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Abstract. This article is concerned with the formation and per-
sistence of spatiotemporal patterns in binary mixtures of chem-
ically reacting species, where one of the species is an activator,
the other an inhibitor of the chemical reaction. The system of
reaction-diffusion equations is reduced to a finite system of or-
dinary differential equations by a variant of the center-manifold
reduction method. The reduced system fully describes the local
dynamics of the original system near transition points at the onset
of instability. The attractor-bifurcation theory is used to give a
complete characterization of the bifurcated objects in terms of the
physical parameters of the problem. The results are illustrated for
the Schnakenberg model.

1. Introduction

This article is concerned with the formation and persistence of spa-
tiotemporal patterns in binary mixtures of chemically reacting species,
where one of the species is an activator, the other an inhibitor of the
chemical reaction. Typically, these patterns arise when the system
transits from one stable equilibrium to another.

The phenomenon of pattern formation in activator-inhibitor systems
is commonly associated with the name of Turing, who showed in his pi-
oneering study of morphogenesis [20] that structure can emerge from a
structureless state without the apparent action of an external organiz-
ing force as a result of a competition between reaction and diffusion.
Experimental evidence for the existence of so-called Turing patterns
in chemistry is described in, among others, Refs. [4, 5]. The impact
of Turing’s work on the theory of pattern formation in biology is dis-
cussed, for example, in Ref. [12]. Turing’s ideas have penetrated well
beyond the fields of biology and chemistry; for example, an application
to fingerprint imaging is given in Ref. [16]. A general overview of the
theory of pattern formation can be found in the review article by Cross
and Hohenberg [3] and the recent text by Hoyle [8].

Linear stability analysis has been a basic tool in the study of reaction-
diffusion systems. It provides insight into the nonlinear behavior of
such systems as well, since the latter can often be approximated, at
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least for brief lengths of time, by linearized systems. But as time
evolves, the nonlinear structure takes over, and other tools are needed
to study the long-time behavior. A weakly nonlinear stability anal-
ysis can be used to identify the steady states and their connecting
orbits after a bifurcation. Such an analysis can be justified rigorously
on the basis of modulation theory and a Ginzburg–Landau approx-
imation [2, 6, 18, 19, 21]. A survey of weakly nonlinear analyses for
reaction-diffusion systems can be found, for example, in Ref. [22]. Mur-
ray’s monograph [13] discusses applications to biological systems such
as animal coat patterns. Sometimes, special techniques have been ap-
plied to the study of Turing patterns in different regimes. For example,
Ref. [9] deals with the stability of symmetric N -peaked steady states for
systems where the inhibitor diffuses much more rapidly than the acti-
vator. We also mention Refs. [1, 14, 15], which deal with the Schnaken-
berg model on heterogeneous domains, where spatially varying diffusion
coefficients may prevent the degeneracy of a Turing bifurcation.

In this article we present a different nonlinear approach to the insta-
bilities and transitions in Turing systems. By using a finite-dimensional
approximation to the system of reaction-diffusion equations in certain
unstable domains we are able to give a complete characterization of the
attractors and their basins of attraction in terms of the physical param-
eters of the problem. The two essential elements are a new approach
to the center-manifold reduction and an application of the attractor-
bifurcation theory of Ref. [10]. The center-manifold reduction projects
the original system of partial differential equations to a set of ordinary
differential equations that describe the leading-order dynamics in the
neighborhood of a transition point. The reduced system retains the
essential features of the dynamics, is much simpler than the original
system, and yields explicitly computable quantities that completely
characterize the transitions of the system.

Certain computations simplify when symmetries are present, but
we emphasize that the method presented here is essentially indepen-
dent of such symmetries and applies equally well to domains without
symmetries. Common bifurcation theory, which relies on the pres-
ence of symmetries, represents attractors in terms of steady states and
their connecting orbits but overlooks many transient states that can
be important from the viewpoint of applications. The existence of
transient states in activator-inhibitor systems and their importance in
biological systems are discussed, for example, in Refs. [23, 24]. The
approach presented in this paper yields complete information about
bifurcations, transitions, stability, and persistence, including informa-
tion about transient states, in terms of the physical parameters of the
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system. To the best of our knowledge, no other approach matches the
comprehensive nature of the results obtained by attractor-bifurcation
theory. Since there are, in fact, instances of pattern formation (for
example, quasi-patterns) that cannot be described in the framework
of equivariant bifurcation theory, there is an obvious need to develop
new methods to study bifurcations and transitions. The fact that the
attractor-bifurcation method goes well beyond the usual symmetry-
bifurcation method has been demonstrated in other situations as well [10].

In this article we consider reaction-diffusion systems of the activator-
inhibitor type on bounded domains. If the system is one-dimensional
or two-dimensional and rectangular (nonsquare), we show that the bi-
furcated object consists of two points, each with its basin of attraction
(Theorem 4.2, Fig. 2). In the case of a square domain, the primary bi-
furcation is either a pitchfork bifurcation or an S1 bifurcation, depend-
ing on the parameters of the problem. In the case of an S1-bifurcation,
the phase diagram after bifurcation contains either an infinite number
of steady-state solutions or eight steady-state solutions and the hete-
roclinic orbits connecting them (Theorem 5.2, Fig. 3). Specific criteria
that determine the nature of the transition when the first unstable
mode arises are given in terms of eigenvalues and eigenvectors and are
thus related directly to the physical parameters of the problem.

Although the focus in this article is on activator-inhibitor systems,
the analysis is general and applies, for example, also to systems con-
sisting of a self-amplifying activator and a depleted substrate.

Following is an outline of the paper. In Section 2, we formulate
the reaction-diffusion problem for an activator-inhibitor mixture and
rewrite it as an evolution equation in a function space. In Section 3,
we study the exchange of stability, which is crucial for the stability
and bifurcation analysis. The results of the bifurcation analysis for the
one-dimensional case are given in Section 4 and for the two-dimensional
case in Section 5. In Section 6, we illustrate the theoretical results on
the Schnakenberg equation. Section 7 summarizes the conclusions. In
Appendix A we give a brief summary of the reduction method and the
attractor-bifurcation theory.

2. Statement of the Problem

Turing’s theory of pattern formation refers to a mixture of two chem-
ical species that simultaneously react and diffuse; one of the species is
an activator, the other an inhibitor of the chemical reaction. The con-
centrations U and V of the activator and inhibitor satisfy a system of
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reaction-diffusion equations,

Ut = d1∆U + f(U, V ),

Vt = d2∆V + g(U, V ),
(2.1)

subject to given boundary and initial conditions. Here, ∆ denotes
the Laplacian associated with diffusion of the species, d1 and d2 are
diffusion coefficients that are constant and positive, and f and g are
nonlinear functions describing the kinetics of the chemical reaction.
The functions f and g are such that

(2.2) f(ū, v̄) = 0, g(ū, v̄) = 0

for some positive constants ū and v̄, so (ū, v̄) is a uniform steady-state
solution of Eq. (2.1). We assume that this equilibrium solution is stable
in the absence of diffusion. Wre interested in solutions that bifurcate
from it and, in particular, in the long-term dynamics of the bifurcating
solutions.

Before proceeding to the bifurcation analysis we rescale time and
space and rewrite the system (2.1) in the form

Ut = ∆U + γf(U, V ),

Vt = d∆V + γg(U, V ),
(2.3)

where γ = 1/d1 and d = d2/d1. Thus, γ is a measure of the ratio of
the characteristic times for diffusion and chemical reaction, and d is the
ratio of the diffusion coefficients of the two species. We assume that the
system (2.3) is satisfied on an open bounded domain Ω ⊂ Rn (n = 1, 2)
and that U and V satisfy Neumann (no-flux) boundary conditions on
the boundary ∂Ω of Ω.

2.1. Bifurcation Problem. Let

(2.4) U = ū+ u, V = v̄ + v,

where ū and v̄ satisfy the identities (2.2). Expanding f and g in their
Taylor series around (ū, v̄), we see that u and v satisfy a system of
equations of the form

ut = ∆u+ γ(fu(ū, v̄)u+ fv(ū, v̄)v) + γf1(u, v),

vt = d∆v + γ(gu(ū, v̄)u+ gv(ū, v̄)v) + γg1(u, v).
(2.5)

The nonlinear functions f1 and g1 incorporate the higher-order terms
in the Taylor expansions. Henceforth we omit the arguments (ū, v̄) and
write fu for fu(ū, v̄), and so forth.

