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Abstract

Computing the first derivatives of a discretized nonlinear partia differential
equation (PDE) can be made more efficient given colorings of the lattice points of
the plane, cylinder, or torus that assign different colors to all vertices within some
specified stencil. Goldfarb and Toint showed how to efficiently color the lattice
points of the plane, but their results do not extend to the cases of cylinders or
toruses, as arisein the case of discretizing PDEswith periodic boundary conditions
on a Cartesian grid. We give colorings for the (4l — 3)-point star and the | x |
square stencils (for al I) in the plane, on the cylinder, and on the torus. We also
give colorings for the (61 — 5)-point star in Z2 and for the | x | x | cubein Z3 with
periodic boundary conditionsin 0 and 1 dimensions. We show that all colorings
are optimal or near-optimal.

1 Introduction and Motivation

Many numerical methods require the evaluation of the Jacobian. The Jacobian is an
M x N matrix J of partial derivatives of a vector-valued function F : RN — RM, The
Jacobian entry inrow i and column j isnonzero only if theith component F (x) depends
onXx;j.

The Jacobian is frequently computed by using automatic differentiation [4] or ap-
proximated by using finite differences. These techniques are often necessary because
the function F is available only in the form of a computer program. Both approaches
compute a set of directional derivatives of F. If we choose the direction to be the unit
vector e; in the jth coordinate direction, we compute the jth column of J. By taking
the directions to be the standard basis of RN, we can compute J using N directional
derivativesof F.

In many cases, however, the Jacobian matrix is sparse. If the sparsity pattern is
known, theith and jth columnsof J can be computed simultaneously whenever they are
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structurally orthogonal. A pair of columnsi and j of amatrix are structurally orthogonal
if in each row of the matrix at most one of the columns contains a nonzero entry.

If columnsi and j are structurally orthogonal, we compute them simultaneously
by taking the derivative of F in the direction e; +ej. Then for each row k, at most
one of J; and Ji; is nonzero. This nonzero entry is equal to the kth component of the
derivative vector.

Thisideacan be extendedto larger sets of pairwise structurally orthogonal columns.
If columnsiy,io,...,ip are structurally orthogonal, we can compute them simultane-
ously by taking the derivative of F inthedirection e, +e&, +---+&,. Again, for each
row k, at most one column has a nonzero entry in the kth row. This nonzero entry is
egual to the kth component of the derivative vector.

We are now interested in partitioning the columns of J into structurally orthogonal
sets. All the columnsin a set can be computed simultaneously. To minimize the cost
of computing J, we must minimize the number of setsin the partition.

It turns out to be more useful (and to offer better intuition) if we view the problem
as points on atorus, rather than columns of a matrix [6]. Rather than partitioning the
columnsinto structurally orthogonal sets, we speak of coloring the points on the torus
so that no two points receive the same color unless their corresponding columns in
the Jacobian are structurally orthogonal. If we take the points of the torus as a vertex
set and add an edge between two points whenever their corresponding columns are
not structurally orthogonal, we have a standard graph coloring problem. Motivated by
viewing the problem as points on atorus, we also refer to the points by the more natural
(i, ]) to denote the point in theith row and jth column.

Unfortunately, finding an optimal coloring of a general graph is NP-complete.
Therefore, research has focused on approximation algorithms for graphs with random
adjacency patterns [2, 1, 5] and optima (or near-optimal) algorithms for structured
graphs[3].

We now examine the problem more in detail. We want to find the derivative of a
function that maps the surface of atorusto itself, F : T — T. Since we don’t have
an analytical form of the function, we approximate it at selected points. We select mn
pointsin the shape of an mx n lattice on the surface of the torus. In the Jacobian, each
row and column correspondsto a sample point on the torus. (This meansthat the Jaco-
bian matrix, J, actually has dimensions mn x mn.) We refer to the point corresponding
to column (and row) i aspointi. The derivative at a point can be approximated by using
the value of the function at that point and at nearby points.

