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Abstract. Code optimization in the high-performance computing realm
has traditionally focused on reducing execution time. The problem, in
mathematical terms, has been expressed as a single objective optimiza-
tion problem. The expected concerns of next-generation systems, how-
ever, demand a more detailed analysis of the interplay among execution
time and other metrics. Metrics such as power, performance, energy, and
resiliency may all be targeted together and traded against one another.
We present a multi objective formulation of the code optimization prob-
lem. Our proposed framework helps one explore potential tradeoffs
among multiple objectives and provides a significantly richer analysis
than can be achieved by treating additional metrics as hard constraints.
We empirically examine a variety of metrics, architectures, and code
optimization decisions and provide evidence that such tradeoffs exist in
practice.

1 Introduction

The race to exascale is rapidly changing supercomputer architecture designs.
Shrinking circuit sizes and a growing push toward heterogeneous architectures is
yielding systems with processors with many cores, sometimes differing vastly in
their capabilities. From a user’s standpoint, these changes fundamentally alter
the way one interacts with these systems. System resiliency, which traditionally
was “free,” will no longer be so. Lower voltage, a larger number of elements
within a node, and elements’ shrinking feature sizes are expected to decrease the
mean time between failures [1]. Adding extra logic into the hardware to address
the resiliency issue takes up valuable chip real estate; the burden of making sure
the application ran to a successful and correct completion may be shifted—at a
performance/energy price—to the software.

Another challenge the new architecture designs expose is the power wall
problem. As an example, [1] recommends the power wall for exascale systems be
20 MW, a limit that is already being flirted with by current-generation petaflop
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systems1. Hardware architects are consequently working closely with application
scientists to design systems that can deliver more FLOPs per Watt. Hardware-
based solutions alone cannot, however, address all the different stress scenarios
that software phases might put on hardware. Part of the solution has to come
from the software side as well; these solutions can be addressed by autotuning.
Autotuning is the systematic process of navigating the space defined by the soft-
ware and hardware parameters that impact a metric related to the performance
of the system. Next-generation autotuning strategies should efficiently identify
and obtain high-performance code optimizations that can help reduce the power
demands of key computational pieces of the scientific applications and carefully
orchestrate hardware-provided configuration options to reduce the power draw.
Exascale systems will also provide massive concurrency; billions of cores are
projected. Writing an application that can take advantage of the available com-
pute resources will provide substantial challenges to today’s high-performance
computing (HPC) application developers.

Traditionally, the autotuning problem has been expressed as a single-objective
(execution time) minimization problem (see, e.g., [3]). Given current and pro-
jected changes in architecture designs, however, this formulation of the problem
is insufficient for a wide variety of emerging autotuning problems. Execution
time will be one among several, possibly competing, system-related metrics such
as system resiliency and energy consumption that must be optimized. Ramping
up the speed of the processor to complete the application execution, for example,
can jeopardize system resiliency because the increase in chip temperature can
make it more vulnerable to failures. Similarly, launching an application to utilize
more cores than its computational phases need, or can exploit, wastes energy.
Therefore, a multi objective formulation of the autotuning problem is needed.

Multi objective optimization concerns the study of optimizing two or more
objectives simultaneously. Even if there is a unique optimal (software/hardware)
decision when any of the objectives is considered in isolation, there may be
an entire set of solutions when the objectives are considered collectively. This
set is referred to as a Pareto front (formally described in Section 3) and plays
an integral role in a wide variety of decision problems in HPC. Two examples
relevant to this paper are the following:

1. HPC administrators increasingly must balance financial costs associated with
energy consumption with the need for users to obtain results in a timely
manner. In some cases it may be possible to quantify a price on time and
thereby obtain a single, weighted objective comprising both energy and time
costs. However, such a priori weights are typically unknown, and minimizing
such a single objective does not provide information when these weights (or
the price of energy) change. A Pareto front in the time-energy space provides
optimal solutions for all possible weights/prices.