Since U and V are associated respectively with the activator and the
inhibitor of the chemical reaction, fu and gv satisfy the inequalities

(2.6) fu > 0, gv < 0.
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Furthermore, since the equilibrium solution (ū, v̄) is stable in the ab-
sence of diffusion,

(2.7) fugv − fvgu > 0, fu + gv < 0.

The first inequality, together with (2.6), implies that fvgu < 0.
Henceforth we represent the two parameters γ and d by a single

symbol, λ = (γ, d), and consider λ as the bifurcation parameter. We
are interested in solutions of the system of Eqs. (2.5) that bifurcate from
the trivial solution (u, v) = (0, 0) as λ varies in the positive quadrant
of the (γ, d)-plane.

2.2. Abstract Evolution Equation. The system of Eqs. (2.5) de-
fines an abstract evolution equation for a vector-valued function w :
t 7→ w(t) ∈ H = (L2(Ω))2,

(2.8) w(t) =

(
u(· , t)
v(· , t)

)
, t ≥ 0.

Let A : dom(A)→ H be defined by the expression

(2.9) A = −∆I =

(
−∆ 0

0 −∆

)
on dom(A) = H1 = {w ∈ (H2(Ω))2 : n · ∇w = 0 on ∂Ω}. Here, H2(Ω)
is the usual Sobolev space, and the gradient ∇w is taken component-
wise. Let B and D be the linear operators in H represented by the
constant matrices

(2.10) B =

(
fu fv
gu gv

)
, D =

(
1 0
0 d

)
.

Then the linear terms in Eq. (2.5) correspond to the operator

(2.11) Lλ = −AD + γB.

Next, let Gλ : H → H represent the nonlinear terms in Eq. (2.5),

(2.12) Gλ : w =

(
u
v

)
7→ Gλ(w) = γ

(
f1(u, v)
g1(u, v)

)
.

Then Eq. (2.5) corresponds to the abstract evolution equation

(2.13)
dw

dt
= Lλw +Gλ(w)

for w(t) in H, t > 0. Equations of this type have been analyzed in detail
by Ma and Wang; the relevant results from Ref. [10] are summarized
in the Appendix (Section A.2).
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We assume that Gλ can be written as the sum of symmetric multi-
linear forms,

(2.14) Gλ(w) =
∞∑
k=2

Gλ,k(w, . . . , w),

where Gk is a symmetric k-linear form (k = 2, 3, . . .). When the k
arguments of Gk coincide, we writeGk with a single argument, Gk(w) =
Gk(w, . . . , w).

3. Exchange of Stability

The inequalities (2.7) imply that

(3.1) det(B) > 0, tr(B) < 0.

Under these conditions, diffusion has a destabilizing effect. At some
critical value λ0 of λ, the trivial solution of Eq. (2.5) loses stability and
a bifurcation occurs.

3.1. Eigenvalues and Eigenvectors of Lλ and L∗λ. The negative
Laplacian −∆ on a bounded domain Ω ∈ Rn with Neumann boundary
conditions is self-adjoint and positive in L2(Ω). Its spectrum is discrete,
consisting of eigenvalues ρk with corresponding eigenvectors ϕk,

(3.2) −∆ϕk = ρkϕk, k = 1, 2, . . . .

We assume that the eigenvalues are ordered, 0 < ρ1 ≤ ρ2 ≤ · · · and
that the eigenvectors {ϕk}k form a basis in L2(Ω).

It follows from the definition (2.9) that A is self-adjoint and positive
in H; its spectrum is also discrete, consisting of the same eigenvalues ρk
and the eigenvectors ϕk once repeated. The operator Lλ is reduced by
projection to its components on the linear span of each eigenvector
of A. Let Ek be the component of Lλ in the eigenspace associated with
the eigenvalue ρk,

(3.3) Ek(λ) = −ρkD + γB, k = 1, 2, . . . .

The determinant and trace of Ek(λ) are

det(Ek(λ)) = γ2det(B) + γρk|gv| − ρkd(γfu − ρk),
tr(Ek(λ)) = γ tr(B)− ρk(1 + d).

(3.4)

Note that tr(Ek(λ)) is negative everywhere in the first quadrant and
becomes more negative as k increases.

The eigenvalues of Ek(λ) come in pairs (βk1, βk2),
(3.5)

βki(λ) = 1
2
tr(Ek(λ))±

(
(1

2
tr(Ek(λ)))2 − det(Ek(λ))

)1/2
, i = 1, 2.
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The eigenvalues either are complex conjugate with <βk1 = <βk2 < 0
or are both real with βk1 + βk2 < 0. We identify βk1 with the upper
(+) sign and βk2 with the lower (−) sign, so <βk2 ≤ <βk1.

The eigenvector corresponding to the eigenvalue βki of Lλ is

(3.6) wki =

(
−γfvϕk

(γfu − ρk − βki)ϕk

)
.

The eigenvectors wk1 and wk2 are linearly independent as long as βk1 6=
βk2. The set of eigenvectors {wki}k,i forms a basis for H.

Note that B is not symmetric; its adjoint B∗ is the transpose B′ of
B. Hence, the adjoint of Lλ is L∗λ = −AD + γB′, and the adjoint of
Ek(λ) is E∗k(λ) = −ρkD + γB′. The eigenvalues β∗ki of E∗k(λ) are the
complex conjugates of the eigenvalues βki of Ek(λ). Since the latter
are either complex conjugate or real, the eigenvalues of Lλ and L∗λ
coincide; β∗k1 = βk2, and β∗k2 = βk1. The eigenvector corresponding to
the eigenvalue β∗ki of L∗λ(λ) is

(3.7) w∗ki =

(
−γguϕk

(γfu − ρk − β∗ki)ϕk

)
.

3.2. Exchange of Stability. The equation det(Ek(λ)) = 0 defines a
curve Λk in the (γ, d)-plane,
(3.8)
Λk = {(γ, d) : det(Ek(λ)) = 0} = {(γ, d) : d = dk(γ)}, k = 1, 2, . . . ,

where

(3.9) dk(γ) =
γ2det(B)− γρkgv
ρk(γfu − ρk)

.

The expression for dk can be recast in the form

(3.10) dk(γ) =
det(B)

ρkfu
γ − fvgu

f 2
u

+
ρkfvgu

f 2
u(γfu − ρk)

,

which shows that Λk has an oblique asymptote with slope det(B)/(ρkfu)
and a vertical asymptote at γk = ρk/fu. Because of the inequalities
(2.6) and (2.7), the slope of the oblique asymptote is positive and de-
creasing to zero as k increases, and the vertical asymptote is in the
right-half of the (γ, d)-plane and shifting to the right as k increases.
Moreover, if we rewrite the equation once more in the form

dk(γ)− d0 =
det(B)

ρkfu
(γ − γk) +

ρk|fvgu|
f 3
u

(γ − γk)−1,

we see that Λk is symmetric with respect to the point (γk, d0) where
γk = ρk/fu and d0 = (det(B) + |fvgu|)/f 2

u . The symmetry point is
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located in the first quadrant of the (γ, d)-plane; γk increases as k in-
creases, and d0 is independent of k. Therefore, each curve Λk has a
branch in the positive quadrant of the (γ, d)-plane. The curve Λk sep-
arates the region where det(Ek(λ)) > 0 (below the curve) from the
region where det(Ek(λ)) < 0 (above the curve). The positive branches
of the first few curves are sketched in Fig. 1.

-
γ

6
d

γ1

Λ1

γ2

Λ2

γ3

Λ3

R−1

R+
1

Figure 1. Positive branches of Λ1, Λ2, and Λ3.

Consider the region in the positive quadrant bounded on the left by
the vertical asymptote γk = ρk/fu. The curve Λk separates this region
into two subregions,

R−k = {λ = (γ, d) : γ > γk = ρk/fu, 0 < d < dk(γ)},
R+
k = {λ = (γ, d) : γ > γk = ρk/fu, d > dk(γ)}.

(3.11)

The regions R−1 and R+
1 are indicated in Fig. 1.