We use theterm stencil to specify those pointsnear point i which our approximation
of the derivative at i will depend on. Because we use the same stencil for every point
on the torus, the sparsity pattern of the Jacobian is very structured. In particular, Jjj
is nonzero only if point i lies within the stencil of point j. Thus, two columns are
structurally orthogonal only if their corresponding points never lie in the same stencil.
Thus, the number of structurally orthogonal setsin the column partition must be at |east
equal to the number of pointsin the stencil.

Goldfarb and Toint [3] give optimal colorings (a coloring is optimal if it is usesa
minimum number of colors) for a variety of sparsity patterns arising from the stencil-
based discretization of partial differential equations on Cartesian grids. Goldfarb and
Toint demonstratethat in many casesthe size of the coloring need not be any larger than
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Figure 1. (a) The 5-point star stencil on the 5 x 7 torus. It is important to distinguish
between the torus and the Jacobian. The Jacobian will be 35 x 35, since each point on
the torus corresponds to a column in the Jacobian. (b) The 3 x 3 square stencil on the
5 x 6 torus. The Jacobian for thistoruswill be 30 x 30.

the size of the stencil. However, al of the cases they consider are in the plane. This
significantly simplifies matters, because it avoids difficulties with boundary conditions.

In this paper, we examine the problem for (4l — 3)-point star and square stencils
on both the torus and the cylinder. We use the term m x n torus (cylinder) to mean the
discrete torus (cylinder) with height m and width n. For the cylinder, the height is the
dimension that does not wrap around.

In three dimensions, we look at (6] — 5)-point star and cube stencils. We consider
two cases. First, we color the points of Z3, the three-dimensional |atice without wrap-
around in any dimension. Second, we color the points of Z 2 x Zm, athree-dimensional
| attice with wrap-around in a single dimension of size m.

In Section 2, we present a preliminary result that is helpful in constructing the col-
oringsin Section 3. In Section 3, we present colorings for (41 — 3)-point and (6l — 5)-
point star stencils and for square and cube stencils. In Section 4, we present lower
bounds and show that in all casesthey aretight or nearly tight for | x | square stencils
and (4l — 3)-star stencils. We offer some concluding remarksin Section 5.

2 Prédiminaries

To build al the coloringsin this paper, we partition into smaller rectanglesthe regionto
be colored. We color each rectangle so that when the rectangles are reassembled into
the initia region, the resulting coloring is valid. In general, the rectangles have two
different heights and two different widths: hq1 x wy, ha x wi, hy x W, and ha x wep. In
addition to each coloring being valid for the specified stencil, these colorings also have
the property that if two rectangleswith the same height are placed side by side or if two
rectangles with the same width are placed one atop the other, the coloring of this new
larger rectangleis valid for the same stencil. To color atorus with dimensions h x w,
we will write h as a nonnegative integer linear combination of h1 and hy and write
W as a honnegative integer linear combination of w1 and w,. (Throughout this paper,
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Figure 2: A coloring of the 9 x 9torusfor the 3 x 3 square stencil.

the term linear combination will mean linear combination with nonnegative integer
coefficients.) We write a|b to denote that a divides b.

We want to know when an integer n can be written as a linear combination of
two smaller integers p and g. Let r(p,q) be the smallest positive integer such that if
n>r(p,q), then n can be written as a linear combination of p and . The following
result is known as Sylvester’s theorem. For a proof, see[7].

Lemma 1 (Sylvester’'s Theorem [7]). If p and g arerelatively prime positive integers,
thenr(p,q) = (p—1)(q—1).

We say that a coloring (of atorus or the plane) is valid for a given stencil if, under
that coloring, all points within each copy of that stencil receive distinct colors. We say
that avalid coloring (for stencil S) of an h x w4 torus and avalid coloring (for S) of an
h x wy torus are vertically compatibleif, when placed side by side, thetwo formavalid
coloring (for stencil S) of theh x (w1 +ws) torus. Analogously, we define horizontally
compatible colorings of hy x w and hy x w tori. When the meaning is clear, we will
refer to both vertically compatible and horizontally compatible simply as compatible.
We also extend these definitions to three dimensions in the obvious way.

3 Coloringsfor Square Stencils

The simplest coloring for the 3 x 3 sguare stencil, on an mx n torus with 3jmand 3|n,
isgivenby C(i, j) = (3i+ j) mod 9, as shown in Figure 2.