2. For hardware design and thermal considerations, power capping—where
one must perform a computation while satisfying a specified power limit/

1 For example, the Tianhe-2 computer requires 17.8 MW of power to achieve 33.8
LINPACK petaFLOP/s [2].
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budget—is increasingly done. Performance tuning in this context could min-
imize the single objective of run time subject to a constraint on power.
However, such a single-objective optimization will not identify the implica-
tions associated with that particular power limit. A one watt increase in
this limit could be deemed acceptable if it allowed for a 20% reduction in
time. Similarly, a decrease in the power limit could result in a negligible per-
formance loss, and thus placing less thermal stress on the hardware would
come at minimal cost. A Pareto front in time-power space provides valuable
information on the performance consequences of setting power limits.

Hence, multi objective optimization studies provide significantly richer insight
than do single-objective and constrained optimization approaches. The related
work summarized in Section 2 provides further examples where considering sev-
eral metrics simultaneously is of interest.

In Section 3, we present a mathematical formulation of the multi objective
performance tuning problem. In Section 4 we bridge the terminologies used by
the mathematical optimization and performance-tuning communities for the spe-
cific case of time, power, and energy metrics. We establish conditions when prob-
lems using these metrics benefit from a multi objective formulation and when
the number of objectives of interest can effectively be reduced. To illustrate the
relationship between tuning decisions and multiple, simultaneous objectives, we
consider a set of problems based on common HPC kernels. Section 5 presents
decision spaces consisting of different loop optimization techniques (e.g., loop
tiling, unrolling, scalar replacement, register tiling), clock frequencies, and par-
allelization (e.g., thread and node counts). We use these problems to conduct an
experimental study on multiple objectives on several novel architectures. To the
best of our knowledge, this is the first detailed work on empirical analysis of run
time, power, and energy tradeoffs on an Intel Xeon Phi coprocessor (Section 6.1),
an Intel Xeon E5530 (Section 6.2), and an IBM Blue Gene/Q (Section 6.3). Our
results show that tradeoffs exist in practice under a number of different settings.

Although current architectures expose only a limited set of energy and power-
related parameters (e.g., CPU clock frequency) to the software, we anticipate
that exascale architectures may admit a richer set of hardware parameters (e.g.,
power gating of different hardware components) that have power and energy
implications. Therefore, we believe that presenting a framework that shows how
tradeoffs can be explored is an important contribution to the HPC community.
Furthermore, the existence of these tradeoffs can motivate hardware designers to
expose a richer set of configuration knobs to future administrators and software
designers. This framework and our analysis are sufficiently general and can be
easily extended to incorporate new hardware- and software-based power and
energy configuration options as they become available.

2 Related Work

Several recent works have examined metrics based on performance and power/
energy models. An energy-aware compilation framework was developed in [4].
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The framework can estimate and optimize energy consumption of a given code
taking as input the architectural and technological parameters, energy models,
and energy/performance constraints. A performance-adaptive algorithm for opti-
cal interconnects was proposed in [5] and used to optimize power consumption,
throughput, and latency for various traffic patterns. A multi objective algo-
rithm based on game theory was proposed in [6] for mapping tasks onto multi
core architectures in order to optimize performance and energy. An integrated
architecture-circuit optimization framework was used by Azizi et al. [7] to study
the tradeoff between energy and performance; the authors showed that volt-
age scaling plays a crucial role in this tradeoff while the choice of an optimal
architecture and circuitry does not have a significant impact. The authors in [8]
adopted machine-learning techniques to build predictive models for power draw,
execution time, and energy usage of computational kernels. A “roofline” model
for energy that takes into account algorithm characteristics (e.g., operations,
concurrency, and memory traffic) and machine characteristics (time and energy
costs per operation or per word of communication) was developed in [9]; using
this model, the authors also analyzed the conditions for tradeoffs between time
and energy.