Lemma 3.1. The eigenvalues βki (i = 1, 2) of Lλ satisfy the inequali-
ties

(3.12)
<βk2(λ) ≤ <βk1(λ) < 0 if λ ∈ R−k ,
βk2(λ) < 0, βk1(λ) = 0 if λ ∈ Λk,
βk2(λ) < 0, βk1(λ) > 0 if λ ∈ R+

k .

Furthermore, for all j > k,

(3.13) <βj2(λ) ≤ <βj1(λ) < 0 if λ ∈ Λk.

Proof. In R−k , we have tr(Ek(λ)) < 0 and det(Ek(λ) > 0. Hence, βk1(λ)
and βk2(λ) either are complex conjugate with a negative real part or
are both real and negative. On Λk, the leading eigenvalue βk1(λ) is
zero. Since tr(Ek(λ)) < 0, βk2(λ) must be real and negative. In R+

k ,
we have tr(Ek(λ)) < 0 and det(Ek(λ) < 0, so βk1(λ) and βk2(λ) are
both real, and they have opposite signs.
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On Λk, det(Ek+1(λ)) > 0. Since det(Ek(λ)) increases with k, it
follows that det(Ej(λ)) > 0 for all j > k. Also, tr(Ej(λ)) < 0. Hence,
βj1(λ) and βj2(λ) either are complex conjugate with a negative real
part or are both real and negative. �

The lemma implies that all eigenmodes are stable as long as λ is
below the curves Λk. As soon as an eigenvalue λ crosses a curve Λk,
however, the corresponding eigenmode becomes unstable, and an ex-
change of stability occurs. Without loss of generality, we will assume
that the first exchange of stability occurs when λ crosses the first curve,
Λ1, at some critical value λ0, say.

4. Bifurcation Analysis – One-Dimensional Domain

Let Ω = (0, `). We reduce Eq. (2.13) to its center-manifold repre-
sentation near λ0. The main idea of the method is summarized in the
Appendix (Section A.1).

The eigenvalues and eigenvectors of the negative Laplacian subject
to Neumann boundary conditions (see Eq. (3.2)) are

ρk = k2(π/`)2, ϕk(x) = cos(x
√
ρk), x ∈ Ω; k = 1, 2, . . . .

The linear operator Lλ decomposes into its components

(4.1) Ek(λ) = −ρkD + γB, k = 1, 2, . . . ,

with

det(Ek(λ)) = γ2det(B) + γρk|gv| − dρk(γfu − ρk),
tr(Ek(λ)) = γtr(B)− (1 + d)ρk.

(4.2)

Each Ek contributes two eigenvalues, βk1 and βk2, to the spectrum
of Lλ; the expressions for βki (i = 1, 2) in terms of det(Ek(λ)) and
tr(Ek(λ)) are given in Eq. (3.5). The eigenvalues of the adjoint L∗λ are
the complex conjugates (β∗k1, β

∗
k2) = (βk2, βk1). The eigenvectors of Lλ

and L∗λ corresponding to the eigenvalues βki and β∗ki are

(4.3) wki =

(
−γfv cos(x

√
ρk)

(γfu − ρk − βki) cos(x
√
ρk)

)
and

(4.4) w∗ki =

(
−γgu cos(x

√
ρk)

(γfu − ρk − β∗ki) cos(x
√
ρk)

)
,

respectively.
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4.1. Center-Manifold Reduction. In the region R−1 , just below Λ1

and sufficiently close to λ0, both eigenvalues β11 and β12 are real, with
β12 < β11 < 0. As λ approaches λ0, the leading eigenvalue β11 increases
and, as λ transits into R+

1 , β11 passes through 0 and becomes positive.

Theorem 4.1. Near λ0 ∈ Λ1, the solution of Eq. (2.13) can be ex-
pressed in the form

(4.5) w = y11w11 + z, z = y12w12 +
∞∑
k=2

∑
i=1,2

ykiwki,

where the coefficient y11 of the leading term satisfies the reduced bifur-
cation equation,

(4.6)
dy11

dt
= β11y11 + αy3

11 + o(|y11|3).

The coefficient α ≡ α(λ) is given explicitly in terms of the eigenfunc-
tions of Lλ and L∗λ,

(4.7) α(λ) = α2(λ) + α3(λ),

where

α2(λ) =
2

< w11, w∗11 >

∑
i=1,2

< G2(w11), w∗2i >< G2(w11, w2i), w
∗
11 >

(2β11 − β2i) < w2i, w∗2i >
,

α3(λ) =
1

< w11, w∗11 >
< G3(w11), w∗11 > .

Here, < · , · > denotes the inner product in H. (The subscript λ on the
k-linear forms has been omitted.)

Proof. We look for a solution w of Eq. (2.13) of the form (4.5). In the
space spanned by the eigenvector w11, Eq. (2.13) reduces to

< w11, w
∗
11 >

dy11

dt
= < Lλw,w

∗
11 > + < Gλ(w), w∗11 >

= β11 < w11, w
∗
11 > y11 +

∞∑
k=2

< Gk(w), w∗11 > .

(4.8)

To evaluate the contributions from the various terms in the sum, we
use the asymptotic expression for the center-manifold function near λ0

given in the Appendix (Section A.1, Theorem A.1),
(4.9)

yki = Φλ
ki(y11) =

< G2(w11), w∗ki > y2
11

(2β11 − βki) < wki, w∗ki >
+ o(|y11|2), k = 2, 3, . . . .
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The contribution from the bilinear form (k = 2) is

< G2(w), w∗11 > = < G2(y11w11 + z), w∗11 >

= < G2(w11), w∗11 > y2
11

+ 2 < G2(w11, z), w
∗
11 > y11+ < G2(z), w∗11 > .

The first term in the right member vanishes, because

< G2(w11), w∗11 > = 0.

The second and third term can be evaluated by means of the asymptotic
expression (4.9) for the center manifold,

< G2(w11, z), w
∗
11 > =

∑
i=1,2

< G2(w11, w2i), w
∗
11 > y2i + o(|y11|2)

= 1
2
α2 < w11, w

∗
11 > y2

11 + o(|y11|2),

< G2(z), w∗11 > = o(|y11|3),

where α2 is defined in Eq. (4.7). Putting everything together, we obtain
the asymptotic result

(4.10) < G2(w), w∗11 > = α2 < w11, w
∗
11 > y3

11 + o(|y11|3).

The contribution from the trilinear form (k = 3) is

< G3(w), w∗11 > = < G3(w11), w∗11 > y3
11 + o(|y11|3)

= α3 < w11, w
∗
11 > y3

11 + o(|y11|3),
(4.11)

where α3 is defined in Eq. (4.7). The higher-order forms contribute
only terms of o(|y11|3). �

4.2. Structure of the Bifurcated Object. The following theorem
shows that the sign of a single number (namely, α(λ0)) characterizes
the type of transitions that the system undergoes as the bifurcation
parameter λ crosses the critical curve Λ1.

Theorem 4.2. Let Ω = (0, `), λ0 ∈ Λ1, and λ near λ0.
We distinguish two cases.

Case 1. α(λ0) < 0. The system undergoes a continuous transition as λ
crosses Λ1 from R−1 into R+

1 . In particular,

(1) w = 0 is a locally asymptotically stable equilibrium point of
Eq. (2.13) for λ ∈ R−1 and λ ∈ Λ1;

(2) The solution of Eq. (2.13) bifurcates supercritically to an at-
tractor Aλ as λ crosses Λ1 from R−1 into R+

1 ;
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(3) Aλ consists of two steady-state points, w+
λ and w−λ ,

(4.12) w±λ = ±(β11/|α|)1/2w11 + ωλ, λ ∈ R+
1 ,

where ‖ωλ‖H = o(β
1/2
11 );

(4) there exists an open set Uλ ⊂ H with 0 ∈ Uλ such that Aλ
attracts Uλ \ Γ in H, where Γ is the stable manifold of 0 with
codimension 1; and

(5) there exists an ε > 0 and two disjoint open sets U+
λ , U

−
λ ⊂ H

with 0 ∈ ∂U+
λ ∩∂U

−
λ such that w±λ ∈ U

±
λ and limt→∞ ||w(t;w0)−

w±λ ||H = 0 for any solution w(t;w0) of Eq. (2.13) satisfying the
initial condition w(0;w0) = w0 ∈ U±λ and any λ satisfying the
condition dist(λ0, λ) < ε.

