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Abstract. This paper presents a review of the software cur-
rently used in climate modelling in general and in CMIP5 in
particular to couple the numerical codes representing the dif-
ferent components of the Earth System. The coupling tech-
nologies presented show common features, such as the abil-
ity to communicate and regrid data, and also offer different
functions and implementations. Design characteristics of the
different approaches are discussed as well as future chal-
lenges arising from the increasing complexity of scientific
problems and computing platforms.

1 Introduction

Model coupling is essential for realizing multi-physics sim-
ulations based on two or more computing applications. An
Earth System Model (ESM) is a quintessential example of
a coupled model, which involves several interacting compo-
nents simulating the atmosphere, oceans, land, and sea ice.
The software that links together these model components
is called a “coupler”. Although their implementations differ
vastly, couplers used in the geophysical community typically
carry out similar functions such as managing data transfer
between two or more components, interpolating the coupling
data between different grids, and coordinating the execution

of the constituent models. In general, coupling data must be
regridded and passed between the components subject to dif-
ferent constraints such as conservation of physical quanti-
ties, stability of the flux exchange numerics, consistency with
physical processes occurring near the component surface,
etc. In addition, computational efficiency of the coupling on
parallel hardware is of course required. This paper provides a
review and a short comparative analysis of the main coupling
technologies currently used in Earth System Modelling.

2 The Earth System Modelling Framework

The Earth System Modelling Framework (ESMF,
www.earthsystemmodeling.org) is open source software for
building modelling components and coupling them together
to form weather, climate, coastal, and other applications. It
is used and managed by a consortium of US agencies.
ESMF is comprised of a superstructure of coupling tools

and component wrappers with standard interfaces, and an
infrastructure of utilities for common functions, including
calendar management, message logging, grid transforma-
tions, and data communications (Hill et al., 2004). Infrastruc-
ture utilities, including a tool for generation of interpolation
weights, can be used independently from the superstructure.
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ESMF offers two kinds of component wrappers: a Grid-
ded Component which is associated with a physical domain,
and a Coupler Component for transforming and transferring
data between Gridded Components. ESMF components ex-
change information with other components through state ob-
jects, which contain representations of physical fields.
ESMF enables components to run sequentially, concur-

rently, or in mixed mode. Components can be nested. Appli-
cations usually run with all components linked into a single
executable program, but there is also support for running sep-
arate components as multiple executables or Web services.
ESMF can couple components written in Fortran or C, and it
includes a Python interface to regridding functions. Its com-
ponent wrappers may be layered on top of other coupling
technologies (e.g. MCT, FMS).
Generation of interpolation weights and their application

via sparse matrix multiplication are both implemented as par-
allel operations. ESMF supports first order conservative, bi-
linear, and a higher-order finite element-based patch recov-
ery method for remapping in 2-D and in some cases 3-D.
Logically rectangular and unstructured grids are both sup-
ported. There is a range of options with respect to masking
and handling of poles and unmapped points. The remapping
system is flexible and modular; the calculation of interpola-
tion weights can be performed either during a model run or
offline, and the application of weights can be made as a sep-
arate call.
For the most part, ESMF methods do not modify user

data numerically, and thus have no effect on the bit-for-bit
characteristics of the model code. However, in the case of
the sparse matrix multiplication used to apply interpolation
weights, user data is directly manipulated by ESMF. In or-
der to help users with the implementation of their bit-for-bit
requirements, while also considering the associated perfor-
mance impact, the ESMF sparse matrix implementation pro-
vides three levels of bit-for-bit support. The strictest level
ensures that the numerical results are bit-for-bit identical,
even when executing across different numbers of processors.
In the relaxed level, bit-for-bit reproducibility is guaranteed
when running across an unchanged number of processors,
while the lowest level makes no guarantees about bit-for-bit
reproducibility. The lowest level provides the greatest perfor-
mance potential for those cases where numerical round-off
differences are acceptable.
Metadata is an important aspect of model documentation

and interoperability. Methods of the ESMF Attribute class
can be used to store, aggregate and output model metadata.
Metadata is organised into packages, following community
conventions such as the Climate and Forecast conventions
(see cf-pcmdi.llnl.gov), ISO standards, and the METAFOR
Common Information Model (Lawrence et al., 2012). Meta-
data packages can also be customised.
In order to adopt ESMF, modelers arrange their code as a

set of Gridded Components and Coupler Components, and
then split these components into standard ESMF methods