Objectives based on architectural simulations have also been used. A multi
objective exploration of the mapping space of a mesh-based network-on-chip
architecture was performed in [10]; using evolutionary computing techniques,
the authors obtained the mappings on a performance-power Pareto front. Per-
formance, power and resource usage objectives were treated by the design space
tool in [11] to explore the vast design space of the Grid ALU Processor and its
post-link optimizer.

Closer to the presented work are exploratory studies using empirical per-
formance data in conjunction with power or energy. The impact of energy con-
straints for multithreaded applications on multiprocessor applications was
studied in [12] and synchronization-aware algorithms were proposed to save
energy with a user-acceptable loss in speedup. Power-monitoring device, Pow-
erMon2, was developed in [13] to enable the analysis of performance and power
tradeoffs. The authors in [14] used a power-aware performance prediction model
of hybrid MPI/OpenMP applications to develop an algorithm to optimize energy
consumption and run time. An automated empirical tuning framework that can
be configured to optimize both performance and energy efficiency was proposed
in [15]. Energy and performance characteristics of different parallel implemen-
tations of scientific applications on multi-core systems were investigated in [16],
and interactions between power and application performance were explored.
The empirical performance tuning tool Active Harmony [17] was used in [18]
to explore the tradeoff between energy consumption and performance for HPC
kernels. The effects of CPU and network bandwidth tuning from a whole-system-
level perspective were analyzed in [19]; in demonstrating opportunities for energy
savings, tradeoffs between power and run times were found.

Researchers have also explored search algorithms for multi objective prob-
lems. In addition to execution time, many of these works involve objectives that
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are simpler to evaluate, e.g., code size; and none have looked at power or energy
objectives. Performance and code size were considered in a multi objective app-
roach in [20] when an unroll factor was varied. A multi objective evolutionary
algorithm was adopted in [21] to find Pareto-optimal (for combinations of code
size, compilation time, and execution time) compiler optimization levels. Evo-
lutionary search algorithms were also used in the adaptive compiler framework
[22] to find compiler optimization sequences that minimize code size, average
run time, and worst-case run time. Automated tuning of a just-in-time com-
piler through multi objective evolutionary search was performed in [23]. The
tuning identified optimization plans that are Pareto-optimal in terms of compi-
lation time and a measure of code quality. Milepost GCC [24] is a self-tuning
optimization infrastructure that supports general multi objective optimization
where a user can choose to minimize execution time, code size and compilation
time. A multi objective autotuning framework that adopts differential evolution
algorithms as a search methodology was developed in [25]. The authors demon-
strated the proposed approach by optimizing run time and parallel efficiency
when varying loop tiling and thread-count parameters for parallel codes.

3 Multi Objective Optimization: Background and
Notation

We consider the multi objective (sometimes called “multi criteria” [26]) mathe-
matical optimization problem

min
x∈X

F (x) = [F1(x), . . . , Fp(x)], (1)

where p > 1 objectives are simultaneously minimized. In this paper, we assume
that the n-dimensional decision space X ⊂ R

n is a finite collection of discrete
points of size |X |. The assumption of a discrete and finite decision space can
be relaxed. We assume that each of the p objectives is bounded from below
but can take on the extended value “+∞” (e.g., corresponding to an infeasible
code transformation within the space X or a—ideally, reproducible—runtime
failure) and that there is at least one point in the decision space X at which all
p objectives are finite.

Many of the standard properties from single-objective optimization have
analogies in the multi objective setting. For example, objectives f that should be
maximized can be brought into the framework (1) by defining Fi(x) = −f(x).
Similarly, the units of the component objectives Fi do not matter since the
solution set of (1) is invariant to shift and positive-scale transformations2.