Case 2. α(λ0) > 0. The system undergoes a discontinuous (jump) tran-
sition as λ crosses Λ1 from R−1 into R+

1 . In particular,

(1) the solution of Eq. (2.13) bifurcates subcritically from (λ0, 0) to
a repeller Rλ as λ crosses Λ1 from R+

1 into R−1 ; and
(2) Rλ consists of two steady-state points, w+

λ and w−λ ,

(4.13) w±λ = ±(|β11|/α)1/2w11 + ωλ, λ ∈ R−1 ,

where ‖ωλ‖H = o(|β11|1/2);

Proof. Case 1: α(λ0) < 0.
Equation (4.6) shows that w = 0 is a locally asymptotically stable

equilibrium point.
According to the attractor-bifurcation theorem (Section A.2, The-

orem A.2), the system bifurcates at (λ0, 0) to an attractor Aλ as λ
transits from R−1 into R+

1 .
The structure of Aλ follows from the stationary form of Eq. (4.6),

β11y11 + αy3
11 + o(|y11|3) = 0.

The number and nature of the solutions of this equation do not change
if the terms of o(|y11|3) are ignored, provided all solutions are regular
at the origin. Thus, we find two solutions near y = 0, namely, y11 =
±(β11/|α|)1/2 + o(β1/2).

Case 2: α(λ0) > 0.
The attractor-bifurcation theorem applies to the time-reversed form

(s = −t) of Eq. (4.6),

(4.14)
dy11

ds
= −β11y11 + (−α)y3

11 + o(|y11|3).

The statements of the theorem follow by reversing time back again. �
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Theorem 4.2 shows that, if α(λ0) < 0 (Case 1), the attractor con-
sists of two steady-state points, each with its own basin of attraction.
The attractor bifurcation is shown schematically in Fig. 2. From the
perspective of pattern formation, the theorem predicts a smooth tran-
sition to one of two types of patterns that differ only in phase; which
of the two patterns is actually realized depends on the initial data.

q -

6

?q
?

6

?

6

a
q

q

w−

w+

Λ1

R−1 R+
1

λ0 λ

Figure 2. One-dimensional domain: supercritical bi-
furcation to an attractor A = {w+, w−}.

The theorem shows, furthermore, that if α(λ0) > 0 (Case 2), there
is a jump transition as λ crosses Λ1 from R−1 into R+

1 . In this case,
there is a neighborhood U of the basic solution such that the solution
of the system moves away from U for any initial data in U \ Γ, uni-
formly for all λ ∈ R+

1 near λ0. This observation justifies the notion
of jump transition. If the system possesses a global attractor, then
the jump transition states are represented by a local attractor, away
from the basic solution. This local attractor corresponds to the part
of the global attractor that is realized after the transition into R+

1 . It
extends to a local attractor for λ ∈ R−1 that, together with the trivial
solution, represents the metastable states. A similar phenomenon was
encountered recently in a problem of superconductivity [11].

4.3. Center-Manifold Reduction – General Case. The previous
arguments were focused on bifurcations associated with a transition
of the parameter λ across the curve Λ1 (Fig. 1), when the leading
eigenvalue β11 changes sign. When λ transits across one of the higher-
order curves Λk (k > 1), the leading eigenvalue is not necessarily β11.
When λ crosses a curve Λk, βk1 undergoes a sign change, while all
eigenvalues βj1 with j > k keep the same sign (negative below, positive
above the curve). Since the multiplicity of βk1 is one, results similar
to those for k = 1 are obtained; the only difference appears in the

13



value of α. The center-manifold reduction can be performed, and the
interactions between eigenvalues can be calculated as in the proof of
Lemma 4.1. The reduced bifurcation equation is of a pitchfork type,

(4.15)
dyk1

dt
= βk1yk1 + αky3

k1 + o(|yk1|3),

and the coefficient αk ≡ αk(λ) can be found by calculating the inter-
actions of the eigenfunctions of Lλ and L∗λ,

(4.16) αk(λ) = αk2(λ) + αk3(λ).

Since
∫ `

0
ϕkϕkϕm = 0 unless m = 2k, the only nonzero contributions

come from m = 2k,

αk2(λ) =
2

< wk1, w∗k1 >

∑
i=1,2

< G2(wk1), w∗2k,i >< G2(wk1, w2k,i), w
∗
k1 >

(2βk1 − β2k,i) < w2k,i, w∗2k,i >
,

αk3(λ) =
1

< wk1, w∗k1 >
< G3(wk1), w∗k1 > .

5. Bifurcation Analysis – Two-Dimensional Domains

Let Ω = (0, `1) × (0, `2). As in the one-dimensional case, we reduce
Eq. (2.13) to its center-manifold representation near λ0.

The eigenvalues and eigenvectors of the negative Laplacian subject
to Neumann boundary conditions (Eqs. (4.3) and (4.4)) are

ρk1k2 = ρk1 + ρk2 , ρki = k2
i (π/`i)

2, i = 1, 2

ϕk1k2(x) = cos(x1

√
ρk1) cos(x2

√
ρk2), x = (x1, x2) ∈ Ω.

Here, k1 and k2 range over all nonnegative integers such that |k| =
k1 + k2 = 1, 2, . . ..

The eigenvalues βk1k2i (i = 1, 2) and the corresponding eigenvectors
of Lλ are given in Eqs. (3.5) and (3.6), respectively, where k now stands
for the ordered pair (k1, k2).

The dynamics depend on the relative size of `1 and `2. On a rectan-
gular (nonsquare) domain, the dynamics are essentially the same as on
a one-dimensional domain. For example, if `2 < `1, then ρ10 = (π/`1)2

is the smallest eigenvalue of the negative Laplacian, with correspond-
ing eigenvector ϕ10 = cos(x1

√
ρ1), and the leading eigenvalue of Lλ is

β101. This eigenvalue is simple, and the corresponding eigenvector is

(5.1) w101 =

(
−γfv cos(x1

√
ρ1)

(γfu − ρ1 − β101) cos(x1

√
ρ1)

)
.

14



The center-manifold reduction leads to a one-dimensional dynamical
system similar to Eq. (4.6). Lemma 4.1 and Theorem 4.2 apply verba-
tim if β11 is replaced by β101 and w11 by w101 everywhere.

On the other hand, the dynamics become qualitatively different if
the domain is square—that is, if `1 = `2 = ` and Ω = (0, `)2. Then
ρk1k2 = ρk2k1 for any pair (k1, k2), so βk1k2i = βk2k1i (i = 1, 2). To avoid
notational complications, we consider two eigenvalues as distinct, even
if they coincide because of symmetry, and associate each with its own
eigenvector. Thus, we associate the eigenvector

(5.2) wk1k2i =

(
−γfvϕk1k2

(γfu − ρk1k2 − βk1k2i)ϕk1k2

)
with the eigenvalue βk1k2i and the eigenvector

(5.3) w∗k1k2i =

(
−γguϕk1k2

(γfu − ρk1k2 − β∗k1k2i)ϕk1k2

)
with the eigenvalue β∗k1k2i, whether k1 and k2 are equal or not.

5.1. Center-Manifold Reduction. The leading eigenvalues are β101

and β011. These eigenvalues coincide, but we consider them separately,
each with its own eigenvector. The two eigenvalues pass (together)
through 0 as λ crosses Λ1 at λ = λ0.

Theorem 5.1. Near λ0 ∈ Λ1, the solution of Eq. (2.13) can be ex-
pressed in the form

(5.4) w = y1w1 + y2w2 + z, z =
∑

(k1,k2):|k|=2,3,...

∑
i=1,2

yk1k2iwk1k2i,

where w1 = w101 and w2 = w011. The coefficients y1 and y2 of the
leading terms satisfy a system of equations of the form

dy1

dt
= β101y1 + (αy2

1 + σy2
2)y1 + o(|y1|3 + |y2|3),

dy2

dt
= β011y2 + (αy2

2 + σy2
1)y2 + o(|y1|3 + |y2|3),

(5.5)

where β101 = β011. The coefficients α ≡ α(λ) and σ ≡ σ(λ) are given
explicitly in terms of the eigenfunctions of Lλ and L∗λ,

(5.6) α(λ) = α2(λ) + α3(λ),
15



where

α2(λ) =
2

< w1, w∗1 >

∑
i=1,2

< G2(w1), w∗20i >< G2(w1, w20i), w
∗
1 >

(2β101 − β20i) < w20i, w∗20i >
,

α3(λ) =
1

< w1, w∗1 >
< G3(w1), w∗1 >,

and

(5.7) σ(λ) = σ2(λ) + σ3(λ),

where

σ2(λ) =
4

< w1, w∗1 >

∑
i=1,2

< G2(w1, w2), w∗11 >< G2(w2, w11i), w
∗
1 >

(2β101 − β11i) < w11i, w∗11i >
,

σ3(λ) =
3

< w1, w∗1 >
< G3(w1, w2, w2), w∗1 > .