(initialise, run, and finalise, each of which may have mul-
tiple phases). The next steps are to wrap native model data
structures with ESMF data structures, and then register com-
ponents with the framework. These wrapped components can
then be called by a driver, which can be user-customised, to
form a coupled application.
ESMF accommodates many implementation and sequenc-

ing options but using the component wrappers alone does
not guarantee that components will be interoperable. In or-
der to increase the level of interoperability among ESMF-
based systems, a collaboration led by US operational weather
centres has introduced conventions and generic templates for
drivers, components, mediators, and simple connectors. This
“NUOPC Layer” (National Unified Operational Prediction
Capability) is scheduled for public release in early 2013.
Timing results for a variety of codes show that the sparse

matrix multiply and basic component wrappers scale to tens
of thousands of processors. Grid remapping and parallel
communications are also fast and scalable. The framework
is very robust and is exhaustively tested nightly on 24+ plat-
forms using a suite of over 4000 tests and examples. Since it
is a large package that encompasses many functions and fea-
tures, users can expect a significant learning curve to master
the software.
ESMF tools were used in two CMIP5 models: NASA

GEOS-5 and CCSM4/CESM1. The GEOS-5 model uses
ESMF throughout and is structured as a deeply nested hi-
erarchy of ESMF components. In CCSM4/CESM1, higher
order interpolation weights generated by the ESMF offline
tool were used to significantly reduce interpolation noise
when mapping wind stress from atmosphere to ocean, rel-
ative to the bilinear method used previously. Newer versions
of CESM use weights generated by the ESMF tool exten-
sively for reasons of speed, accuracy, and ability to handle
many types of grids. ESMF component interfaces are now
supported in CESM as well. In all, ESMF is used for cou-
pling in about 12 different modelling systems, totaling about
85 different components (see www.earthsystemmodeling.
org/components/). ESMF regridding utilities are also being
used within data analysis and visualization packages such as
the NCAR Command Language (NCL) and the Ultrascale
Visualization – Climate Data Analysis Tools (UV-CDAT).
ESMF aims to address broader issues of interoperability

as well as the mechanics of coupling. Future plans include
extending ESMF functionality, addressing next generation
computing challenges, and integrating ESMF components
into science gateways that catalog and integrate diverse re-
sources.

3 The new CPL7 coupler designed for CCSM4 and
CESM1

The Community Climate System Model (CCSM) devel-
opment is based at the National Center for Atmospheric
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Research (NCAR) in Boulder, Colorado, USA. CCSM is a
state-of-the-art global climate model consisting of four fun-
damental physical components: an atmosphere model, an
ocean model, a land surface model, and a sea ice model. In
addition, a coupler (or driver) is used to exchange boundary
data between the components and to coordinate the time evo-
lution of the physical models. CCSM is used to understand
the Earth’s global climate system, to predict the effects of cli-
mate change, and to understand past climates. It is developed
as a high performance computing application but is used on
a wide variety of platforms. The Community Earth System
Model (CESM) is an extension of CCSM that includes an
additional land-ice component, a higher altitude atmosphere
model option, land and ocean biogeochemistry capabilities,
and an atmospheric chemistry model.
Prior to CCSM4, CCSM system components ran concur-

rently as separate executables on distinct hardware proces-
sors and a separate coupler mediated communication, per-
formed grid interpolation, and implicitly handled time inte-
gration. With the CCSM4 release in 2010, a completely new
approach to coupling climate components was taken within
CCSM (Craig et al., 2012). CCSM4 is a single executable
implementation that contains a top-level driver and compo-
nents coupled via standard init/run/finalise interfaces. Indi-
vidual components in CCSM4 can be laid out on processors
in relatively arbitrary ways such that components can be run
on identical or independent hardware processors. The top-
level driver that runs on all processors controls the processor
layout and time sequencing of the components. A separate
coupler component, which can run on a subset of all the pro-
cessors, still exists in the system to regrid and/or merge cou-
pling fields and carry out other coupler functions.
Components in CCSM4 are parallelised with MPI and

