
An Automated Component-Based Performance Experiment
Environment

Van Bui
Mathematics and Computer

Science Division
9700 S. Cass Ave
Argonne, IL 60439

vbui@mcs.anl.gov

Boyana Norris
Mathematics and Computer

Science Division
9700 S. Cass Ave
Argonne, IL 60439

norris@mcs.anl.gov

Lois Curfman McInnes
Mathematics and Computer

Science Division
9700 S. Cass Ave
Argonne, IL 60439

curfman@mcs.anl.gov

ABSTRACT
Performance experiments can involve multiple iterative runs
where parameters such as the execution platform, measure-
ment tools, methods of measurement, application parame-
ters, and analysis techniques can vary. In order to man-
age the layers of complexity involved in setting up and run-
ning experiments, data management, and post analysis, a
degree of abstraction and automation is necessary for each
phase. We present an integrated component-based environ-
ment that leverages existing performance measurement and
analysis technologies and automates the process of running
multiple performance experiments and parameter selection
of parallel scientific applications. Our component toolkit
will enable application scientists to easily modify the ex-
perimental parameters over multiple execution runs and to
selectively retrieve the data for analysis and generation of
performance models.

1. INTRODUCTION
Performance experiments typically involve several phases
and often require many runs of an application with different
configurations and inputs. In order to simplify the process,
a more uniform interface is needed across different tools,
technologies, and configuration settings. We outline here a
common approach to performance experimentation, along
with the tools we developed to simplify and automate this
process.

The first step in this process is determining what to measure.
Next, the performance experiment must be set up and then
executed using different tools whose selection depends on the
underlying platform’s capabilities as well as the application.
Once the data is collected, it can be stored to a database
for later retrieval. Finally, analysis can be performed on
the data to extract useful information. Figure 1 depicts the
common scenario that we describe in running performance
experiments.

We employ a component-based approach1 to provide uni-
form infrastructure for managing performance experiments.
Common interfaces enable us to encapsulate the handling
of many disparate aspects of different hardware platforms
and existing performance tools with similar functionality.
The ultimate goal is to design a portable and extensible
tool infrastructure that can make performance experiments
with both component and non component applications much
more streamlined and easier to perform routinely and auto-
matically.

Database

PerfDMF,
MetaDB, etc…

Analysis
Visualization

PerfExplorer,
CUBE,
PyLab, etc…

Application Binary
1

2

3

BlueGene,
Ranger, etc…

Application 
Metadata

Performance 
Measurement

SCALASCA,
TAU, etc…

PETSc, 
FLASH, etc…

Figure 1: Performance experiment workflow.

1.1 The Common Component Architecture
High-performance computing (HPC) is encountering increas-
ing software development challenges caused by the grow-
ing complexity and size of libraries and applications and by
the size and diversity of high-performance hardware plat-
forms. The productivity costs of implementing, porting,
and tuning the performance of large-scale scientific codes are
rapidly rising. Component technology (e.g., [27]), which is
now widely used in mainstream computing but is relatively
new in HPC, builds on the ideas of object-oriented design to
improve software interoperability, robustness, maintainabil-
ity, and performance. Furthermore, component-based soft-
ware engineering (CBSE) approaches present opportunities

1Project website: http://trac.mcs.anl.gov/projects/
cca/wiki/performance.



for automation of many development activities, including
the generation of portable build systems, automated perfor-
mance instrumentation, and runtime adaptation of applica-
tions.

The Common Component Architecture (CCA) Forum [7]
has developed a component standard specifically targeting
high-performance parallel applications. The CCA offers one
possible solution to managing the complexity of software de-
velopment, which in the case of HPC can involve multiple ge-
ographically distributed teams and different implementation
languages. Like other component-based software engineer-
ing approaches, the CCA provides mechanisms and tools for
defining interfaces that strictly determine what functional-
ity is exposed or used by a component. The CCA specifica-
tion itself is expressed in the Scientific Definition Interface
Language (SIDL), and software written in accordance with
the specifications must provide SIDL definitions of all in-
terfaces and classes. Briefly, the terminology employed by
the CCA specification includes ports, which are public inter-
faces exposed to other components, and components, which
can either provide (i.e., implement) a port or use (i.e., call
the methods on) a port.

