
Fast Power Flow Analysis using a Hybrid
Current-Power Balance Formulation in Rectangular

Coordinates
Shrirang Abhyankar

Mathematics and Computer Science Division
Argonne National Laboratory

Argonne, IL
Email: abhyshr@mcs.anl.gov

Qiushi Cui
Department of Electrical and

Computer Engineering
McGill University

Montreal, QC
Email: qiushi.cui@mail.mcgill.ca

Alexander J. Flueck
Department of Electrical and

Computer Engineering
Illinois Institute of Technology

Chicago, IL
Email: flueck@iit.edu

Abstract—Power flow is the backbone of steady-state analysis
of power systems. Various steady-state applications such as
contingency analysis, transfer limit calculations, and initialization
of transient stability simulation, etc., hinge on the solution of
power flow analysis. Hence, any performance improvement in
power flow will improve various steady-state applications. In
this paper we present a fast power flow analysis using a hybrid
current-power balance formulation with the variables expressed
in rectangular form. The computational efficiency and robustness
of the proposed algorithm is presented for several test systems
ranging from 100 to 3000 buses.

Index Terms—Power Flow, Load Flow, Current Balance, Power
Balance

ACRONYMS

PB Power Balance Form
HCPB Proposed Hybrid Current-Power Balance Form

I. INTRODUCTION

Power flow analysis, sometimes referred to as load flow
analysis, is the linchpin of steady-state power systems analysis.
Several power system applications ranging from planning to
operation, and from economic scheduling to exchange of
power between utilities, require the solution of power flow
equations. Moreover, power flow analysis serves as a starting
step for transient stability by providing an initial operating
point. The power flow problem entails calculating complex
bus voltages and line flows in a large sparse electrical network,
for a given load and generation schedule. Mathematically, the
problem is formulated as a set of nonlinear equations and
solved by using an iterative scheme such as Newton’s method.

Power flow formulation first appeared in the late 1960s
[12]. In the early 1970s, a fast decoupled technique was
introduced [10] based on the physical insight of weak cou-
pling between real power-voltage magnitude (PV) and reactive
power-voltage angles (Qθ). Since then several variations of
power flow formulations and techniques have been introduced
[2], [9], [8], [6]. Luo and Semylen [8] introduced active and
reactive powers as flow variables rather than complex currents,

thus simplifying the treatment of PV buses and reducing the
related computational effort to half. Exposito and Ramos [7]
presented a power flow solution using an augmented system
with rectangular coordinates. In this augmented system, the
bus current injections are introduced as additional variables.
A comparison of load flow with optimal multipliers with
rectangular and polar coordinates was given in [11]. DaCosta
and Rosa [5] compared the convergence of polar, rectangular
and current injection Newton-Raphson formulations on well-
behaved and ill-conditioned systems. They observed that for
the ill-conditioned test system the polar formulation may fail
to converge but the rectangular and current injection approach
converged for all tested cases.

This paper introduces a hybrid current-power balance for-
mulation where each PQ bus is described by nodal current
balance equations, while a real power balance equation and a
voltage magnitude constraint equation are given for each PV
bus. Moreover, we use rectangular coordinates (real, imagi-
nary) for the variables instead of polar (magnitude, angle).
This hybrid formulation results in an efficient evaluation of the
Jacobian matrix, one of the computational bottlenecks of the
power flow algorithm, and thereby provides significant time
saving as seen in Sections III and V.

II. POWER BALANCE FORMULATION IN POLAR
COORDINATES (PB)

The power balance formulation is the most widely used
formulation for power flow analysis. Most commercial pack-
ages use a power balance formulation for the solution of load
flow equations [11]. In the power balance form (PB), the set
of nonlinear equations to be solved is described by complex
power balances at each bus. In other words, the summation of
the power injected at each bus and absorbed by the network
must equate to zero. The resultant complex power balance
equation for each bus, or network node, is given by (1).

¯
Sinj
i = V̄i(

n∑
k=1

(Gik + jBik)V̄k)∗ (1)



In (1), ¯
Sinj
i denotes the complex power injection, that is,

¯
Sinj
i = ¯SGi − ¯SDi where ¯SGi is the complex power injected

by generators and ¯SDi is the complex power absorbed at bus
i. Decomposing (1) into real and imaginary parts, we get the
real and reactive power balance equations as follows:

P inj
i =

n∑
k=1

|Vi||Vk|(Gikcos(θik) +Biksin(θik)) (2)

Qinj
i =

n∑
k=1

|Vi||Vk|(Giksin(θik)−Bikcos(θik)), (3)

where θik = θi− θk. In the power balance form, the variables
are expressed in polar coordinates; that is, the variables are
the magnitudes and angles of the complex voltage V̄ at the
buses. This coordinate system is convenient for representating
the power balance equations as compared with expressing
the equations in rectangular coordinates. In the power bal-
ance form, PQ buses (constant load, uncontrolled voltage
magnitude) are given by Equations (2) and (3) while PV
buses (controlled voltage magnitude) are described only by
Equation 2. For PV buses (voltage-controlled buses), it is
assumed that generators incident on these buses can produce
adequate reactive power to regulate the terminal voltage and
hence (3) can be omitted. As a result of the assumption
of controlled-voltage magnitude for the PV buses, the total
number of equations to be solved in the power balance form
is 2npq+npv, where npq is the number of PQ buses and npv
is the number of PV buses.