OpenMP. The CCSM4 driver/coupler uses Model Coupling
Toolkit (MCT, see Sect. 6) datatypes and methods exten-
sively. Mapping weights are generated offline to ensure qual-
ity and reproducibility. By default, the CESM coupling op-
erations produce roundoff level differences when processor
counts or decompositions are varied, but an optional switch
enforces bit-for-bit reproducibility when desired at some per-
formance cost. A new parallel I/O (PIO) library is being used
and offers improved I/O performance particularly in the area
of memory scaling.
The new implementation improves performance because

of greater flexibility in laying out components on hardware
processors compared to the prior concurrent-only CCSM3
system. CCSM4 can run on a single processor without MPI
but is also highly memory and performance scalable for runs
at high resolution. The scaling of the CCSM4 coupler has
been evaluated at different resolutions and on different hard-
ware platforms on up to 10 000 processors. FLOP intensive
kernels scale linearly across all processor counts, resolutions,
and machines. Memory intensive operations scale linearly at
lower processor counts, but the scaling flattens out at higher
processor counts as the number of gridcells per processor

decreases below a few hundred. Communication-dominated
kernels tend to scale sub-linearly at lower processor counts,
and scaling tends to drop off above about 1000 processors.
Scaling performance for communication dominated kernels
is highly dependent on the machine and resolution. Overall,
the improvements in the memory and performance scaling
capability of the CCSM4 coupler compared to CCSM3 are
significant.
The model is now being run at global resolutions of around

one tenth of a degree on tens of thousands of processors,
and several thousand years worth of CMIP5 simulations have
been carried out at varied resolutions and on many different
hardware platforms.

4 The GFDL Flexible Modelling System

Component-based design of model codes supposes defin-
ing standard component interfaces (SCI). The Flexible Mod-
elling System (FMS) coupler is a domain-specific SCI: it is
written quite narrowly to support ESMs and recognises only
a few components: an atmosphere, an ocean surface includ-
ing the sea ice, a land surface, and an ocean. Any other com-
ponent inherits a grid from these, e.g. atmospheric physics
and chemistry from the atmosphere; terrestrial biosphere,
river and land ice from the land surface; marine biogeochem-
istry from the ocean. In the FMS SCI, there are “slots” for
each of the specific components listed above. Components
must be “wrapped” in FMS-specific data structures and pro-
cedure calls.
The FMS coupler is designed to address the question of

how different components of the Earth System are discre-
tised, each one making independent discretisation choices
appropriate to its particular physics. In an atmospheric
model, vertical diffusion is generally treated implicitly and
stability is enhanced by computing the flux at the surface im-
plicitly along with the diffusive fluxes in the interior. Simul-
taneously, land or ocean surfaces with vanishingly small heat
capacity should be allowed. Therefore, the vertical diffusion
of temperature in a coupled atmosphere–land system may
lead to a tridiagonal matrix inversion which can be solved
relatively efficiently using an up–down sweep, with the par-
ticularity that some of the layers are in the atmosphere and
others are in the land. Moreover, if the components are on
independent grids, the key flux computation at the surface is
a physical process that must be modelled on the finest pos-
sible grid. Thus, the “exchange grid” (Balaji et al., 2006) on
which this computation is performed in FMS emerges as an
independent component for modelling the surface boundary
layer.
A grid is defined as a set of cells created by edges joining