The work presented in this paper is applicable to both com-
ponent and non component applications and is part of a
component initiative on computational quality of service
(CQoS) [21, 22], which helps application scientists dynam-
ically compose, substitute, and reconfigure component im-
plementations and parameters, taking into account tradeoffs
among CQoS factors such as power usage, performance, ac-
curacy, and reliability.

The remainder of this paper is organized as follows. Sec-
tion 2 briefly overviews related work. Section 3 describes
the design of the performance experiment component infras-
tructure. Section 4 illustrates the use of the performance ex-
periment components with two applications, and Section 5
presents some conclusions and discusses future work discus-
sion.

2. RELATED WORK
A number of performance tools and suites, including PAPI [5],
TAU [26], Scalasca [11], Kojak [29], gprof [12], CATCH [10],
and Active Harmony [28] can be used to collect, process,
analyze, and visualize performance data.

The Prophesy [31, 32] framework provides some level of au-
tomation for all the different phases of performance analysis:
instrumentation, data collection, and model building. The
focus of automation is mainly in the analysis, where opti-
mization approaches are employed for model building based
on performance data and application metadata. Prophesy
relies on instrumentation.

The TAU [26] and Scalasca [11] frameworks support all stages
of the performance analysis process, with varying amount of
manual effort required between stages. TAU supports au-
tomatic instrumentation of user code and provides a simple
component for performance analysis whose interface allows
the use of PerfExplorer scripts written in Jython. TAU has
also proposed a component interface for performance mea-
surement and model synthesis for both the component and

application layers [25].

Jasmine and Vasantha [19] and Woodside et al. [30], among
others, describe automation of the performance model gen-
eration that relies on the use of design environments, where
developers can easily specify different design scenarios and
workloads.

Balsamo et al. [4] have performed a survey on the role of per-
formance prediction in software design in industry, specifi-
cally at early stages of the software design and implemen-
tation. This work is relevant to scientific software develop-
ment because in many cases, design decisions and algorith-
mic choices can impact performance much more dramati-
cally than more localized implementation decisions.

Hrischuk et al. [15] describe performance model generation
via prototypes for queueing systems. Equivalently, one can
generate performance models provided with individual com-
ponent performance models and application workflow infor-
mation.

3. PERFORMANCE EXPERIMENT COM-
PONENTS

We have defined component interfaces for each of the phases
of the typical performance experiment workflow illustrated
in Fig. 1. We have designed and created initial implemen-
tations of components for setting up and running a perfor-
mance experiment, loading the data into a database, and as-
sisting with certain common analysis tasks. In each phase,
we rely on existing performance tools to provide the core
functionality. For example, the runtime performance data
gathering is supported by a number of tools, including TAU,
HPCToolkit [14], Scalasca [11], and PerfSuite [23]. We in-
troduce component interfaces to the different types of func-
tionality provided by existing tools, which enables users to
use them on a variety of platforms without having to master
many individual tools. Of course, we cannot provide the full
range of functionality of each individual tool under a simple
common interface. Based on our experiences with multiple
tools on various platforms, we have created interfaces that
capture enough of the functionality to make the component
infrastructure useful in the majority of typical performance
experiment scenarios.

Figure 2 shows the assembly of possible component instan-
tiations for each phase. One of our main design goals is to
make this infrastructure easily extensible to support many
different performance tools, database formats, analysis tech-
niques, and hardware platforms. In addition, all components
provide standard ParameterPorts, which can be used to fine-
tune their configuration. Note that the three phases we have
outlined do not have to be executed in sequence or even on
the same platform – we have placed them in the same graph-
ical context simply to provide a visual summary. We discuss
each phase in detail in the remainder of this section.