Proof. We look for a solution w of Eq. (2.13) of the form (5.4). In the
space spanned by the eigenvectors w1 = w101 and w2 = w011, Eq. (2.13)
reduces to

< w1, w
∗
1 >

dy1

dt
= β101 < w1, w

∗
1 > y1 +

∞∑
k=2

< Gk(w), w∗1 >,

< w2, w
∗
2 >

dy2

dt
= β011 < w2, w

∗
2 > y2 +

∞∑
k=2

< Gk(w), w∗2 > .

(5.8)

To evaluate the contributions from the various terms in the sums, we
again use the asymptotic expression for the center-manifold function
near λ0 given in the Appendix (Section A.1), Theorem A.1,

yk1k2i = Φλ
k1k2i

(y1, y2)

=

∑
j=1,2 < G2(wj), w

∗
k1k2i

> y2
j

(2β101 − βk1k2i) < wk1k2i, w
∗
k1k2i

>
+ o(|y|2), k1 6= k2,

ykki = Φλ
kki(y1, y2) =

2 < G2(w1, w2), w∗kki > y1y2

(2β101 − βkki) < wkki, w∗kki >
+ o(|y|2),

(5.9)

where |y|2 = |y1|2 + |y2|2.
Consider the first of Eqs. (5.8). The contribution from the bilinear

form is

< G2(w), w∗1 > =
∑
i=1,2

< G2(wi), w
∗
1 > y2

i

+ 2
∑
i=1,2

< G2(wi, z), w
∗
1 > yi+ < G2(z), w∗1 > .
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The first term in the right member vanishes, because

< G2(wi), w
∗
1 > = 0, i = 1, 2.

The last term is asymptotically small,

< G2(z), w∗1 > = o(|y|3).

The second term involves an infinite sum over (k1, k2) with |k| =
2, 3, . . .. Many of the coefficients are zero, because of the specific form
of w1, w2, and wk1k2j. The nonzero terms can be evaluated asymptot-
ically by means of the expression (5.9). In fact, the only terms that
are nonzero and contribute to the leading-order (cubic) terms in y are
those with i = 1 and either (k1, k2) = (2, 0) or (k1, k2) = (1, 1). As-
ymptotic expressions for y20i and y11i (i = 1, 2) are given in Eq. (5.9),
where only the term with j = 1 contributes to y20i.

Taken together, these observations show that the contribution from
the bilinear form is

(5.10) < G2(w), w∗1 > = 1
2
< w1, w

∗
1 > (α2y

2
1 + σ2y1y2)y1 + o(|y|3),

where α2 and σ2 are defined in Eqs. (5.6) and (5.7), respectively.
The contribution from the trilinear form is

< G3(w), w∗1 > =
∑
i=1,2

< G3(wi), w
∗
1 > y3

i + o(|y|3)

= < w1, w
∗
1 > (α3y

2
1 + σ3y

2
2)y1 + o(|y|3),

(5.11)

where α3 and σ3 are defined in Eq. (5.6) and (5.7), respectively.
The computations for the second of Eqs. (5.8) are similar. One finds

the differential equation for y2 given in the statement of the lemma
with the same expressions for the coefficients α and σ. We omit the
details. �

5.2. Structure of the Bifurcated Object. Before analyzing the
structure of the bifurcated object, we recall the following result, the
proof of which can be found in Ref. [10].

Lemma 5.1. Let yλ ∈ R2 be a solution of the evolution equation

dy

dt
= λy −Gλ,k(y) + o(|y|k),

where Gλ,k is a symmetric k-linear field with k odd and k ≥ 3 satisfying
the inequalities

C1|y|k+1 ≤ < Gλ,k(y), y > ≤ C2|y|k+1

for some constants C2 > C1 > 0, uniformly in λ. Then yλ bifurcates
from (y, λ) = (0, 0) to an attractor Aλ that is homeomorphic to S1.
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Moreover, (i) Aλ is a periodic orbit, or (ii) Aλ consists of an infinite
number of steady-state points, or (iii) Aλ contains at most 2(k + 1)
steady-state points. In case (iii), the steady-state points are saddle
points, (possibly degenerate) stable nodes, or steady-state points with
index zero; the number of saddle points equals the number of stable
nodes, and both numbers are even; if there are no saddle points or
stable nodes, then there is at least one steady-state point with index
zero.

The following theorem shows that, in the case of diffusion on a square
domain, the types of transitions that the system undergoes as the bi-
furcation parameter λ crosses the critical curve Λ1 are determined by
two numbers, α(λ0) and σ(λ0).

Theorem 5.2. Ω = (0, `)2, λ0 ∈ Λ1, λ near λ0.
Case 1. α(λ0) < 0. The system undergoes a continuous transition as λ
crosses Λ1 from R−1 into R+

1 .

• If σ(λ0) < |α(λ0)|, then
(1) w = 0 is a locally asymptotically stable equilibrium point of

Eq. (2.13) for λ ∈ R−1 and λ ∈ Λ1;
(2) the solution of Eq. (2.13) bifurcates to an attractor Aλ as

λ crosses Λ1 from R−1 into R+
1 ; and

(3) Aλ is homeomorphic to S1.
• If σ(λ0) < 0, Aλ consists of an infinite number of steady-state

points.
• If 0 ≤ σ(λ0) < |α(λ0)|, Aλ contains eight steady-state points,

which can be expressed as

(5.12) wλ = Wλ + ωλ, λ ∈ R+
1 ,

where Wλ belongs to the eigenspace corresponding to β101 and
‖ωλ‖H = o(‖Wλ‖H).

Case 2. α(λ0) > 0. The system undergoes a discontinuous (jump) tran-
sition as λ crosses Λ1 from R−1 into R+

1 :

• If σ(λ0) > −α(λ0), then
(1) the solution of Eq. (2.13) bifurcates subcritically to a re-

peller Rλ as λ crosses Λ1 from R+
1 into R−1 ; and

(2) Rλ is homeomorphic to S1.
• If σ(λ0) > 0, Rλ consists of an infinite number of steady-state

points.
• If −α(λ0) < σ(λ0) ≤ 0, Rλ contains eight steady-state points,

which can be expressed as

(5.13) wλ = Wλ + ωλ, λ ∈ R−1 ,
18



where Wλ belongs to the eigenspace corresponding to β101 and
‖ωλ‖H = o(‖Wλ‖H).

Proof. Case 1: α(λ0) < 0,
If σ(λ0) < |α(λ0)|, then Eq. (5.5) shows that w = 0 is a locally

asymptotically stable equilibrium point.
It follows from Lemma 5.1 and the attractor-bifurcation theorem

(Section A.2, Theorem A.2) that the system bifurcates to an attrac-
tor Aλ as λ transits from R−1 into R+

1 and that Aλ is homeomorphic
to S1.

The structure of the bifurcated attractor is found from the stationary
form of Eq. (5.5). Ignoring the terms of o(|y|3), we have the system of
equations

(β101 + αy2
1 + σy2

2)y1 = 0,

(β011 + αy2
2 + σy2

1)y2 = 0,
(5.14)

where β101 = β011.
If σ(λ0) < 0 , the system (5.14) admits an infinite number of solutions

near y = 0. If α(λ0) < 0 and 0 ≤ σ(λ0) < |α(λ0)|, it admits eight
nonzero solutions near y = 0,

y1 = 0, y2
2 = β101/|α|;

y2 = 0, y2
1 = β101/|α|;

y2
1 = y2

2 = β101/|α + σ|.
(5.15)

These solutions are regular, so Eq. (5.5) also has the same number of
steady-state solutions; they differ from the solutions of Eq. (5.14) by
terms that are o(|y|).