pairs of vertices defined in a discretisation. Given two grids,
an exchange grid is the set of cells defined by the union of all
the vertices of the two parent grids. Quantities being trans-
ferred from one parent grid to the other are first interpolated
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onto the exchange grid and then averaged onto the receiving
grid. The general procedure for solving the vertical diffusion
is thus split into separate up and down steps. Vertically dif-
fused quantities are partially solved in the atmosphere and
then handed off to the exchange grid, where fluxes are com-
puted. The land or ocean surface models recover the values
from the exchange grid and continue the diffusion calcula-
tion and return values to the exchange grid. The computation
is then completed in the up-sweep of the atmosphere. This
features is key in the design of the FMS coupler.
The FMS coupled modelling system also includes a paral-

lel ensemble adjustment Kalman filter for data assimilation
(Zhang et al., 2005) in which ensemble members are treated
as concurrent components.
Since coupling involves parallel floating-point (FP) calcu-

lations, one key concern is that of reproducibility across dif-
ferent parallel decompositions, since FP parallel arithmetic
operations can sometimes be non-associative. Ensuring bit-
wise reproducibility across the FMS coupler involves a cost
which can be as high as 10% on some systems. Users have
the option of requiring reproducibility but this feature can
be turned off if the entire run will be done without changing
parallel decomposition.
The FMS coupler has been shown to scale up to O(10 000)

processors with fast surface processes coupling every atmo-
spheric time step (typically ⇠ 15min) and slow processes
coupling every ocean time step (typically 1 h). FMS has
been active for over a decade. Its feature list and its perfor-
mance still remain state-of-the-art. The versatility of FMS is
seen in GFDL’s approach to CMIP5. GFDL has submitted
four streams of modelling results to CMIP5: these are the
CM3 model (Donner et al., 2011), which includes interactive
aerosol chemistry for control, historical and projection runs;
two Earth System Models ESM2M and ESM2G for the car-
bon cycle runs (Dunne et al, 2012); high-resolution “time-
slice” experiments using the HiRAM-C180 and HiRAM-
C360 models (Zhao and Held, 2012); and near-term pre-
diction experiments using a sophisticated ensemble coupled
data assimilation (ECDA) system (Zhang et al., 2007) and
the CM2.1 model. All of the models are built using different
combinations of choices of atmospheric dynamical cores, at-
mospheric physics packages, ocean models and the ECDA
system, all of which are available as FMS components.

5 The OASIS3 coupler

The development of the OASIS coupler started in 1991 at
CERFACS. The first design focussed on flexibility (easy
change of coupling parameters) and low intrusiveness (com-
ponents remain almost unchanged with respect to their stan-
dalone mode). The OASIS3 coupler (Valcke, 2006, 2012)
is the direct evolution of these first developments. Since
2007, OASIS3 is developed and supported thanks to an active

collaboration between CERFACS and the French Centre Na-
tional de la Recherche Scientifique (CNRS).
OASIS3 is written in Fortran and C. In a coupled system

assembled with OASIS3, the coupler itself forms a separate
executable that performs the regridding tasks. The compo-
nent models remain separate executables with main charac-
teristics, such as internal parallelisation or I/O, untouched
with respect to their uncoupled mode. To interact with the
other components through the coupler, the component mod-
els need to link to the OASIS3 coupling interface library.
The coupling interface library API includes calls to receive
and send the coupling fields usually implemented within the
model time step loop. The characteristics of the coupling ex-
changes, e.g. the corresponding target or source component
of an exchange or the coupling frequency, are not explicitly
defined in the model code but in an external configuration
file written by the user. At run-time the coupling library and
the coupler perform coupling exchanges according to the in-
formation contained in this file. For regridding, OASIS3 in-
cludes the SCRIP library (Jones, 1999), adding a few spe-
cific options (such as the possibility to assign the value of the
nearest non-masked source neighbour to target grid points
for which the original SCRIP algorithm would not assign any
value at all).
For each coupling field exchange, the different parts of a