3.1 Experiment Setup and Data Collection
While a number of tools support the preparation of ap-
plications for performance experiments (e.g., automatic in-
strumentation of the source code for performance data col-
lection), no single tool provides support for running these



Figure 2: Assembly of all performance components.

experiments. Managing the experiment setup and execu-
tion are mostly manual tasks, which present a number of
challenges. First, the type of data to be collected can be
highly platform-dependent. For in-depth analysis, one often
wishes to obtain fine-grain information about the perfor-
mance of different hardware subsystems, for example, cache
miss rates, floating-point instruction counts or issue rates,
disk accesses, or network events. Second, the setup steps for
using different tools vary, from setting environment variables
to selecting one among many available configurations, each
with different capabilities. Third, different tools produce
data in different formats; and while utilities for translat-
ing among formats do exist, one must be somewhat familiar
with the various formats and the tools themselves to use
them effectively.

Most platforms support hardware counters that can be used
to collect fine-grained performance information. In the past,
common interfaces, such as the one provided by PAPI [5],
were sufficient to provide a layer of abstraction over the var-
ious hardware counter interfaces provided by vendors. In
recent years, however, with the advent of multicore architec-
tures, the common interfaces have been unable to provide
access to enough underlying counters. For example, PAPI
does not provide a way to access per core measurements,
while most vendor APIs do. On newer architecture, a large
number of common PAPI counter names are not supported,
thus limiting the types of analysis that can be done without
resorting to using the native counter names. Using native
counters, on the other hand, results in performance models
that are specific to a single architecture and cannot be easily

reused.

We believe that the design of a single all-encompassing per-
formance counter interface is a formidable, and possibly un-
tenable, task. Thus, we have taken a different approach.
Instead of providing a single interface to all possible counter
types, we have defined a simple interface that can be imple-
mented by multiple architecture-specific components whose
implementation encodes any architectural idiosyncrasies. Fur-
thermore, on most platforms, only a limited number of events
can be measured during a single run, and not all combina-
tions of events can be measured simultaneously. Hence, sev-
eral experiments with the exact same input parameters may
be needed in order to obtain all desired performance data.
Naturally, we wish to limit the number of redundant exper-
iments. At present the task of discovering which events can
be measured simultaneously is tedious and manual, poten-
tially resulting in running more experiments than strictly
necessary. By creating architecture-specific measurement
components, we can fully automate the grouping of events
suitable for simultaneous measurement and thus minimize
the number of required experiments.

Experiment setup and data collection involve several tasks:

• Composing and configuring the application, for exam-
ple, specifying input parameters and algorithm choices;

• Selecting the performance measurement approach and
corresponding performance tool;



Figure 3: Experiment management components.

• Configuring the performance tool and execution envi-
ronment, for example, defining environment variables
and tool options;

• Collecting the performance data in a temporary stag-
ing area and relocating it to a (remote) performance
database.

The components for this phase are illustrated in Fig. 3 and
include a driver, a component to set platform specific pa-
rameters, and a collector component. In the driver, users
can set parameters such as the command for executing the
application (for non component applications), the number of
processes, and the number of threads. By using a platform-
specific component such as XeonMeasurementEnv in Fig. 2,
users can set the performance hardware events to monitor or
just use the default sets of commonly used counters. The en-
vironment settings for the performance hardware events vary
for each tool and even within tools. For TAU, depending on
the collection mode, these can be set either by using envi-
ronment variables or by using a TAU-specific command-line
utility. In the latter case, the experiment driver retrieves
the command line from the collector component (which is
tool-specific), and similarly, the collector retrieves the set
of events to monitor using the MeasurementEnvironment
port, which is provided by platform-specific components, for
example, XeonMeasurementEnv. Additional platforms and
tools can be supported by implementing a component for
the respective system or tool, e.g., BGPMeasurementEnv to
support measurements on a Blue Gene/P. Invoking the go
method of the driver’s GoPort manages the experiment pro-
cess by configuring the environment, running the application
with the specified parameters, and controlling the location
where platform and tool-specific performance data for the
given set of experimental parameters will be generated.

3.2 Importing Performance Data
Upon completion of an experiment, the performance data
and associated metadata are normally stored on the file sys-
tem in the format supported by the tool that was used to
collect it during the experiment. In the importing phase,
the data collected in a staged area is optionally postpro-
cessed and eventually loaded into a remote database. At
the moment we rely on the TAU-provided capability to im-
port multiple file formats into PerfDMF [16] databases, so
the implementation of the import functionality simply wraps
the relevant TAU tool. In general, however, database com-
ponents can be implemented in a standalone fashion. The
existing CQoS infrastructure provides an implementation of
a database management component, which can be extended
to read different performance output formats as needed.