This coloring was given by Goldfarb and Toint [3] and can easily be extended to
thel x | square stencil by letting C(i, j) = (li+ j) mod I 2. If weare coloring rectangles
rather than tori, this coloring sufficesfor all mand n. For the torus, however, werequire
IImand I|n. So now we need to look for valid colorings for the | x | square stencil in
instanceswhen|/mor | /n.

The colorings we use are similar to the coloring in Figure 2. We define a general
family of colorings:

C(i, j,I,mn) = ((li mod m+ j) mod n).



Each time we use coloring C, the parameters|, m, and n remain fixed, while the param-
etersi and j vary to indicate which entry is being colored. Aswe moveto therightina
row, each entry islarger than the previousentry by 1. Similarly, aswe move downward
in acolumn, each entry is larger than the previous entry by I. Asaresult, the period of
the coloring in the rows is n, and the period in the columnsis ged(l, m). For Theorem
2 through Lemma 5, we consider the case when the height and width of the torus are
givenbym=12+bandn=12+c, whereb and c are at most I.

Theorem 2. 1fI2<m<n< 12+, thenC(i, j,I,m,n) isavalid coloring of themx n
torusfor thel x | square stencil.

Proof. Sincethetilingisperiodicin both directions, it sufficesto show that the coloring
is valid for the plane. If this coloring is invalid, then there exist two entries (i1, j1)
and (iz, j2) that lie within the same | x | square and receive the same color, that is,
lig—iz| <1, [j1—j2| <, and (lig mod m+ j1) = (li mod m+ j2) mod n. Without
loss of generality, assume that (Ii; mod m) > (li; mod m). Let

T (liy mod m) — (liz mod m) + j1 — jo,
U = |i1—|i2+jl—j2-

Since n|T and —n < T < 2n, we see that T € {O,n}. Clearly m|(T —U), and
by assumption, T > U. Since |liy —lip| < l]ig —iz] <12 <m, weseethat T—U €
{0,m}. ThusU € {T,T —m}, and henceU € {0,—m,n,n—m}. Since |i1 —i2| < | and
|j1—j2| <I,weseethat|U| < ||i1—|i2|—|—|j1—j2|=||i1—i2|+|j1—j2| <I2§m§ n;
soU ¢ {—m,n}. SinceU = 0 impliesthat (i1, j1) = (i2, j2), we must haveU =n—m
andn#m. Thus(iy, j1) isoneof (i2+1, j2), (i2,j2+n—m), or (i2+1, jo+n—m—1).
Both of the first two cases can be easily seen to assign distinct colors to (i1, j1) and
(i2,j2). We now show that the third case also assigns distinct colors to (i1, j1) and
(i2,j2).

The key is to determine the difference (li1 mod m) — (liz mod m). We consider
two possibilities: either there existsan integer g such that li < gm<I(i2+1) =iy, or
there does not exist suchag. Let N = li> mod m. If there exists such an integer g, then
lig modm=N+I|—m. Inthiscase, (liy mod m+ ji) modn=(N+I—-m+j2+n—
m—1) mod n= (li mod m+ j2) mod n= N+ j> mod n. After simplifying, this gives
n—2m= 0 mod n, which is impossible, since 12 < m<n <12+ and n# m. Thus,
there does not exist such an integer g. Since no such g exists, (i1 mod m) = (li mod
m) + 1. By substituting this equality into the congruence (li1 mod m+ j1) mod n =
(li, mod m+ j») mod n, we reach the implication m = n, which is a contradiction.
Hence, thetiling of the planeisvalid, and so is thetiling of the torus. O

Corollary 3. If Ij/mand ||n, then the coloring C(i, j,I,12,1?) isa valid I2-coloring of
the plane and the m x ntorusfor thel x | square stencil.

Proof. Apply Theorem 2, withm= 12 andn=12. Immediately, we see that the coloring
isvalid for an| x | torus and the | x | square stencil. If acoloring is valid for atorus
for a given stencil, then that coloring remains valid for that stencil if two copies of the
torus are placed side by side or one atop the other. By placing copies of thel x | torus



next to and atop one another, we can construct an mx n torus. Thus, the given coloring
isvalid for them x ntorusand thel x | square stencil. O

In the next two lemmas, we show that the colorings given for the smaller rectangles
can indeed be assembled to give larger coloringsthat are valid.