Case 2: α(λ0) > 0.
The attractor-bifurcation theorem applies to the time-reversed form

(s = −t) of Eq. (5.5),

dy1

ds
= −β101y1 + (−αy2

1 − σy2
2)y1 + o(|y1|3 + |y2|3),

dy2

dt
= −β011y2 + (−αy2

2 − σy2
1)y2 + o(|y1|3 + |y2|3),

(5.16)

The statements of the theorem follow by reversing time back again. �

Theorem 5.2 shows that, if α(λ0) < 0 and σ(λ0) < |α(λ0)| (Case 1),
the bifurcation is an S1-attractor bifurcation. If both α(λ0) and σ(λ0)
are negative, the attractor consists of an infinite number of steady-state
points; on the other hand, if α(λ0) < 0 and 0 ≤ σ(λ0) < |α(λ0)|, the at-
tractor contains eight steady-state points. Figure 3, for instance, shows
the phase diagram on the center manifold after bifurcation, where eight
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steady states are connected by heteroclinic orbits. The odd-indexed
points (P1, P3, P5, and P7) are minimal attractors; the even-indexed
points (P2, P4, P6, and P8) are saddle points.
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Figure 3. Two-dimensional domain: S1-bifurcation
with eight regular steady states.

5.3. Square Domain – General Case. As mentioned in Section 4.3,
the leading eigenvalue may change as one passes from one curve Λk to
the next. In a one-dimensional domain the leading eigenvalue remains
simple, but in a two-dimensional domain this need no longer be the
case. For instance, the multiplicity of any eigenvalue βk1k2i on a square
domain is two if k1 6= k2, one if k1 = k2.

If k1 = k2, β111 is the leading eigenvalue, and the center-manifold
reduction leads to a reduced dynamical equation of cubic type,

(5.17)
dy

dt
= β111y + αy3 + o(|y|3),

where the coefficient α ≡ α(λ) can be expressed in terms of the inter-
action between eigenfunctions of Lλ and L∗λ. Therefore, Theorems 4.2
applies verbatim if β11 is replaced by β111, w11 by w111, and, more
important, α by

(5.18) α(λ) = α2(λ) + α3(λ),

where

α2(λ) =
2

< w111, w∗111 >

×
∑
i=1,2

∑
j=1,2

< G2(w111), w∗20ij >< G2(w111, w20ij), w
∗
111 >

(2β111 − β20i) < w20ij, w∗20ij >
,

α3(λ) =
1

< w111, w∗111 >
< G3(w111), w∗111 > .
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In fact, the projection procedure involves the calculation of a few more
terms. Writing the solution w of Eq. (2.13) in the form

w = yw111 + z, z =
∑

(k1,k2)6=(1,1)

∑
i=1,2

yk1k2iwk1k2i,

and projecting in the direction of the first eigenvalue, we obtain the
equation
(5.19)

< w111, w
∗
111 >

dy

dt
= β111 < w111, w

∗
111 > y +

∞∑
k=2

< Gk(w), w∗111 > .

Using again the center-manifold function near λ0 to evaluate the con-
tributions from the various terms in the sums, we obtain

y20ij = Φλ
20ij(y) =

< G2(w), w∗20ij > y2

(2β111 − β20i) < w20ij, w∗20ij >
+ o(|y|2).(5.20)

The contribution from the bilinear form is

< G2(w), w∗111 > = < G2(w111), w∗111 > y2+ < G2(z), w∗111 >

+ 2 < G2(w111, z), w
∗
111 > y.

A straightforward computation shows that

< G2(w111), w∗111 >= 0.

Using Eq. (5.20), we obtain

< G2(z), w∗111 > = o(|y|3),

< G2(w111, z), w
∗
111 > =

∑
i=1,2

∑
j=1,2

< G2(w111, w20ij), w
∗
111 > y20ij

+ o(|y|2).

Thus,

(5.21) < G2(w), w∗1 > = α2 < w111, w
∗
111 > y3 + o(|y|3),

where α2 is defined in Eq. (5.18).
The contribution from the trilinear form (k = 3) is

< G3(w), w∗111 > = < G3(w111), w∗111 > y3 + o(|y|3)

= α3 < w111, w
∗
111 > y3 + o(|y|3),

(5.22)

where α3 is defined in Eq. (5.18).
When k1 6= k2, the multiplicity of the eigenvalue is two, and the

center-manifold reduction yields two equations. If βk0 is the leading
eigenvalue and βk0 changes sign at a critical point, the reduction pro-
cedure yields two equations similar to Eqs. (5.5).
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Remark 1. The center-manifold reduction simplifies considerably
when the original system has certain spatial or other symmetries. An
indication of such a simplification can be gleaned, for example, from
Eq. (5.1), where the two equations have identical coefficients. However,
the method is essentially independent of any symmetry.

Remark 2. The results of Sections 4 and 5 remain valid if the Neu-
mann (zero-flux) boundary conditions are replaced by periodic bound-
ary conditions. In fact, the form of the reduced center-manifold equa-
tions and the expressions for the parameters α and σ remain the same;
only the eigenvalues and eigenvectors of the negative Laplacian are
different.

6. Example – Schnakenberg Equation

We illustrate the preceding results on a classical model for pattern
formation in complex biological structures due to Schnakenberg [17],

Ut = ∆U + γ(a− U + U2V ),

Vt = d∆V + γ(b− U2V ).
(6.1)

The constants a and b are positive; λ = (γ, d) is the bifurcation param-
eter. The system admits a uniform steady state (ū, v̄),

(6.2) ū = a+ b, v̄ =
b

(a+ b)2
.

If U = ū+ u and V = v̄ + v, then u and v must satisfy the equations

ut = ∆U + γ

(
b− a
a+ b

u+ (a+ b)2v +
b

(a+ b)2
u2 + 2(a+ b)uv + u2v

)
,

vt = d∆V − γ
(

2b

a+ b
u+ (a+ b)2v +

b

(a+ b)2
u2 + 2(a+ b)uv + u2v

)
.

(6.3)

This system of equations is of the type (2.13), with

B =

(
b−a
a+b

(a+ b)2

− 2b
a+b

−(a+ b)2

)
.

The nonlinear terms

f1(u, v) = −g1(u, v) =
b

(a+ b)2
u2 + 2(a+ b)uv + u2v
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correspond to the bilinear and trilinear forms

G2(ξ, η) = γ

(
b

(a+ b)2
ξ1η1 + (a+ b)(ξ1η2 + ξ2η1)

)(
1
−1

)
,

G3(ξ, η, ζ) =
1

3
γ(ξ1η1ζ2 + ξ1η2ζ1 + ξ2η1ζ1)

(
1
−1

)
,

for any vectors ξ =

(
ξ1

ξ2

)
, η =

(
η1

η2

)
, ζ =

(
ζ1

ζ2

)
in H.

Note that det(B) = (a+ b)2 and tr(B) = b−a
a+b
− (a+ b)2. The condi-

tions (2.6) and (2.7) are satisfied if 0 < b− a < (a+ b)3. Furthermore,

det(Ek(λ)) = γ(γ + ρk)(a+ b)2 − ρkd
(
γ
b− a
a+ b

− ρk
)
,

tr(Ek(λ) = γ

(
b− a
a+ b

− (a+ b)2

)
− ρk(1 + d),

where ρk, k = 1, 2, . . . are the eigenvalues of −∆ on the domain Ω with
Neumann conditions on ∂Ω. The expressions for the eigenvalues βki
(i = 1, 2) of Lλ follow from Eq. (3.5); the corresponding eigenvalues β∗ki
of L∗λ follow from the identities β∗k1 = βk2 and β∗k2 = βk1.

The curves Λk are given by the expression

dk(γ) =
γ(γ + ρk)(a+ b)2

ρk(γ
b−a
a+b
− ρk)

, γ > γk =
a+ b

b− a
ρk, k = 1, 2, . . . .

The curves Λk and Λk+1 intersect at

(6.4) γ = γk,k+1 = 1
2
(γk + γk+1) +

(
1
4
(γk + γk+1)2 + γkγk+1

b−a
a+b

)1/2
.

