phase difference

increases as the particle is placed further from the wall. Portraits of the drag
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and lift forces also indicate that the causal history of the forces is relatively

insensitive to the forcing period when the particle is very close to the wall,

but becomes sensitive when the particle is placed further away. This last

finding, however, is not a result of allowing the particle to rotate: the causal

sensitivity is seen both in the rotating and non-rotating particle cases. The

overall magnitude of the DML increases as the particle is placed closer to

the wall. The DML is pressure-dominated throughout, the Bernoulli effect

being significantly different when the particle is fixed as compared to when

it is allowed to rotate.

As a function of the Reynolds number we found that for intermediate

forcing periods allowing the particle to rotate produced enhanced mean lift,

when the Reynolds numbers was small, and depressed mean lift in the large

Reynolds numbers regime. We found that this transition occurs approx-

imately at Re = 150. When examining the mean lift depression for larger

Reynolds numbers we found that the Bernoulli effect alone could not account

for the changes in the lift: the sphere induced more vortex shedding from

the top of the sphere at high Reynolds numbers, however, the addition of

rotation decreases their intensity but increases the number of vortex struc-

tures shed. This phenomenology leads to complex histories in the lift. At

Reynolds numbers larger than 150 but not not significantly so, the forces of

lift and drag are significantly different when the fixed and rotating cases are

compared. Specifically, when the lift forces are averaged over the period of

the forcing frequency the fact that for large Reynolds numbers the force is

insignificant for larger fractions of the period when the particle is rotating is

largely responsible for depressed values of the mean lift.
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