In the case of minimizing a single objective f , the idea of (global) optimal-
ity is simple: x̂ ∈ X is optimal if and only if f(x̂) ≤ f(x) for all x ∈ X . For
multiple objectives, however, we must alter this notion of optimality. The follow-
ing definitions are standard in multi objective mathematical optimization (see,
e.g., [26]).
2 The solution set for minx F (x) is exactly that for minx{α + diag(β)F (x)} for any

α ∈ R
p and any positive β ∈ R

p.
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Fig. 1. Illustration of Pareto fronts when minimizing two objectives (fdtd kernel, input
size 512, Intel Xeon E5530; see Section 6.2). Left: The points A, B, C, and D are non
dominated and hence belong to the Pareto front. Right: The Pareto front is a single
point, A, which dominates all other points.

Definition 1. We say that F (x) ≤ F (y) if Fi(x) ≤ Fi(y) for all i = 1, . . . , p,
and F (x) �= F (y); in this case we have that y is dominated by x. We say that a
point x ∈ X is Pareto optimal for (1), or non dominated, if there is no y ∈ X
with F (y) ≤ F (x). We denote the set of Pareto-optimal points by X ∗ ⊆ X . The
set of objective function values of all Pareto-optimal points, F∗ = {F (x) : x ∈
X ∗}, is called the Pareto front.

The concepts introduced in Definition 1 are perhaps best illustrated by an
example. Figure 1 (left) considers the case when the p = 2 objectives of time,
F1, and total power, F2, are simultaneously minimized. The F1 × F2 objective
space shown is not to be confused with the decision space X (which in this
example corresponds to parameter values defining loop unrolling and other code
transformations, see Section 5). For the examples in Fig. 1, we assume that the
objective values of every feasible decision x ∈ X are shown. The shaded area
represents the region in F1×F2 space that is dominated by the point C; all points
in this region are inferior to C in both objectives. The set of non dominated points
form the Pareto front F∗.

If the objective F1 (F2) is minimized in isolation, then we obtain the point A
(B), which necessarily belongs on the Pareto front. Similarly, the minimizers of
the single objective fλ(x) = F1(x)+(1−λ)F2(x), for λ ∈ [0, 1], corresponding to
a convex combination of the objectives, will lie on the Pareto front. However, not
all points on the Pareto front necessarily correspond to minimizers of a linear
combination of the objectives (e.g., point D in Fig. 1 (left)).

Hence, the Pareto front contains significantly richer information than one
obtains from single-objective formulations. For example, if one were to minimize
time subject to a constraint on power, F2(x) ≤ P , the Pareto front provides the
solution for all possible values of the cap P . In Fig. 1 (left), we see that caps of
260 W, 257 W, and 254 W would result in minimal times of 6 s, 6.5 s, and 8 s,
respectively.
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In some cases, the multiple objectives may not be competing. For the same
decision space X considered in Fig. 1 (left), Fig. 1 (right) has a second objective
of energy consumption, which is strongly correlated with the objective F1. In
fact, the Pareto front now corresponds to a single point, which simultaneously
minimizes both objectives.

As evidenced in these examples, only certain regions of the objective space
are of interest. Typically, search algorithms for efficiently finding Pareto fronts
focus on a hyperrectangle defined by two points formally defined below.

Definition 2. The ideal objective point F I=[F I
1 , . . . , F I

p ] for (1) is defined com-
ponent wise by F I

i = min
x∈X

Fi(x). The nadir objective point FN = [FN
1 , . . . , FN

p ]

for (1) is defined component-wise by FN
i = max

x∈X ∗
Fi(x).

The ideal point represents the best possible value in isolation for each objec-
tive. The ideal point can be attained only if the Pareto front consists of a single
point as in Fig. 1 (right). The nadir point is the extreme point defined by the
Pareto front. In the example in Fig. 1 (left), the ideal and nadir points are
at (5.97 s, 252.5 W) and (8.57 s, 260.5 W), respectively. Together, the ideal
and nadir points define the range of objective values that decision makers may
encounter if they are interested in all possible optimal tradeoffs.

Before directing our focus to three specific metrics, we note that hard con-
straints, including those involving an objective of interest, can also be incorpo-
rated in (1). We assume that these constraints define the decision space X and
that the choice of this decision space can directly affect the objective space, and
hence the ideal and nadir points.