Because potentially large amounts of data are generated
by certain types of performance experiments, the process
of moving the data into the database can be overlapped
with the application’s execution. The data migration re-
quires access to remote databases and can thus run on the
login nodes, or when possible, on a separate set of com-
pute nodes. In large-scale parallel environments, the data
itself is staged within the parallel file system (e.g., PVFS),
enabling access by both login nodes and different sets of
compute nodes. Our design also enables potential overlap
of the analysis phase with the experiment phase, so in cases
where very large amounts of data are generated, an analy-
sis approach can be applied for reducing the volume of data
prior to importing it into a remote database.

The components handling this phase are illustrated in Fig. 4
and include a driver, a collector tool wrapper component, a
database management component, and a measurement en-
vironment component (which is the same as the one that
was used for running the experiment). The user can set
driver parameters such as the location of the experiment and
data directories and the names of the trials2 to load. The
PerfDMF database component, PerfDMFDB, uses the collec-
tor component, TAUCollector, to prepare the data for load-
ing. Such preparation can include converting the data to a
format that is supported by the database component. In the
database component, the user can set parameters such as the
name of the configuration and the name of the loader utility
in cases where an external, non component tool is exploited
to import the data into a database. Other implementations
of the database interface do not rely on external tool sup-
port for importing data into the database, for example the
database components available as part of CQoS infrastruc-
ture [6]. This design allows the easy addition of new compo-
nents to support multiple data formats, transfer protocols,
and database interfaces. Our initial implementations wrap
existing tools where available, for example, various PerfDMF
import utilities. Future development will incorporate more
possibilities, for example, using GridFTP [13] for more effi-
cient transfers of large data sets.

The actual post processing and subsequent data transfer are
initiated by executing the go method in the GoPort provided
by the driver. This establishes a connection to the database
by using a cqos.db.DB port, provided by a database-specific
component implementation, in this case, PerfDMFDB. The
database component uses the cqos.perf.DataCollector port,
which is implemented by a tool-specific component that en-
capsulates the tool-specific performance data format details.

2We use the PerfDMF definitions of application, experiment,
and trial.



Figure 4: Performance data postprocessing and database access components.

In this example, the TAUCollector component is used to
process data generated by the TAU suite of tools. The collec-
tor components acquire some platform-specific information
through the use of a cqos.perf.MeasurementEnvironment
port, which in this case is provided by the architecture-
specific XeonMeasurementEnv component, which was previ-
ously used for running the experiments.

3.3 Performance Data Analysis
After the performance data has been generated and incor-
porated into a remote database, users have several choices.
They can use performance tools such as PerfExplorer di-
rectly to study the data (if the database format is compat-
ible), or they can perform some common types of analysis
and simple visualization in a tool-independent manner using
the analysis portion of our component infrastructure.

In the analysis phase, the data that was loaded into a database
in a prior phase is retrieved and analyzed to extract infor-
mation useful to the user. Simple tool-independent visual-
ization capabilities are also available. Note that this step
need not be performed on the same platform where the ex-
periments ran. For example, if the goal of analysis is data
reduction (e.g., to avoid having to store prohibitively large
amounts of data), then it should be executed on the same
platform as the application, taking advantage of parallel re-
sources if available. In other cases analysis is done at a later
time, either on the machine where the database resides or
on the user’s laptop or desktop computer.

Similar to prior phases, the data analysis phase includes a
driver and several components to support different kinds of
data analysis (see the component wiring diagram in Fig. 5);
the environment can be easily extended to support addi-
tional analysis techniques. The analyses that our environ-
ment currently supports include computation of several per-
formance metrics derived from performance hardware events
and a simple component (based on PyLab [24]) for charting
the results over multiple trials or experiments. The param-
eters to be set include the trial or set of trials to analyze
and information for connecting to the database. Running
the driver will provide performance metrics for a given set
of trials that can optionally be charted by using the plotter
component.