6.1. One-Dimensional Case. Let Ω = (0, `). The eigenvalues of −∆
on (0, `) satisfying Neumann conditions at 0 and ` are ρk = k2(π/`)2,
k = 1, 2, . . .. The eigenvectors of Lλ and L∗λ corresponding to the
eigenvalues βki and β∗ki are

wki =

(
−γ(a+ b)2 cos(x

√
ρk)

(γ b−a
a+b
− ρk − βki) cos(x

√
ρk)

)
, i = 1, 2,

w∗ki =

(
γ 2b
a+b

cos(x
√
ρk)

(γ b−a
a+b
− ρk − β∗ki) cos(x

√
ρk)

)
, i = 1, 2.

Since
∫ `

0
cos2(x

√
ρk)dx = 1

2
`,

< wki, w
∗
ki >= 1

2
`
(
−2γ2b(a+ b) + |γ b−a

a+b
− ρk − βki|2

)
, i = 1, 2.

Now consider a transition when λ crosses Λ1 from the region below
to the region above Λ1 at some critical value λ0. Near λ0, the eigen-
values β11 and β12 are real. Straightforward computations yield the
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expressions

G2(w11) = h2(2(ρ1 + β11)) cos2(x
√
ρ1)

(
1
−1

)
,

G2(w11, w2i) = h2(ρ1 + β11 + ρ2 + β2i) cos(x
√
ρ1) cos(x

√
ρ2)

(
1
−1

)
,

G3(w11) = h3(ρ1 + β11) cos3(x
√
ρ1)

(
1
−1

)
,

where h2 and h3 are linear functions of their arguments,

h2(s) = γ2(a+ b)2(γ(2a− b) + (a+ b)s),(6.5)

h3(s) = γ3(a+ b)3(γ(b− a)− (a+ b)s).(6.6)

Since
∫ `

0
cos4(x

√
ρ1)dx = 3

8
` and

∫ `
0

cos2(x
√
ρ1) cos(x

√
ρ2)dx = 1

4
`,

< G2(w11), w∗21 > = 1
4
`(γ + ρ1 + β22)h2(ρ1 + β11),

< G2(w11), w∗22 > = 1
4
`(γ + ρ1 + β21)h2(ρ1 + β11),

< G2(w11, w2i), w
∗
11 > = 1

4
`(γ + ρ1 + β12)h2(ρ1 + β11 + ρ2 + β2i),

< G3(w11), w∗11 > = 3
8
`(γ + ρ1 + β12)h3(ρ1 + β11).

These expressions can be used in Eq. (4.7) to compute the coefficient
α(λ) in the reduced bifurcation equation (4.6) as λ varies along the
curve Λ1.

6.2. Two-Dimensional Case, Ω = (0, `)2. The evaluation of the in-
ner products in the expression (5.6) and (5.7) for σ is similar,

G2(w1) = h2(2(ρ10 + β101)) cos2(x
√
ρ1)

(
1
−1

)
,

G2(w1, w2) = h2(2(ρ10 + β101)) cos(x
√
ρ1) cos(y

√
ρ1)

(
1
−1

)
,

G2(w1, w20i) = h2(ρ10 + β101 + ρ20 + β20i) cos(x
√
ρ1) cos(x

√
ρ2)

(
1
−1

)
,

G2(w2, w11i) = h2(ρ10 + β101 + ρ11 + β11i) cos(x
√
ρ1) cos2(y

√
ρ1)

(
1
−1

)
,

G3(w1) = h3(ρ10 + β101) cos3(x
√
ρ1)

(
1
−1

)
.

The functions h2 and h3 are the same as in the one-dimensional case,
Eq. (6.6). With the identities∫

Ω

cos4(x
√
ρ1)dxdy = 3

8
`2,
∫

Ω
cos2(x

√
ρ1) cos(x

√
ρ2)dxdy = 1

4
`2,
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∫
Ω

cos2(x
√
ρ1) cos2(y

√
ρ1)dxdy = 3

16
`2,

we find

< G2(w1), w∗201 > = 1
4
`2(γ + ρ10 + β202)h2(ρ10 + β101),

< G2(w1), w∗202 > = 1
4
`2(γ + ρ10 + β201)h2(ρ10 + β101),

< G2(w1, w20i), w
∗
1 > = 1

4
`2(γ + ρ10 + β102)h2(ρ10 + β101 + ρ20 + β20i),

< G2(w1, w11i), w
∗
1 > = 3

16
`2(γ + ρ10 + β102)h2(ρ10 + β101 + ρ11 + β11i),

< G3(w1), w∗1 > = 3
8
`2(γ + ρ1 + β12)h3(ρ1 + β11).

6.3. Numerical Results. We illustrate the above analytical results
with the results of numerical computations for the Schnakenberg model
on the unit interval Ω = (0, 1) (one-dimensional case, 1D) and on the
unit square Ω = (0, 1)2 (two-dimensional case, 2D).

The configuration of the critical curves depends on the values of the
parameters a and b. The positive branches of Λ1 and Λ2 are shown in
Fig. 4(a) for a = 1

3
, b = 2

3
, and in Fig. 5(a) for a = 2, b = 100, for both

the 1D and 2D cases. The curves Λ1 coincide for 1D and 2D, but the
curves Λ2 differ.
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Figure 5. Schnakenberg equation; a = 2, b = 100.

The nature of the first critical transition is determined by the value
of the bifurcation coefficient α in the one-dimensional case or the values
of the bifurcation coefficients α and σ in the two-dimensional case, at
the critical value λ0. The structure of the attractor and, therefore, the
pattern that emerges from the bifurcation follow from Theorem 4.2 in
the one-dimensional case or Theorem 5.2 in the two-dimensional case.

Consider the one-dimensional case. Figures 4(b) and 5(b) show the
graph of α as λ = (γ, d1(γ)) moves along Λ1 from the asymptote at
γ = γ1 = a+b

b−aρ1 to the vertical line at γ = γ1,2 where the curves Λ1 and
Λ2 intersect. (The value of γ1,2 is computed from Eq. (6.4).) When
a = 1

3
, b = 2

3
(Fig. 4(b)), the graph of α is monotonically increas-

ing and positive, so α(λ0) is always positive. The primary instability
corresponds to a jump transition; the bifurcation is subcritical and re-
sults in a complex high-amplitude pattern. On the other hand, when
a = 2, b = 100 (Fig. 5(b)), the graph of α is monotonically decreasing
and negative until it reaches a minimum and turns monotonically in-
creasing toward positive values near γ1,2. Depending on the values of
the constants a and b, we can have a supercritical bifurcation (namely,
when α(λ0) < 0) and therefore a continuous transition resulting in a
simple pattern, or a subcritical bifurcation (namely, when α(λ0) > 0)
and therefore a discontinuous (jump) transition resulting in a complex
high-amplitude pattern.

Next consider the case of a square domain. The nature of the tran-
sition is now determined by two coefficients, α and σ, at the critical
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value λ0. The graphs of α and σ are shown in Fig. 4(c) and Fig. 4(d),
respectively, for the case a = 1

3
, b = 2

3
and in Fig. 5(c) and Fig. 5(d),

respectively, for the case a = 2, b = 100, as λ = (γ, d1(γ)) moves
along Λ1 from the asymptote at γ = γ1 = a+b

b−aρ1 to the vertical line at

γ = γ1,2. When a = 1
3

and b = 2
3
, α and σ are monotonically increasing

and positive. It follows from Theorem 5.2 that there exists a repeller
consisting of an infinite number of steady-state points. On the other
hand, when a = 2 and b = 100, α is monotonically decreasing and neg-
ative, while σ is monotonically decreasing and negative until it reaches
a minimum and turns monotonically increasing toward positive values
near γ1,2. There exists therefore an interval of critical values where
α(λ0) < 0 and σ(λ0) < 0. Hence, we see a continuous transition and a
heteroclinic orbit consisting of steady-state points.

Lastly, we consider the actual dynamics of the Schnakenberg model,
Eq. (2.5), and show computationally that the reduced equation ob-
tained with the center-manifold reduction, Eq. (4.6), can be used effec-
tively to approximate the solution of the full Schnakenberg model for
values of λ in the unstable regime. For these computations we restrict
ourselves again to the unit interval. Figure 6 shows the solution (u, v)
of the original Schnakenberg model and the reduced equation at times
t = 10 and t = 100. The value of d was chosen so the bifurcation
parameter λ was near a critical value. In each case the difference is
negligible. Since the reduced model requires substantially less compu-
tational effort than the full model, even when the latter is stiff, there
is a clear advantage to using the former, especially for a qualitative
evaluation.