4 Optimization of Time, Power, and Energy

In this section we focus on the particular bi objective cases where either time
and power or time and energy are simultaneously minimized. We could just
as easily examine more than two simultaneous objectives. However, interpre-
tation/visualization of the empirical results presented in Section 6 would be
less straightforward. Furthermore, though our experimental focus is on objec-
tives defined by empirical evaluation, our framework can also include objectives
defined by model or simulator evaluation.

For clarity, we denote the time, power, and energy objectives by T , P , and
E, respectively. Since power corresponds to a rate of energy, these two problems
(which we can write as F = [T, P ] and F = [T, E]) are clearly related, with
E = PT .

One can exploit other properties of these three objectives in their simultane-
ous optimization. For example, since T, P,E are strictly positive, we can freely
multiply/divide by T, P,E without changing inequalities. Similarly, for many
problems of interest one can assume that the objective values of two differ-
ent decision points are different (i.e., for all x, y ∈ X with x �= y, T (x) �= T (y)).
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This property ensures that there is a one-to-one correspondence between Pareto-
optimal decision points X ∗ and the Pareto front F∗.

Furthermore, we may have a priori knowledge about the relationship between
some decision parameters and some objectives. For example, for many architec-
tures it is safe to assert that power is monotonically increasing in the number of
nodes employed. Such relationships can be exploited by both exploratory studies
and search algorithms to reduce the number of distinct decision points evaluated.

Because of the relationship between power and energy, we have a simple
relationship between the two objective spaces considered here.

Definition 3. Let X ∗P ⊆ X denote the set of Pareto-optimal points for F =
[T, P ], and let X ∗E⊆ X denote the set of Pareto optimal points for F = [T, E].

Proposition 1. All points on the energy-time Pareto front have a corresponding
point on the power-time Pareto front: X ∗E ⊆ X ∗P .

Proof. Let x̂ ∈ X ∗E denote a point on the energy-time Pareto front (and hence
there is no point x ∈ X that dominates x̂ for the objectives T and E). Now
suppose that x̂ /∈ X ∗P , and hence there is some x̃ ∈ X that dominates x̂. If
T (x̃) < T (x̂) and P (x̃) ≤ P (x̂) , then E(x̃) = T (x̃)P (x̃) < T (x̂)P (x̂) = E(x̂),
and hence x̃ is strictly better in both T and P . On the other hand, if T (x̃) ≤
T (x̂) and P (x̃) < P (x̂), then E(x̃) < E(x̂). In both cases, T (x̃) ≤ T (x̂) and
E(x̃) < E(x̂), which contradicts the definition of x̂ being non dominated for the
T and E.

Proposition 1 says that the number of non dominated points for energy-time
is bounded by the number of non dominated points for power-time.

Definition 4. Let x(1) ∈ X ∗P denote a non dominated point on the T -P front
that minimizes time: x(1) ∈ arg minx∈X ∗P T (x) (where the inclusion is done in
case there is not a unique minimizer).

Proposition 2. A necessary condition for x ∈ X to be a non dominated point
on the T -E Pareto front is that

P (x) ≤ P (x(1))T (x(1))
T (x)

. (2)

Proof. By the definition of x(1), T (x(1)) ≤ T (x) for all x ∈ X . Hence, x ∈ X can
be on the T -E Pareto front only if E(x) ≤ E(x(1)), which can be rewritten as
(2) since T (x) > 0 for all x ∈ X .

Many necessary bounds exist in addition to (2), but (2) is especially useful
because it provides a convenient bound that requires only a minimizer of a
single objective (time). Furthermore, it offers a mathematical relationship for
the conditions needed in order for the energy-time Pareto front to comprise
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Fig. 2. Illustration of the points comprising a relaxed Pareto front for different values
of ε (SPAPT adi problem, Intel Xeon Phi; see Section 6.1). The points within each
shaded region belong the relaxed Pareto front obtained from (4).

more than one point. Clearly this inequality does not hold for the example in
Fig. 1.