Lemmad. IfI2<m<n; <np<I2+1, thencoloringsC(i, j,I,m,ny) andC(i, j,I,m,ny)
are vertically compatible for thel x | square stencil.

Proof. Lett; bean mx n; rectangle colored by C(i, j,I,m,n1), and let t; bean mx ny
rectangle colored by C(i, j,I,m,n2). Theentriesin arow of t; are (beginning from the
first column) x mod ny, (x4 1) mod ny, (X+2) mod ny,..., where x < m. The entries
inthe samerow of tz arex mod ny, (x+ 1) mod nz, (X4 2) mod ny, .... Asaresult, the
colorsfromarow of t1 appear in the same order within that row of t,. The differenceis
that since n, > ny, there may be additional colorsint,. So in each row of t2, no color
is closer to the edge of t; than it would be if t> were replaced with a second copy of t;.
Let vi bean entry inty and vo bean entry int,. If v4 and v» receive the same color and
liein the same row, then they are at least asfar apart as any two nearest entriesint 1 that
receive the same color and liein the samerow. Thus, the colorings are compatible. [

Lemmab. If1%2 <my <mp <n<I12+1,thencoloringsC(i, j,I,mg,n) andC(i, j,1,mp, n)
are horizontally compatible for thel x | square stencil.

Proof. Sinceli <mp < nmp foral 0 <i <1, thefirst | rows of the two colorings are
identical. Thus, the colorings are compatiblefor thel x | square stencil. O

Finally, we put together al of the pieces we have proved. We now show that
1. any sufficiently large torus can be partitioned into smaller rectangles,
2. those rectangles can be colored using few colors, and
3. the smaller colorings can be assembled to give a valid coloring for the torus.

Theorem 6. For all m> (I — 1)1 and n > 12(12 + 1), there is an (12 + 2)-coloring of
themx ntorusthat isvalid for thel x | square stencil.

Proof. By using Sylvester's theorem, we find aj;,ap,b1,by € N such that m= agl +
ap(I2+1) andn= by (124 1) +by(124-2). Using these linear combinations, we partition
the m x n torus into rectangles with heights h € {I,12 + 1} and with widthsw € {12 +
1,12+ 2}. From Theorem 2, we get colorings of tori with these four sizes. We then
apply the appropriate coloring to each rectangle in the partition of the mx n torus.
The resulting coloring uses at most 12+ 2 colors and is valid for the mx n torus as
guaranteed by Lemmas 4 and 5. O

This technique used to prove Theorem 6 yields an even better bound for coloring
the cylinder. A coloring of a torus with any height can be used to color a cylinder,
since we need not worry about boundary conditionsin the height dimension. If we use
the coloring for atorus with height |, then we need to use only | x | and | x (12 +1)
rectanglesin our partition of the torus. This partition resultsin a coloring with | 2 4 1
colors.



456789A0123 456 789AB0123
789A0123456 789AB012345686
A01234567809 ABO1234567809
23456789A01 23456789ABO01
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Figure 3: The colorings of four rectangles used to construct a coloring of the torus for
the (41 — 3)-point star stencil. The colorings shown are from Theorem 11, when| = 3.

Theorem 7. Thereis an (1% + 1)-coloring of the m x n cylinder for the | x | square
stencil whenn > (1 — 1)I2,

4 Coloringsfor Star Stencils

Now we give colorings for the torus that are valid for the (4l — 3)-point star stencils.
To prove that our colorings are valid for the star stencil, we need only show that the
coloringsare valid for thel x | square stencil, the (2| — 1) x 1 rectangle stencil, and the
1 x (21 — 1) rectangle stencil, since any pair of points that liesin a (41 — 3)-point star
alsoliesin one of these three stencils.