coupling field sent by the source model processes are gath-
ered by one coupler process which regrids the whole cou-
pling field and distributes it to the target model processes.
OASIS3 can therefore be parallelised on a field-per-field ba-
sis in the sense that each coupler process can treat a subset of
coupling fields. But even in this case, reproducibility with re-
spect to parallelism is not an issue as all transformations are
done, for each particular coupling field, on only one coupler
process.
OASIS3 success up to now can be explained by its great

flexibility and its low intrusiveness in the component codes.
OASIS3 is used today by about 35 different climate mod-
elling groups in Europe, Australia, Asia and North Amer-
ica. A detailed list of users can be found in Valcke (2012).
In particular, OASIS3 is the coupling software used in 5 of
the 7 European ESMs participating to CMIP5, i.e. CNRM-
CM5 (Voldoire et al., 2011), IPSL-CM5 (Dufresne et al.,
2012), CMCC-ESM (Vichi et al., 2011; Scoccimarro et al.,
2011), EC-Earth (Hazelger et al., 2011), and MPI-ESM from
the Max Planck Institute. OASIS3 is also used successfully
in a few relatively high-resolution (⇠ 2/3�) configurations
but its limited parallelism will eventually become a bottle-
neck in the coupled simulation. Within the framework of
the current EU FP7 IS-ENES (see is.enes.org) project, work
continues to parallelise and extend the existing functionality
and to establish comprehensive services around OASIS3 (see
oasis.enes.org).
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6 The Model Coupling Toolkit

The Model Coupling Toolkit, MCT (Larson et al., 2005; Ja-
cob et al., 2005), embodies an application-neutral approach
for creating coupled multi-physics models. Thus, MCT can
be used in diverse scientific fields. Because MCT imposes
no architecture on the application, the developer can freely
choose the number of executables and model process com-
position. An API also allows the developer to choose such
elements as coupling data description, parallel coupling field
exchanges, and support for parallel data transformation and
interpolation. The MCT design philosophy is that flexibil-
ity and minimal invasiveness are vital to the development of
long-life-cycle coupled models.
MCT provides a Fortran-based object model for coupling

construction and bindings for C++ and Python have been
developed. An MCT datatype describes the coupled system
processor layout. MCT stores coupling field data in an object
that supports arbitrary numbers of real- and integer-valued
fields, indexed using string tokens. A domain decomposition
descriptor (DDD) object uses a 1-D global index space (i.e.
a linearization) to represent multidimensional index spaces.
Parallel communication schedules are computed automati-
cally from source and destination DDDs. Parallel data trans-
fer is accomplished by calling paired send/receive methods
with data storage and communication schedule datatypes as
inputs. MCT provides distributed storage for precomputed
interpolation coefficients from which it derives communica-
tion schedules for parallel interpolation. This operation can
optionally be constrained to give identical results on differ-
ent numbers of processes. MCT assumes MPI-based paral-
lelism but includes a small MPI-replacement library for non-
parallel applications.
MCT is highly portable and uses a GNU autoconf-based

build system. MCT programming model derives from For-
tran 90: module use to access MCT classes and methods,
declaration of variables of MCT datatypes, and invocation
of MCT methods to perform coupling operations. To use
MCT, the developer locates logical interaction points in the
subsystem models, adds code to declare and initialise MCT
datatypes for coupling, and inserts handshaking calls be-
tween model pairs to initialise communication schedules.
Within the model run method, the user inserts calls to load
the coupling data into MCT datatypes and calls MCT paral-
lel communication and interpolation methods.
The biggest challenge in using MCT is defining lineari-

sations of mesh and index spaces. Most new MCT users,
however, quickly build their own parallel coupled models
after experimenting with the examples provided. Ease of
use is is the primary benefit of MCT. Its limitations are
lack of support for computation of interpolation weights and
for MPI communicator construction. MCT has been the ba-
sis of all CCSM couplers since 2004, supporting thousands
of model-years of coupled climate simulation. In particu-
lar, the MCT-based coupler, CPL7, is being used for all of