The performance data is accessible by other tools as well,
since we are not reinventing performance database formats,
but rather are providing import capabilities for existing database
formats. For example, a TAUCollector component imports

data into a PerfDMF database, which can be analyzed by
TAU tools such as PerfExplorer, which provide their own
scripting and charting capabilities.

4. EXAMPLE USE CASES
We demonstrate the functionality and intended use of the
performance measurement component infrastructure by de-
scribing two use cases: a non component application from
the OpenMP NAS Parallel Benchmark Suite [20] and a com-
ponent implementation of a driven cavity flow simulation
based on PETSc [3]. The experiments are run on an Intel
Xeon workstation with dual quad-core E5462 Xeon proces-
sors (8 cores total) running at 2.8 GHz (1600 MHz FSB) with
32 KB L1 cache, 12 MB of L2 cache (6 MB shared per core
pair), and 16 GB of DDR2 FBDIMM RAM, running Linux
kernel version 2.6.25 (x86-64). We are also developing Blue
Gene/P implementations of the architecture-specific compo-
nents but do not yet have experimental results at this time.

4.1 Derived Performance Metrics
The performance metrics that we implement components for
in the analysis phase of the experiments include L2 band-
width, floating-point instructions per second (FLIPS), and
FLIPS inefficiency. In general, each metric is implemented
by creating a component that provides the CQoSMetric port.
In the examples below, we use notation based on the pre-
set PAPI hardware counter names to specify the derived
performance metric computed by each component. Table 1
contains a list of the performance metric parameters and a
brief description for each.

The L2 bandwidth is computed by

[(L2 MISS ∗ L2 CACHE LINE)/TOT CY C] ∗ MHZ, (1)

Floating-point instructions per second (FLIPS) is derived
by

FP INS/(TOT CY C/MHZ), (2)

The following metric identifies the regions of code that are
compute-bound and have a high level of both floating-point
instructions and stall cycles (FLIPS Inefficiency):

(FP INS/TOT INS) ∗ (RES STL/TOT CY C), (3)



Figure 5: Performance analysis components.

Table 1: Performance metric parameters.
Name Description

L2 MISS L2 cache misses
TOT CYC CPU cycles
FP INS Floating point instructions
TOT INS Total instructions
RES STL Stall cycles on any CPU resource
L2 CACHE LINE L2 cache line size
MHZ CPU clock speed

4.2 Non Component Use Case
To demonstrate the use of our performance experiment frame-
work for non-component applications, we chose the Embar-
rassingly Parallel (EP) benchmark from the NAS Parallel
Benchmarks (NPB) [2]. The NPB benchmarks are a set
of programs based on computational fluid dynamics (CFD)
applications that measure the performance of parallel super-
computers. EP in particular estimates the upper achievable
limits for floating-point performance.

For the experiment set up and data collection phases, we
implemented the XeonMeasurementEnv and the PerfSuit-
eCollector components. PerfSuite is an open source soft-
ware package for application performance analysis that in-
terfaces to the user through command-line tools that can
be used with unmodified applications or through a com-
pact API that allows more flexibility in selective monitoring
of portions of an application [23]. The ExperimentDriver
component connects with XeonMeasurementEnv and Perf-
SuiteCollector to generate the performance data for the
experiment. We wrote a Ccaffiene [1] script to automate the
experiments to run EP using 1, 2, 4, and 8 threads.

When each trial completes running, the performance data
collected is prepared for storage and uploaded to a database
using our implementation of PerfDMFDB that uses the Perfor-
mance Data Management Framework (PerfDMF) database
interface [17]. The DataManagerDriver is connected to
PerfDMFDB, which connects to PerfSuiteCollector. A con-
nection to PerfSuiteCollector is needed to retrieve the
tool-specific data format type. The data format must be
supported by the database component in order to be suc-
cessfully loaded to the database.