If m>12(12+1) and n > (124 1)(1? + 2), then by Lemma 1 we can partition the
torus into rectangles with heights h € {12 41,1+ 2} and widthsw € {12 +2,1% 4-3}.
We use the colorings for each of the rectangles that are valid for the | x | stencil that
are given in Theorem 2. When the colorings for these rectangles are combined, we get
acoloring for the torus. Call this coloring C and call the partition into rectangles P.

Lemma 8. The coloring C isvalid for the | x | square stencil.



Proof. This followsimmediately from Theorem 2 and Lemmas 4 and 5. O
Lemma 9. The coloring C isvalid for the (2 — 1) x 1 rectangle stencil.

Proof. If C wereinvalid for the (21 — 1) x 1 stencil, there would exist two points (i 1, j)
and (i, ]) in the same (21 — 1) x 1 stencil that receive the same color. We show that
situation isimpossible.

We can assumethat (i1, j) and (iz, j) liein different rectanglesin P, sinceit is easy
to see that different entries within the same column of a rectangle receive different
colors. We consider the entries of column j modulo |. As we move down a column,
we encounter in succession all the entries that lie in the same equivalence class modul o
I. Additionally, we encounter the entries in the same equivalence class in increasing
order. That is, as we move down a column of height h > | 2+ 1, we encounter | blocks
of entries, where each block consists of entries that lie in the same equivalence class.
Each block of entriesis of length | or | + 1. The only exception is that beginning at
the top of a column, we may be partway through a block. The preceding portion of
this block will appear at the bottom of the column, so that the block, when viewed as a
torus, appearswhole and in order.

The important insight is that for a fixed column, each rectangle in the partition P
has the same first | entries in that column. As we move down the column, we must
cross a boundary between two rectangles. Both the rectangle above the boundary and
the one below it have the same first | rows. Hence, as we cross the boundary from
one rectangle to another, all the blocks are whole and in order. The column of each
rectangle contains | > 2 of these blocks (if | = 1, the lemmais trivia). If two entries
receive the same color, they must be in different blocks, and there must be at least
one additional block between them. Hence, the second entry must appear at least 2|
positions after the first. O

Lemma 10. Thecoloring C isvalid for the 1 x (2| — 1) rectangle stencil.

Proof. If C wereinvalid for the 1 x (2| — 1) rectangle stencil, there would exist (i, j 1)
and (i, j2) that lie in the same 1 x (2| — 1) rectangle. Either both points are colored
by using the same coloring (i.e., in the partition they lie within rectangles of the same
size), or they are colored by using two different colorings. First, we assume they are
colored by using the same coloring. However, we know that within arow, each coloring
iscyclicwith periodw > 12+ 2. In addition, we know that each color appears only once
every w entries. Thus, if (i, j1) and (i, j2) receive the same color, then they must be at
adistance of at leastw > 124+2> 21 — 1.

Now consider the case where (i, j1) and (i, j2) are colored by using different color-
ings, supposethat (i, j1) is colored by C; = C(i, j,1,w,1% 4+ 2), and (i, j») is colored by
Co =C(i,j,l,w,1% 4+ 3). Let d; bethe color used on (i, j1). If both points were colored
with the same coloring, the next occurence of color d; to the right of (i, j1) would be
at (i, j1 +w). However, the first appearance of acolor in each row of coloring C, isno
closer to the boundary between coloringsC1 and C, than if we were to continue using
C1 (seeLemmad). Asaresult, no color can appear at two positionsthat arein the same
row and are distance lessthan w > 1242 > 2| — 1 apart. O



Theorem 11. If m>12(12+ 1) and n > (12 +1)(1? 4+ 2), then there is an (12 + 3)-
coloring of the mx ntorusthat is valid for the (41 — 3)-point star stencil.

Proof. Thisfollowsimmediately from Lemmas8, 9, and 10. O

5 Three-Dimensional Stencils

In this section, we consider the three-dimensional version of our problem. In the three-
dimensional case, the lattices we study are Z2 and Z? x Zn,. We are motivated to ook
at colorings of these lattices for thel x | x | cube. We also consider colorings of Z 2 for
the (61 — 5)-point star. Apart from the 7-point star considered by Goldfarb and Toint
[3], we are unaware of any treatment of these casesin the literature.