One of the computational bottlenecks of the power balance
form is in the evaluation of the Jacobian matrix. From (2)
and (3) one can see that the real and reactive power balance
equations are nonlinear functions of voltage magnitudes and
angles of every bus k connected to bus i. This relation results
in nonlinear terms in the off-diagonal elements of the Jacobian,
along with the diagonal elements, as shown in the example
Jacobian structure in Fig. 1. Notice that the entire Jacobian
is nonlinear, and hence all the Jacobian elements need to be
updated during each Newton iteration.

III. PROPOSED HYBRID CURRENT-POWER BALANCE
FORMULATION USING RECTANGULAR COORDINATES

(HCPB)

Instead of the power balance form as given in (1), one
can use the current balance form, which is essentially the
Kirchoff’s current law at each bus. Dividing (1) by the
complex bus voltage and taking the conjugate, one obtains
the current balance equations.

(
¯

Sinj
i

V̄i
)∗ =

n∑
k=1

(Gik + jBik)V̄k (4)

By using rectangular coordinates, namely, Vi = ei + jfi,
(4) can be expressed in real and imaginary current balance
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Fig. 1. Jacobian matrix structure for the IEEE 14-bus system using PB
Formulation

equations as given in (5) and (6), respectively.

P inj
i ei +Qinj

i fi
|Vi|2

=

n∑
k=1

(Gikek −Bikfk) (5)

−Qinj
i ei + P inj

i fi
|Vi|2

=

n∑
k=1

(Bikek +Gikfk) (6)

Equations (5) and (6) can be used for PQ buses but not
for PV buses because the reactive power injection from the
generators is unknown. For a PV bus however, the real power
injection is known and hence a power balance form can be
used instead. Therefore, we use a real power balance equation
for PV buses with the variables expressed in rectangular form.
Modifying (2) by using rectangular coordinates instead of
polar, we get the following

P inj
i = ei

n∑
k=1

(Gikek−Bikfk) + fi

n∑
k=1

(Bikek +Gikfk) (7)

Along with the real power balance equation given in (7),
equation (8) enforces the fixed voltage magnitude constraint
for PV buses.

e2i + f2i = |V sp
i |

2 (8)

Thus, our proposed approach for power flow analysis con-
sists of the current balance equations (5), and (6) for PQ
buses and power balance equation (7) and voltage magnitude
constraint equation (8) for the PV buses, with the variables
expressed in rectangular form. Since two equations are needed
for each PV bus, 2n equations must be solved for the pro-
posed HCPB formulation. Although the size of the system
to be solved is greater than the power balance formulation,
the structure of the Jacobian, as explained in the following
paragraph, imparts the desired computational efficiency for
HCPB. Extended details on the proposed formulation can be
found in [4].



The proposed HCPB formulation results in the Jacobian
structure shown in Fig. 2. The Jacobian rows corresponding to
PQ bus equations (5) and (6) have constant off-diagonal terms.
Thus, there is a decrease in the computation of Jacobian terms
and this is especially attractive for load flow analysis of large
systems.
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Fig. 2. Jacobian matrix structure for the IEEE 14-bus system using proposed
HPCB formulation

IV. IMPLEMENTATION DETAILS

The code for the power balance and proposed HPCB
power flow simulators was written in C by using the high-
performance library PETSc [3]. A brief introduction to the
PETSc library for developing power system applications is
given in [1]. A Newton’s method with a full step line search
scheme was used as the nonlinear solver. The linearized
Newton equations at each Newton iteration are solved by using
LU factorization with a quotient minimum degree reordering
scheme to reduce the number of fill-ins in the factored
matrices. All the test cases were run on a quad-core 2.3 GHz
MacOS machine and compiled with a GNU compiler with -O3
optimization.

The variables and the equations can be ordered in several
ways. In this work, the variables for each bus are grouped.
Thus, for the PB formulation, the variables are ordered as
[θi, |Vi|], while for HPCB formulation the ordering is [ei, fi]
for each bus. This ordering leads to an adjacency matrix form
for the Jacobian with a 2X2 block structure, as shown in Figs.
1 and 2.