For the analysis portion, we developed a set of components

to support automatic generation of the performance met-
rics from Section 4.1. To support simple visualization, we
implemented a Plotter component that retrieves data for
a set of trials from the database to compute and plot the
performance metrics. The performance data is retrieved
and the performance metrics are computed by using PerfEx-
plorer [18]. PerfExplorer provides support for parallel per-
formance data mining and knowledge discovery. Our frame-
work generates a PerfExplorer Python script that retrieves a
set of trials from the PerfDMF database, computes the per-
formance metrics, and generates the performance plots for
each metric across trials. The Plotter component that we
implement is based on PyLab [24], which includes 2-D plot-
ting capabilities. The PyLab-based plots generated from our
experiments are shown in Figure 6 and includes wall-clock
time (Fig. 6(a)), memory bandwidth computed by Eq. 1
(Fig. 6(b)), MFLIPS computed by Eq. 2 (Fig. 6(c)), and
FLIPS inefficiency computed by Eq. 3 (Fig. 6(d)).

4.3 Component Use Case
To illustrate the use of the performance experiment frame-
work for component-based applications, we chose a driven
cavity flow simulation, which combines lid-driven flow and
buoyancy-driven flow in a two-dimensional rectangular cav-
ity. The lid moves with a steady and spatially uniform ve-
locity and thus sets a principal vortex and subsidiary cor-
ner vortices. The differentially heated lateral walls of the
cavity induce a buoyant vortex flow, opposing the princi-
pal lid-driven vortex. The implementation uses a velocity-
vorticity formulation of the Navier-Stokes and energy equa-
tions, which is discretized by using a standard finite-difference
scheme with a five-point stencil for each component on a
uniform Cartesian mesh; see [8] for a detailed problem de-
scription. The component implementation is based on the
TOPS [9] solver interfaces and their PETSc-based imple-
mentations, which are included in the PETSc software dis-
tribution.

The main difference between the procedure for running per-
formance experiments of component applications as opposed
to supporting non component ones is the use of a different
driver component in the first phase, in this case the CCA-
ExperimentDriver component. Instead of specifying con-
figuration parameters for the application’s executable and
its command line, the CCAExperimentDriver simply uses a
standard gov.cca.ports.GoPort, which is the main entry
point to CCA applications. By connecting to the applica-



(a) Wall-clock time vs. number of threads. (b) Memory bandwidth per thread vs. number of threads.

(c) MFLIPS per thread vs. number of threads. (d) FLIPS inefficiency per thread vs. number of threads.

Figure 6: Example metric plots generated with the PyLab-based Plotter component for the EP benchmark.



(a) Wall-clock time vs. number of processes. (b) Memory bandwidth vs. number of processes.

(c) MFLIPS vs. number of processes. (d) FLIPS inefficiency vs. number of processes.

Figure 7: Example metric plots generated with the PyLab-based Plotter component for the component driven
cavity application.



tion’s GoPort, the CCAExperimentDriver can start the ap-
plication’s execution after configuring the runtime environ-
ment. The application itself is configured exactly as it would
be for a normal run; that is, all instantiations of components,
port connections, and parameter configuration remain un-
changed. The only difference from normal production runs
is that the go method is not invoked directly on the appli-
cations own driver.

We used components based on TAU for the collection of
performance data and a PerfDMF database for storing it.
The tool-specific components involved were TAUCollector
and PerfDMFDB. We performed these experiments on a Xeon
workstation and thus used the XeonMeasurementEnv compo-
nent to configure the environment.

We used the same analysis components as we did for the
EP benchmark and plotted the results with the PyLab-
based Plotter component. The resulting plots are shown in
Fig. 7. which includes wall-clock time (Fig. 7(a)), cummula-
tive memory bandwidth computed by Eq. 1 (Fig. 7(b)), cum-
mulative FLIPS computed by Eq. 2 (Fig. 7(c)), and cum-
mulative FLIPS inefficiency computed by Eq. 3 (Fig. 7(d)).

While at this stage we are still actively developing the com-
ponents and running mainly small-scale experiments, the
infrastructure as a whole is intended to be lightweight and
scalable. Our goal is to avoid imposing any limitations on
the scalability of an application.

5. CONCLUSION
We have described the design and initial implementation of
a set of components for managing the performance exper-
iments of HPC applications. This infrastructure leverages
many existing tools, making them accessible through sim-
plified, uniform interfaces and filling gaps in tool support
for some of the phases involved in running performance ex-
periments on modern high-performance platforms.