7. Conclusions

In this paper we have studied the local dynamics of reaction-diffusion
systems of activator-inhibitor type near a primary instability. The sys-
tem is assumed to have a uniform steady state that is stable in the
absence of diffusion. Diffusion introduces instabilities, and patterns
emerge as a result of bifurcations from the uniform steady state. The
bifurcation parameter (λ) incorporates the ratio of the characteristic
times for chemical reaction and diffusion (γ) and the ratio of the diffu-
sion coefficients of the competing species in the binary mixture (d). For
such a system, there exists a family of critical curves in the λ = (γ, d)-
plane with the property that an exchange of stability occurs as λ crosses
one of these critical curves (Lemma 3.1).
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Figure 6. Solution of the Schnakenberg equation (dot-
ted lines) and the reduced equation (solid lines) at times
t = 10 (top) and t = 100 (bottom); a = 2, b = 100,
γ = 55, d = 87529.

Two essential ingredients in the analysis were a new approach to the
center-manifold reduction and the application of attractor-bifurcation
theory. The attractor-bifurcation theory studies local invariant spheres,
rather than the invariant tori of classical bifurcation theory. The
center-manifold reduction method is used to derive a new set of gov-
erning equations. These equations involve some transition coefficients
that are specified entirely by the eigenvalues and eigenfunctions of the
underlying operators and, thus, by the physical parameters of the sys-
tem, as is illustrated by the numerical results for the Schnakenberg
model in Section 6.

We have shown that the bifurcated object (attractor or repeller)
consists of either two points or an S1-type object, depending on the
dimension of the physical domain and the parameter regime. In the
case of an S1-bifurcation, the phase diagram after bifurcation either
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consists of an infinite number of steady-state solutions or contains eight
steady states and the heteroclinic orbits connecting them.
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Appendix A. Center-Manifold Reduction and Attractor
Bifurcation

In this appendix, we summarize the center-manifold reduction and
the attractor-bifurcation theory following Ref. [10]. The functional
framework is that of two Hilbert spaces, H and H1, where H1 is dense
in H and the inclusion H1 ↪→ H is compact.

Let A : H1 → H be a linear homeomorphism, and let Lλ : H1 → H
be a compact perturbation of A that depends continuously on a real
parameter λ,

(A.1) Lλ = −A+Bλ.

Let Gλ be a nonlinear map in H. Consider the initial-value problem

(A.2)
dw

dt
= Lλw +Gλ(w), t > 0; w(0) = w0,

for some given w0 ∈ H. We assume that w = 0 is an equilibrium
solution of Eq. (A.2) and that this solution is locally asymptotically
stable.

Let βk(λ), k = 1, 2, . . . , denote the eigenvalues of Lλ (counting mul-
tiplicity and ordered by their increasing real parts). Suppose that at
a critical value λ = λ0 the eigenvalues β1(λ) through βm(λ) cross the
imaginary axis into the right half of the complex plane, while all eigen-
values βk(λ) with k > m remain in the left half. Then the equilibrium
solution loses stability, and a bifurcation occurs. The center-manifold
reduction reduces the infinite-dimensional equation (A.2) to a finite-
dimensional system, and the attractor-bifurcation theorem character-
izes the bifurcating solution in the neighborhood of λ0.
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A.1. Center-Manifold Reduction. Decompose the space H into in-
variant subspaces,

(A.3) H = E1 ⊕ E2,

where E1 is the (finite-dimensional) eigenspace of Lλ at λ0,

E1 =
m⋃
k=1

{
w ∈ H1 : (Lλ0 − βk(λ0))iw = 0, i = 1, 2, . . .

}
.

Let Ẽ1 = E1, and define Ẽ2 as the closure of E2 in H, so H1 = Ẽ1⊕ Ẽ2.
The decomposition (A.3) reduces Lλ,

(A.4) Lλ = Lλ,1 ⊕ Lλ,2,

where Lλ,1 = Lλ|E1 : E1 → Ẽ1 and Lλ,2 = Lλ|E2 : E2 → Ẽ2.
The solution wλ of Eq. (A.2) can be written as

(A.5) wλ = W + z, W ∈ E1, z ∈ E2,

where W and z satisfy the system of equations

dW

dt
= Lλ,1W + Gλ,1(W, z),

dz

dt
= Lλ,2z + Gλ,2(W, z),

(A.6)

with Gλ,i = PiGλ, Pi : H → Ẽi being the canonical projection.
By the classical center-manifold theorem (see, for example, Ref. [7]),

there exist, for all λ sufficiently close to λ0, a neighborhood Uλ ⊂ E1 of
W = 0 and a C1 center-manifold function Φλ : Uλ → E1 which depends
continuously on λ such that the dynamics of Eq. (A.2) are described
completely by the dynamics of the finite-dimensional system

dW

dt
= Lλ,1W + Gλ,1(W,Φλ(W )), W ∈ Uλ ⊂ E1.

The following theorem gives an estimate for the center-manifold func-
tion in a neighborhood of λ0.

Theorem A.1. Let Gλ(w) =
∑∞

k=pGλ,k(w) for some p ≥ 2, where

Gλ,k(w) ≡ Gλ,k(w, . . . , w) and Gλ,k is a k-linear C∞ map from H1 ×
· · · ×H1 into H for each k. Then

Φλ(W ) = (−Lλ,2)−1P2Gλ,p(W ) +O(|<β(λ)| · ||W ||p)
+ o(||W ||p), W ∈ E1, λ→ λ0.

Here, β stands for the vector of eigenvalues (β1, . . . , βm), and the real
part is taken componentwise.

30



A.2. Attractor-Bifurcation Theorem. For the attractor-bifurcation
theory it suffices to assume that the nonlinear function Gλ in Eq. (A.2)
is a bounded Cr map (r ≥ 1) from Hα into H for some α ∈ [0, 1), and
that Gλ satisfies the asymptotic estimate

(A.7) Gλ(w) = o(‖w‖Hα), |w| → 0,

uniformly in λ.
We use the following definitions.

Definition A.1. (i) A set Σ ⊂ H is a (positive) invariant set of
Eq. (A.2) if Sλ(t)Σ = Σ for any t ≥ 0. (ii) An invariant set Σ ⊂ H of
Eq. (A.2) is an attractor if Σ is compact and there exists a neighborhood
U ⊂ H of Σ such that limt→∞ distH(wλ(t;w0),Σ) = 0 for any w0 ∈ U .
(iii) The largest open set U satisfying the above condition is the basin
of attraction of Σ.

Definition A.2. (i) A solution (wλ, λ) of Eq. (A.2) bifurcates from
(0, λ0) if there exists a sequence of invariant sets {Σn} of Eq. (A.2) with
0 /∈ Σn such that limn→∞maxw∈Σn |w| = 0 and limn→∞ dist(λn, λ0) =
0. (ii) If the invariant sets Σn are attractors of Eq. (A.2), then the
bifurcation is called an attractor bifurcation. (iii) If the invariant sets
Σn are attractors and are homotopy equivalent to an m-dimensional
sphere Sm, then the bifurcation is called an Sm-attractor bifurcation.

The solution (wλ, λ) of Eq. (A.2) bifurcates from (0, λ0) to an attrac-
tor Aλ as λ passes through the critical value λ0. The following theorem
characterizes the attractor Aλ and the nature of the bifurcated solu-
tions.

Theorem A.2 (Attractor-Bifurcation Theorem). If m > 1, then Aλ
has the following properties:

(1) Aλ is connected and dimAλ ∈ [m− 1,m].
(2) Aλ is the limit of a sequence of m-dimensional annuli {Mi}i

with Mi+1 ⊂Mi for i = 1, 2, . . . ; in particular, if Aλ is a finite
simplicial complex, then Aλ has the homotopy type of Sm−1.

(3) For any wλ ∈ Aλ, wλ can be expressed as

wλ = Wλ + zλ, Wλ ∈ E1, zλ = o(‖Wλ‖H).

(4) There is an open set U ⊂ H with 0 ∈ U such that Aλ attracts
U \Γ, where Γ is the stable manifold of w = 0 with codimension
m.
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