Proposition 2 can also be used to look at the effect of idle power. If we
decompose the power into a constant idle power and a varying difference above
idle power, P (x) = PI + ΔP (x), then (2) is equivalent to

ΔP (x(1))T (x(1)) − ΔP (x)T (x) ≥
(
T (x) − T (x(1))

)
PI . (3)

A necessary condition for (3) is that the power savings must outpace the product
of idle power and relative slow-down,

P (x(1)) − P (x) ≥ T (x) − T (x(1))
T (x(1))

PI .

Hence, for fixed times T (x) and T (x(1)), it becomes more unlikely that tradeoffs
exist as the idle power PI grows (since there’s always an upper bound to peak
available power).

For many time-power-energy multi objective problems, one may need to
acknowledge the measurement error in each objective. Assuming that there is a
fixed error margin εi ≥ 0 for the ith objective, if Fi(x) is within εi of Fi(y), then
we cannot say that x is truly better than y (or vice versa) with respect to the
objective Fi. The notion of non dominance in Definition 1 would thus need to
be modified so that x dominates y if F (x) �= F (y) and

Fi(x) + εi ≤ Fi(y) for all i = 1, . . . , p. (4)

As a result, one would arrive at a relaxed Pareto front that potentially consists
of a cloud of points. This is illustrated in Fig. 2 for different multiples of the
measurement error margin (ε1 = .2s,ε2 = 2W). In practice, one often knows
what the εi should be. For example, we know what the measurement resolution of
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power and time are for each of our experiments; see the measurement descriptions
in Section 6.

To simplify the presentation, we follow the convention in Definition 1 (which
takes εi = 0 for i = 1, . . . , p) for the results reported in Section 6.

5 Problem Sets and Decision Spaces

We now describe the set of problems, consisting of HPC kernels from SPAPT
[27], TORCH [28], and CSPARSE [29], and the proxy application miniFE [30],
that we used for our empirical multi objective study. We also describe the code
transformation framework that we utilize to generate variants with different
flavors of compiler optimizations.

Each search problem in the SPAPT [27] suite is a specific combination of a
kernel, an input size, a set of tunable decision parameters, a feasible set of possi-
ble parameter values, and a default configuration of these parameters for search
algorithms. These problems are expressed in an annotation-based language that
can be readily processed by Orio [31]. The tunable decision parameters are loop
unroll/jamming, cache tiling, register tiling, scalar replacement, array copy opti-
mization, loop vectorization, and multi core parallelization using OpenMP. The
kernels in SPAPT are grouped into four groups: elementary dense linear algebra
kernels, dense linear algebra solver kernels, stencil code kernels, and elementary
statistical computing kernels. This work considers problems from three groups:
matrix-matrix multiplication (mm), matrix transpose and vector multiplication
(atax), and triangular matrix operations (trmm) from the basic dense linear alge-
bra kernels; bi conjugate gradient (bicgkernel) and lu decomposition kernels
from the dense linear algebra solver kernels; and matrix subtraction, multipli-
cation, and division (adi), 1-D Jacobi computation (jacobi), finite-difference
time domain (fdtd), and matrix factorization (seidel) kernels from the stencil
code kernels.

To generate and evaluate a set of points in the SPAPT decision space, (which
can be further extended to include different compiler optimization parameters),
we must use a source-to-source transformation framework. We use Orio [31],
which is an extensible and portable software framework for empirical perfor-
mance tuning. It takes an Orio-annotated C or Fortran implementation of a
problem along with a tuning specification that consists of various performance-
tuning directives as inputs, generates multiple transformed code variants of the
annotated code, empirically evaluates the performance of the generated codes,
and has the ability to select the best-performing code variant using various search
algorithms. We refer the reader to [31] for a detailed account of annotation pars-
ing and code generation schemes in Orio.