The interfaces and component implementations are still evolv-
ing, and we expect to add significant new functionality in
the near future to provide access to different tools and en-
able use on multiple architectures of interest, including the
Blue Gene/P and other IBM architectures and Linux clus-
ters with Intel and AMD processors. We will also expand
our collection of CQoS metrics components, so that other
developers can use them directly or as examples for writing
their own.

Acknowledgements

This work was supported by the Office of Advanced Scientific
Computing Research, Office of Science, U.S. Department of
Energy, under Contract DE-AC02-06CH11357.

6. REFERENCES
[1] B. Allan, R. Armstrong, S. Lefantzi, J. Ray, E. Walsh,

and P. Wolfe. Ccaffeine – a CCA component
framework for parallel computing.
http://www.cca-forum.org/ccafe/, 2005.

[2] D. H. Bailey, E. Barszcz, J. T. Barton, D. S.
Browning, R. L. Carter, D. Dagum, R. A. Fatoohi,
P. O. Frederickson, T. A. Lasinski, R. S. Schreiber,

H. D. Simon, V. Venkatakrishnan, and S. K.
Weeratunga. The NAS Parallel Benchmarks. The
International Journal of Supercomputer Applications,
5(3):63–73, Fall 1991.

[3] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp,
D. Kaushik, M. G. Knepley, L. C. McInnes, B. F.
Smith, and H. Zhang. PETSc users manual. Technical
Report ANL-95/11 - Revision 3.0.0, Argonne National
Laboratory, 2008.

[4] S. Balsamo, A. D. Marco, P. Inverardi, and
M. Simeoni. Model-based performance prediction in
software development: A survey. IEEE Transactions
on Software Engineering, 30(5):295–310, 2004.

[5] S. Browne, J. Dongarra, N. Garner, G. Ho, and
P. Mucci. A portable programming interface for
performance evaluation on modern processors. Int. J.
High Perform. Comput. Appl., 14(3):189–204, 2000.

[6] V. Bui, B. Norris, K. Huck, L. C. McInnes, L. Li,
O. Hernandez, and B. Chapman. A component
infrastructure for performance and power modeling of
parallel scientific applications. In Proceedings of
Component-Based High Performance Computing
Workshop, October 14-17, 2008, Karlsruhe, Germany.
ACM, 2008.

[7] Common Component Architecture (CCA) Forum.
http://www.cca-forum.org/.

[8] T. S. Coffey, C. T. Kelley, and D. E. Keyes.
Pseudo-transient continuation and
differential-algebraic equations. SIAM J. Sci.
Comput., 25(2):553–569, 2003.

[9] D. Keyes (PI). Terascale Optimal PDE Simulations
(TOPS) Center. http://tops-scidac.org/, 2006.

[10] L. DeRose and F. Wolf. CATCH: A call-graph based
automatic tool for capture of hardware performance
metrics for MPI and OpenMP applications. In
Euro-Par ’02: Proceedings of the 8th International
Euro-Par Conference on Parallel Processing, pages
167–176, London, UK, 2002. Springer-Verlag.

[11] M. Geimer, F. Wolf, B. J. N. Wylie, and B. Mohr.
Scalable parallel trace-based performance analysis. In
Proceedings of the 13th European PVM/MPI Users’
Group Meeting on Recent Advances in Parallel Virtual
Machine and Message Passing Interface (2006), pages
303–312, Bonn, Germany, 2006.

[12] S. L. Graham, P. B. Kessler, and M. K. McKusick.
gprof: A call graph execution profiler. In SIGPLAN
Symposium on Compiler Construction, pages 120–126,
1982.

[13] GridFTP Web Page. http://www.globus.org/grid_
software/data/gridftp.php.

[14] HPCToolkit Web Page. http://hpctoolkit.org/.
[15] C. Hrischuk, J. Rolia, and C. Woodside. Automatic

generation of a software performance model using an
object-oriented prototype. In Modeling, Analysis, and
Simulation of Computer and Telecommunication
Systems, 1995. MASCOTS ’95., Proceedings of the
Third International Workshop on, pages 399–409, Jan
1995.

[16] K. Huck, A. Malony, R. Bell, L. Li, and A. Morris.
PerfDMF: Design and implementation of a parallel
performance data management framework. In In
Proceedings of the International Conference on



Parallel Processing (ICPP 2005). IEEE Computer
Society, 2005.