the CMIP5 integrations being performed using CCSM4 and
CESM1 (see Sect. 3). MCT has also been used to form other
coupled systems; a list is available on the MCT website
(www.mcs.anl.gov/research/projects/mct/).
Exascale platforms will require refactoring key MCT por-

tions. Paucity of per-core memory at exascale requires re-
examination of field data copying and DDD replication.
Employing compatible mesh representation software in all
components could eliminate field data copying. Employing
space-filling curves as compact virtual linearisations could
minimise DDD replication costs. Tolerating hardware faults
and dynamic load balance means the MCT assumption of a
static processor pool must be revisited. Work is under way to
implement coupling in the presence of dynamically-varying
processor pools. Currently, MCT supports applications on
hundreds of thousands of processors and is well positioned
for future coupled model challenges.

7 The Bespoke Framework Generator

The Bespoke Framework Generator (Ford et al., 2006; Arm-
strong et al., 2009) (BFG, www.cs.manchester.ac.uk/cnc/
projects/bfg) owes its development to an analysis of the
Met Office future coupling requirements, the requirements
of the GENIE paleoclimate coupled model (Armstrong et al.,
2009, www.genie.ac.uk) and Community Integrated Assess-
ment System (CIAS, www.tyndall.ac.uk/research/cias, War-
ren et al., 2008). BFG allows the user to choose the underly-
ing coupling technology, taking coupling metadata as input
and generating tailored (bespoke) wrapper code to be com-
piled and linked with the user’s code and the chosen coupling
library. Separating the coupler from the science code offers
an additional layer of flexibility which can improve porta-
bility, performance and maintainability, thus future-proofing
the code. BFG treats transformations (such as grid transfor-
mations) in the same way as model code. Intrinsic transfor-
mations (such as those in OASIS3) can also be supported.
Reproducibility is an issue for coupling systems and, as BFG
targets existing coupling techologies, BFG relies on the sup-
port for reproducibility that they provide; the wrapper code
produced by BFG does not itself cause any reproducibility
issues. BFG has been designed to be generic and extensible;
thus, BFG may be used in application domains other than
ESM (Warren et al., 2008; Delgado-Buscalioni et al., 2005).
BFG2, the current implementation, can be run directly

from the BFG portal (see bfg.cs.man.ac.uk). The BFG2
model API supports models written in Fortran as a mod-
ule containing subroutines or a set of subroutines, C as
a set of procedures and Python as a class with a set of
methods. The coupled model behaviour is specified as com-
position and deployment metadata in XML. At the lan-
guage level, BFG2 supports passing data to and from sub-
routines/procedures/methods via arguments and/or in-place
put/get calls. The former approach is similar to that used by
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ESMF, CPL7 and FMS (see Sects. 2, 3 and 4) and the lat-
ter to MPI, CCSM3 and OASIS3 (see Sects. 3 and 5). Since
models are not main programs, BFG2 is able to map models
for deployment either as a single executable or as multiple
executables, each containing one or more models. Coupling
connections can, on first use, be initialised in a variety of
ways, including from a model or a file. Coupling technolo-
gies currently supported to exchange data between models
include argument passing, MPI or OASIS. The OASIS BFG
implementation supports the specification of grids using an
XML representation of the Gridspec (Balaji et al., 2006) as
well as the use of intrinsic OASIS transformations. The work
was carried out on a development version of the now with-
drawn OASIS4 (Redler et al., 2010) and efforts are ongoing
to extend BFG to support the most recent version of OASIS,
OASIS3-MCT (Valcke, 2012).
BFG2 requires model (science) code to conform to some

simple coding rules and to be described by definition meta-
data. Composition metadata specifies how the models (and
transformations) are connected together and deployment
metadata specifies how to map the models onto the available
hardware and software resources. BFG2 takes the metadata
as input and generates bespoke control and communication
code using a Python program.
In conclusion, BFG isolates science code from the cou-