The intution for Theorem 12 is as follows. We assume that two points receive the
same color under the specified coloring. We proceed to show that they cannot lie inside
the same (61 — 5)-point star stencil. Because we are giving a single coloring for al of
72 (and not considering boundary conditions for discrete tori), there are no issues of
compatibility between different colorings.

Theorem 12. Let M =12 +1 + 1, and define the coloring C(i, j,k,1) = (i +12j+ (12 +
1)k) mod M. Coloring C(i, j,k,I) is avalid coloring of Z2 for the (6l — 5)-point star
and uses M colors.

Proof. If the coloring is invalid, then there are two points py = (i1, j1,k1) and pz =
(i2, j2,kz2) that receive the same color and lie within the same copy of a (6] — 5)-point
star stencil. Each point of a star differsin only one coordinate from the center of the
star, soif p; and p2 liein the same star, then p; and p; agreein at least one coordinate.

First, consider the case where p; and p2 agree in two coordinates. We simplify the
expression (i1 +12j1 + (12 + 1)ky) = (i2+12j2 + (174 1)k2) mod M by substituting in
two of thethreeequalities: i1 =iz, j1 = j2, and k; = kp. Depending on which two of the
three equalities we assume to be true, we get one of three possibilities: i1 =i, mod M,
12j1 =12j2 mod M, or (1% + 1)k; = (I + 1)kp mod M. Since 1,12, and (12 + 1) are all
relatively primeto M, weseethat M|(i1 —i2), M|(j1 — j2), or M|(k1 —k2). However, we
know that |i1 —i2| <2 —1,|j1— j2| <2 —1,and |k —ko| < 2l —1; sinceM > 2| — 1,
we conclude that p; = p2, which is a contradiction. Thus, if p1 and py lie inside the
same star and receive the same color, then they agree in exactly one coordinate.

Now consider the case where p1 and p2 agree in exactly one coordinate. We must
have i1 —iz| <1, |j1—J2| <, |ki — kz| < |, and one of the following.

(it+1%2j1) = (i2+1%j2) mod M
(i1 + (174 1)kg) (i2+ (17 + 1)k2) mod M
(1Pj2+ 12+ ki) = (1%j2+ (12+ 1)ko) mod M

We rewrite these as follows.

(1—(1+1)j) = (i2—(+1)j2) modM
(i1—|k1) = (i2—|k2) mod M
(—|j1+k1) = (—|j2+k2) mod M



The third equation follows by multiplying through by (I + 1). Those equations then
imply (respectively) that one of the following is true.

M | (a—i2—(+1)(j1—]2)
M | (i1—i2—I(ki—kg))
M | (ki—ka—1(j1—j2))

Ineach case (makinguseof |i1—i2| <I,|j1— j2| <I, and |k —ko| < 1), we seethat the
quantity that M is supposed to divide has absolute value less than M. Thisimpliesthat
each quantity must be 0 and hencethat (i1, j1,k1) = (i2, j2,k2). Thisisacontradiction.
Hence, the coloring is valid. O

Now we turn our attention to the | x | x | cube stencil. Because we want to color
72 x Zm, we need to give a coloring for all of the |3 x 13 x (I3 4 b) three-dimensional
cylinders (0 < b < 1), rather than just the 13 x I3 x I three-dimensional torus. The
proof takes the same form as before. We assume that there are two points that lie
within a cube and receive the same color; eventually we reach a contradiction. Define
the coloring

Cli, j,k1,b) = ((1%i +1j) mod I+ k) mod (I3 +b).

Theorem 13. If0<b <, thenC(i, j,k,I,b) isavalid coloring of thel 3 x 13 x (I3 +b)
three-dimensional cylinder for thel x | x | cube. C(i, j,k,1,b) uses |13+ b colors.