[17] K. Huck, A. Malony, R. Bell, and A. Morris. Design
and implementation of a parallel performance data
management framework. In Proceedings of the
International Conference on Parallel Computing, 2005
(ICPP2005), pages 473–482, 2005.

[18] K. A. Huck and A. D. Malony. PerfExplorer: A
performance data mining framework for large-scale
parallel computing. In Conference on High
Performance Networking and Computing (SC’05),
Washington, DC, 2005. IEEE Computer Society.

[19] K. S. Jasmine and R. Vasantha. An automated
environment for design based performance prediction
of component based software products. International
Journal of Computer Science and Network Security,
8(8):116–120, 2008.

[20] H. Jin, H. Jin, M. Frumkin, M. Frumkin, J. Yan, and
J. Yan. The OpenMP implementation of NAS Parallel
Benchmarks and its performance. Technical report,
1999.

[21] L. C. McInnes, J. Ray, R. Armstrong, T. L. Dahlgren,
A. Malony, B. Norris, S. Shende, J. P. Kenny, and
J. Steensland. Computational quality of service for
scientific CCA applications: Composition,
substitution, and reconfiguration. Technical Report
ANL/MCS-P1326-0206, Argonne National
Laboratory, Feb 2006.

[22] B. Norris, J. Ray, R. Armstrong, L. C. McInnes, D. E.
Bernholdt, W. R. Elwasif, A. D. Malony, and
S. Shende. Computational quality of service for
scientific components. In In Proceedings of the Int.
Symp. on Component-Based Software Engineering,
Edinburgh, Scotland, 2004.

[23] PerfSuite. http://perfsuite.ncsa.uiuc.edu/.
[24] PyLab Web Page. http://www.pmodels.org/.
[25] J. Ray, N. Trebon, R. C. Armstrong, S. Shende, and

A. Malony. Performance measurement and modeling
of component applications in a high performance
computing environment: A case study. Parallel and
Distributed Processing Symposium, International,
1:95b, 2004.

[26] S. Shende and A. D. Malony. The TAU parallel
performance system. International Journal of High
Performance Computing Applications, 20(2):287–331,
2006.

[27] C. Szyperski. Component Software: Beyond
Object-Oriented Programming. ACM Press, New York,
1999.

[28] C. Tapus, I.-H. Chung, and J. K. Hollingsworth.
Active Harmony: Towards automated performance
tuning. In Supercomputing ’02: Proceedings of the
2002 ACM/IEEE Conference on Supercomputing,
pages 1–11, Los Alamitos, CA, 2002. IEEE Computer
Society Press.

[29] F. Wolf and B. Mohr. Automatic performance analysis
of hybrid mpi/openmp applications. Journal of
Systems Architecture: The EUROMICRO Journal,
49(10-11):421–439, 2003.

[30] M. Woodside, C. Hrischuk, B. Selic, and S. Bayarov.
Automated performance modeling of software
generated by a design environment. Performance

Evaluation, 45(2-3):107–123, 2001.
[31] X. Wu, V. Taylor, J. Geisler, X. Li, Z. Lan,

R. Stevens, M. Hereld, and I. R. Judson. Design and
development of the prophesy performance database for
distributed scientific applications. In Proc. the 10th
SIAM Conference on Parallel Processing for Scientific
Computing, Virginia, March 2001.

[32] X. Wu, V. Taylor, C. Lively, and S. Sharkawi.
Performance analysis and optimization of parallel
scientific applications on CMP cluster systems.
Scalable Computing: Practice and Experience,
10(1):188–195, 2009.



The submitted manuscript has been created by
UChicago Argonne, LLC, Operator of Argonne
National Laboratory (“Argonne”). Argonne, a
U.S. Department of Energy Office of Science labo-
ratory, is operated under Contract No. DE-AC02-
06CH11357. The U.S. Government retains for it-
self, and others acting on its behalf, a paid-up,
nonexclusive, irrevocable worldwide license in said
article to reproduce, prepare derivative works, dis-
tribute copies to the public, and perform publicly
and display publicly, by or on behalf of the Gov-
ernment.