pling infrastructure and provides a metadata-driven code
generation system to provide flexibility in model composi-
tion and deployment. This flexibility allows BFG to achieve
similar performance to hand-written code and provides the
opportunity for finer-grained coupling than is typical today.
BFG is currently used within CIAS, where it is used to cou-
ple over 20 different Integrated Assessment model configura-
tions. BFG is not used in any CMIP5 runs but offers a poten-
tial solution for the coupling of future Earth System Models.
Some limitations of BFG2 are, in particular, that wrapper

code must be regenerated whenever the metadata changes
and that data partition metadata for use with parallel models
is not yet supported (but will be added soon, using MCT for
MPI implementations). BFG2 is being extended to support
models written in a less modular way – in particular, model
codes which are main programs, codes with internal control,
and models where the source code is not available. In the fu-
ture, BFG2 will be extended to support ESMF and CPL7 as
coupler targets. In addition, the feasibility of using BFG2 to
couple together models that conform to different frameworks
by generating appropriate adaptor code will be investigated.

8 Conclusions

This paper provides an overview of the current coupling tech-
nologies used in Earth System Modelling. Since no quanti-
tative information was collected, conclusions are limited to
the likely outcomes of the different design strategies. While
the details of the approaches vary, features of the different

coupling technologies typically include an ability to commu-
nicate data between components, regrid data, and manage the
time evolution of the model integration.
Coupling using a concurrent multiple executable approach

(e.g. OASIS3) requires minimal modification to existing
component codes but limits the ways they can be mapped
to hardware, which can hinder performance. Coupling via
component-level interfaces within one integrated application
(e.g. ESMF, CPL7 or FMS) generally requires users to split
components into initialise, run, and finalise methods, and
may limit the places where data exchanges can happen. Al-
though this can simplify program flow, it can also affect time
sequencing and require scientific reformulation; however, be-
cause components can be run sequentially or concurrently,
there are additional opportunities for performance optimisa-
tion. This “integrated” approach also enables components to
be nested, with multiple coupling levels. Coupling toolkits
(e.g. MCT) are designed for a la carte use of classes and
methods. They allow great flexibility for building custom
parallel coupling mechanisms, with either single or multiple
executable approaches. Subsets of other coupling technolo-
gies (e.g. ESMF utilities) can also be used separately to solve
some coupling problems. Research in generative program-
ming (e.g. BFG) explores potential ways to unify the differ-
ent coupling approaches. In the end, science needs both flex-
ible coupling capabilities and high performance. Both have
become crucial in the last few years as coupling complex-
ity and resolution have rapidly increased and these trends are
expected to continue in the future. Qualitative comparison
of the performances of the different approaches is an under-
researched problem and there are plans in the IS-ENES2 EU
project, which is a follow-on of the IS-ENES project funded
over the 2013–2017 period, to develop a benchmark suite to
address this issue.
Continual improvement in coupled climate model perfor-

mance may become more difficult. Most of the gains in the
last decade came from faster hardware on a per-processor ba-
sis and improvements in grid decompositions, memory par-
allelisation, and communication algorithms. Unfortunately,
future generation hardware is likely to consist of orders of
magnitude more processors that are slower, heterogeneous,
and with less and slower memory. Moving into the exascale
era will require, for coupling technology as for other soft-
ware, both finding additional opportunities for parallelism
and improving communication mechanisms to better overlap
communication with computation.
Over much of the past two decades, several groups have

worked relatively independently to develop Earth System
coupling technology. In many aspects, those implementa-
tions have converged as individuals gain experience and as
common science and high performance requirements drive
implementations. At the same time, different scientific com-
munities continue to benefit from fundamentally different
solutions. Moving forward, the community recognises the
potential benefit of much closer collaboration especially
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considering the uncertainty of future hardware. In addition,
there is recognition that if future hardware requires signifi-
cant rewrites of Earth System Models in new programming
languages, an opportunity might present itself to unify cou-
pling approaches and share developmental costs.
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