Proof. If the coloring is invalid, then there are two points p; = (i1, j1,k1) and pz =
(i2, j2,ko) that receive the same color and lieinsidethe samel x | x | cube. Asaresult,
p1 and p2 satisfy constraints (3.1) and (3.2) below:

|i1—i2|<|7 |j1—j2|<|, ||(1—|(2|<| Q
(((1%i341j1) mod 13) +ky) = ((1%i2+1j2) mod I3 4+ kp)(mod (13 +Db)).  (2)

Without loss of generality, assume (12i1 4 1j1) mod 12 > (1%i, +1j,) mod I3, Let
T = ((1%ig41]j1) mod 13— (1%2i41j2) mod 134 (ky —kz)). Then T isdivisibleby 13 +b
and —(I3+b) < T <2(13+Db). Inparticular, T € {0,13+b}. Let U =12(i1 —ip) +
[(j1— j2) + (ks — ko). ThenU € {0,—13 1% +b,b}. Making use of (3.1), we see that
|U| <I3. 1f U =0, we immediately get (i1, j1,k1) = (i2, j2,k2). Thisleaves only the
case U = b. To have a solution other than (i1, j1,k1) = (i2, j2,k2), we need 0 < b.
Againusing (3.1) and the fact that b < |, we see that the only possible solutions are the
following.

|2i1+|j1=|2i2+|j2 ki=ko+b (I)
12ig+1jp =12+ 1jo4+1 ki=ko+(b—1) (ii)
We need to show that none of these pairs of points actually receive the same colors.
Itiseasy to see that no pair of points satisfying (i) receives the same color.
Consider pairs of points satisfying (ii). The key is to determine the difference
(1%ig +1j1) mod I3 — (1224 1j2) mod I3, Let N = (12i241j2) mod I3, There are two
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possibilities. Either there exists a positive integer d such that | 2io + 1 jo < dI® < [2i,+
lj2+1, or there does not exist such an d. If there does not exist such an d, then
(I%i+1j1) mod 13 = N+1. Thisleadsto (N +kp) mod (1I3+b) = (N+1+k, +b—
1) mod (1% +b). Thisimpliesthat b= 0 mod (I*+b). However, since 0 < b <, this
is acontradiction. Hence, there must exist such an integer d.

Consider (ii) when there exists a positive integer d such that 12,4 1j, < dI® <
123 4+1j1. Then (1%i3+1j1) mod 13 = N+1—13. Thisleadsto (N+kz) = (N+1—13+
ko+b—1) mod (12 +b). Simplifying, we get |3 = b mod (1% 4 b). However,0 < b <1,
sowereach acontradiction. Hence, thereare no pairsof pointsreceiving the same color
and also satisfying constraint (ii). Thus, thereisno pair of points (i1, j1,k1), (i2, j2, k)
receiving the same color and also lying inside the same | x | x | cube. As aresult, the
coloring isvalid. O

Corollary 14. Thereexists a |3-coloring of Z3 that is valid for thel x | x | cube.

Proof. C(i, j,k,I,0) isvalidforal x | x| cubeand uses|® colors. It is easy to see that
this coloring also works for the points of Z 3. O

Lemma 15. Define the colorings C1 = C(i, j,k,1,b1) and C; = C(i, j, k,I,b2). If0 <
by < by then C; and C, are compatible.

Proof. Analogousto rows and columns, we define towers to be the set of lattice points
for which i, j are fixed and k varies. Under C1, as k increases in a tower, we get the
repeating sequence 0,1,2,...,13+b; — 2,13+ by — 1. Under C,, as k increases in a
tower, we get the repeating sequence0,1,2, ...,13+ b, — 2,13+ by — 1. Thekey insight
isthat in atower, under C», no color is closer to the boundary between C1 and C, than
if we were to continue using C;. Say we have one point (i1, j1,ki), colored by Cq,
and another point (iz, j2,kz), colored by Cp, which make the colorings incompatible.
Instead of changing from C; to C; at the boundary between them, we could continue
using C; for al the points and find a point (i3, j3,ks), which makes C; incompatible
with itself. SinceC; is not incompatiblewith itself, C; and C, must be compatible. [

Theorem 16. Say | and m are positive integers that satisfy m > 13. Define q to be
the least nonnegative integer for which m can be written as a linear combination of
1303 +1,...134+q—1,134+q. Thereisan (I3 +q)-coloring of Z? x Z, that is valid
for thel x | x| cube.