We note from the equations for the PQ buses in the HCPB
formulation and the ordering of the variables that the diagonal

terms in the Jacobian for buses with zero injection (no load
or generator incident) would be Gii. Since Gii << Bii, and
for some cases Gii ≡ 0, the Jacobian matrix factors can be
ill-conditioned when not pivoting because of the presence of
zeros on the diagonal. To avoid this ill-conditioning issue,
the imaginary current balance equations are ordered first,
followed by the real current balance equations for PQ buses in
our implementation. This reordering of equations means that
Bii, which is nonzero, would be on the diagonal and hence
would avoid having zeros on the diagonal for buses with zero
injection.

V. TEST RESULTS

In this section we compare the PB and proposed HCPB for-
mulations for several test cases. All the test cases are selected
from the MatPower [13] package distribution (version 4.1).
MatPower includes a variety of power flow test cases, with
the smallest being a 4-bus network and the largest consisting
of over 3000 buses. Since our goal is to test the efficiency and
robustness of the proposed solver for large power systems,
we select test cases with more than 100 buses. For all the
test cases, the reactive power limits on the generators are not
enforced. The inventory for the MatPower test cases used is
given in Table I.

TABLE I
INVENTORY FOR TEST CASES

MatPower casename Buses Gens Lines
case118 118 54 186
case300 300 69 211

case2383wp 2383 327 2896
case2736sp 2736 420 3504

case2737sop 2737 399 3506
case2746wp 2746 520 3514
case2746wop 2746 514 3514
case3012wp 3012 502 3572
case3120sp 3120 505 3693

The results are presented for the following two initial
guesses for the Newton method:

1) Precomputed initial start: This can be termed as a ”good
start” for the power flow since the initial guess, close to
the solution, causes rapid convergence of the Newton
method. The default initial guess in MatPower is a
precomputed initial guess which is available in its test
case data files. However, we note that such a ”good start”
may not be available in general.

2) Flat initial start: A typical starting method for the power
flow is a ”flat start”, namely, initial voltage magnitudes
set to 1.0 pu and initial angles set to 0.0. In our
implementation, a slightly modified flat start is used
where the PV bus initial voltage magnitudes are set to
their set point values and all the angles are set equal to
the angle of the reference bus.

Figures 3, 4, and 5 compare the PB and HCPB formulations,
with a precomputed initial start for the load flow, in terms of



(a) the power flow execution time ratio (t(PB)/t(HCPB))
(b) the ratio for time taken per iteration, and (c) the number
of iterations. The same comparison with a flat initial start for
the load flow is shown in Figures 7, 8, and 9. Note that the
execution times are measured for the Newton loop only and
do not include any preprocessing steps such as data input,
and admittance matrix assembly. The observations from these
results can be summarized as follows:

1) Precomputed initial start: The proposed hybrid current-
power balance formulation converges in almost the
same number of iterations as does the power balance
formulation. An aberration from this observation is seen
for the test case case3120sp, where PB converges in
6 iterations while HCPB takes 12. A further analysis
of the function residuals at each iteration showed that
the voltage magnitude constraint equation for PV bus
2797 causes a slowdown in convergence. This slow
convergence is due to the generator struggling to regulate
its terminal voltage during several iterations. This slow
convergence issue is also discussed in [11]. We plan to
investigate this convergence slowdown in the future. The
execution time for HCPB was lower than that of PB,
with speedups of almost 2.5X for several test cases. For
case3120sp the execution time with HCPB formulation
is less than PB, even though HCPB takes twice the
number of iterations, because the time per iteration for
HCPB is significantly less than the PB.

Fig. 3. Ratio of execution time, t(PB)/t(HCPB), with precomputed initial
start

2) Flat initial start: With a flat initial start the proposed
HCPB formulation shows convergence characteristics
and execution times similar to those seen with the
precomputed initial start. The number of iterations for all
the test cases was observed to be more for HCPB than
PB, as seen in Fig. 9. Yet, the execution time of PB is
greater because the average execution per iteration time
for HCPB is significantly less. A maximum speedup of
about 1.8X was measured for a couple of cases. We
note that the comparison of number of iterations and
execution times for case2737sop and case3012wp are

Fig. 4. Ratio of average execution time per iteration with precomputed initial
start

Fig. 5. Comparison of PB and HCPB iterations with precomputed initial
start

Fig. 6. Comparison of PB and HCPB relative Jacobian evaluation times as
a fraction of the total execution time with precomputed initial start

not included because PB did not converge for these
cases. On the other hand, the power flow converged with
HCPB formulation in 6 and 15 iterations, respectively,
for these cases.



Fig. 7. Ratio of execution time, t(PB)/t(HCPB), with flat initial start

Fig. 8. Ratio of average execution time per iteration with flat initial start

Fig. 9. Comparison of PB and HCPB iterations with flat initial start

VI. CONCLUSION

We have introduced a fast power flow analysis method
using a hybrid current-power balance formulation in rectan-
gular coordinates. The proposed formulation shows promising
results for several large power system cases with a speedup of
almost 2X as compared with the conventional power balance
formulation. In the future we intend to analyze the convergence

characteristics of this formulation for ill-conditioned systems
and for parameterized load variations.
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