Proof. Following theideas of Theorem 6, we partition Z2 x Zp, into copies of Z2 x Z,,
where b; can differ in different copies but 12 < b; < 13+ q for al copies. We color
each copy of Z2 x Zp, using the coloring given by Theorem 13. By Lemma 15, these
colorings are compatible, so the total coloring is valid. O

Corollary 17. Let | and m be positive integers such that m > 13(1% — 1). Thereisan
(1% 4+ 1)-coloring of Z? x Znm, that is valid for the| x | x | stencil.

Proof. Thisfollowsfrom Theorem 16 and Lemma 1 (setting g = 1). O
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Figure 4: The proof of Theorem 21 for | = 5.

6 Lower Bounds

We give lower bounds that prove that our coloringsfor the square and cube stencils are
either optimal or within one color of being optimal.

Theorem 18. Any valid coloring of the mx n torusfor thel x | square stencil requires
12+ 1 colorsunless||mand||n.

Proof. Consider an m x | subcylinder (the dimension of size m is the one that wraps
around). If our coloring uses at most | 2 colors, then by the pigeon-hole principle there
is some color class of size at least ("l‘—ﬁ'] = [T']. However, acolor class can have size
at most L%—'J = | 1] (since two entries in the same color class must be at least | rows

apart). If ||m, these quantities are equal. Otherwise, we need at least | 2 4- 1 colors. An
analagous argument shows that we need | |n. O

Slight variations of this proof lead to the following theorems.

Theorem 19. Any valid coloring of the m x n cylinder for the | x | square stencil
requires|? 4 1 colors unlessl|n.

Theorem 20. Any valid coloring of Z2 x Zp, for thel x | x | cuberequires|®+ 1 colors
unless | |m.

Now we give a bound on the number of colors needed for star stencils.

Theorem 21. If m> | and n > |, then we need at least |2 4 1 colorsto color anmx n
rectangle such that no two points with the same color liein a (4l — 3)-point star.

Proof. It is easy to see that no verticesin al x | square can receive the same color.
We begin by coloring these all differently. For ease of reference, we will refer to the
vertices as entries of amx n matrix, where a;j denotesthe vertex in theith row and jth
column.

The only colors available to color entries of column | + 1 are those used in column
1. To color entriesay j+1,82)+1, ---, & 1+1, We must use each color inthe set {1+kl :
0 <k < I} exactly once. Since (1,1) = 1, we seethat (1,1 + 1) # 1. So there existsi
with2 <i <1l and (i,| + 1) = 1 (one of the entries denoted by + in the diagram). The
only colorsavailableto color row | + 1 arethose used in row 1. To color (1 +1,2), (1 +
1,3),...,(I +1,1) (those entries denoted by * in the diagram), we must use every color
intheset {2,3,...,1} exactly once. However, this leaves no color for (I 4+ 1,1). Color
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1 cannot be used because (1,1) = 1 and all other colors are already assigned to some
(i,j)with2<i<l+1and1< j<lI. Thus, we need an additional color for (I +1,1),
so at least (1 4-1)2+ 1 colors are required. O

Theorem 22. The coloring given for the (6l — 5)-point star is asymptotically the best
possible.

Proof. Every (axis-aligned) cross-section of the coloring for the (6l — 5)-point star
must be a valid coloring for the (41 — 3)-point star. Thus, we have a lower bound
of 12 41 colors. We use | (I +1) 41 colors. The ratio of upper and lower bound is
1+ ﬁ), which approaches1 as| getslarge. O

7 Conclusion

We have given colorings for the (4l — 3)-point star and the | x | square stencils (for al
1) in the plane, on the cylinder, and on the torus. On the torus, we have proved that the
colorings for the (41 — 3)-point star are within at most 2 colors of optimality. On the
cylinder, they arewithin at most 1 color of optimality. In the planeall star coloringsare
optimal. On the torus and the cylinder, our colorings for the square stencils are within
at most 1 color of optimality. The coloringsfor square stencilsin the plane are optimal.

We have given colorings for the | x | x | cube stencils for Z2 and Z2 x Z,. Both
are optimal. We have also given colorings of Z3 for the (61 — 5)-point star, which are
asymptotically the best possible.
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