On multi core architectures, larger core counts reduce the ratio of peak mem-
ory bandwidth to peak floating-point performance. To analyze such behavior, we
include two bandwidth-limited problems: a sparse matrix multiplication kernel
and a quick sort kernel that sorts n items in O(n log n) time. The reference imple-
mentation of the sparse matrix multiplication kernel is based on CSPARSE, a
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concise sparse matrix package in C [29], and takes sparse matrix triplets as input.
For the quick sort kernel, we use the implementation from the TORCH Compu-
tational Reference Kernels [28], a collection of core problems in scientific com-
puting. While in the sparse matrix multiplication kernel the number of nonzero
elements in the matrix leads to floating-point operations, the quick sort kernel
performs only comparisons without any significant floating-point operations.

For large-scale multi node experiments, we use a proxy application from the
Mantevo project, which was designed to explore the capabilities of emerging
architectures [30]. miniFE is a finite-element mini-application that implements
kernels representative of unstructured, implicit finite-element applications. It
assembles a sparse linear system from a steady-state heat conduction problem
on a brick-shaped domain of linear, 8-node hex elements. It then solves the linear
system using a simple (unpreconditioned) conjugate gradient (CG) algorithm.
Thus the kernels that miniFE contains are computation of element-operators
(diffusion matrix, source vector), assembly (scattering element-operators into
sparse matrices and vectors), sparse matrix-vector products (during the CG
solve), and vector operations (level-1 BLAS: axpy, dot, norm). Running miniFE
with a fixed set of dimensions and varying the number of MPI ranks is a com-
monly used strong scaling test.

To illustrate the wide applicability of our framework, we use different HPC
platforms in the experimental study (platforms are described in the next Section).
For each platform, we use a subset of the problems described above that can exer-
cise the unique and important aspects of that platform. The decision-making
process for selecting the benchmarks for experimental evaluation of the pro-
posed framework had one more important dimension – choosing kernels and
applications that are well known to the HPC community, so that the results can
be evaluated and assimilated within the larger context of what the community
already knows about the behaviors (e.g., performance consequences of different
compiler optimizations) of those kernels.

6 Experimental Results

We now summarize the findings from our empirical evaluations on three markedly
different platforms. The Intel Xeon Phi’s Many Integrated Core (MIC) architec-
ture serves as a platform that allows us to explore the tradeoffs among concur-
rency, power, and performance on nodes with many simple cores, a characteristic
that we anticipate will be increasingly common in next-generation large-scale
systems. The Intel Xeon E5530 architecture allows us to explore the tradeoffs
among power, energy, and performance in a current-generation architecture. The
availability of clock frequency scaling on the Xeon E5530 allows us to enrich our
decision space X (see Section 3) with hardware-provided, power-related config-
uration options. Our measurement setup on the Xeon E5530 also provides us
with more detailed power measurement capabilities. IBM’s BG/Q was chosen as
a way to demonstrate our framework’s applicability on a vastly different proces-
sor architecture and to explore the tradeoffs among concurrency, power, and
performance on a large, multi nodal scale.
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Fig. 3. Power, energy, and time for the fdtd SPAPT kernel on Intel Xeon Phi (includes
both thread count and code transformation variants)

6.1 Intel Xeon Phi

The experiments described in this section are carried out on a first-generation
Intel Xeon Phi coprocessor (based on the Intel Many Integrated Core (MIC)
architecture) [32], consisting of 60 standard cores clocked at 1090 MHz and with
full cache coherency across all cores. Each core offers four-way simultaneous
multithreading (SMT) and 512-bit-wide SIMD vectors, which corresponds to
8 double-precision or 16 single-precision floating-point numbers. Each core has
a fully coherent 32 KB L1 instruction cache, a 32 KB L1 data cache, and a
512KB unified L2 cache. The coprocessor card contains 8 GB of memory, and is
connected via a PCI Express bus to a Westmere host running CentoOS 6.3 and
with 64 GB of host main memory.

Setup and Measurement. For power measurement, we relied on the system
management utility micsmc (v. 4346-16) designed for monitoring and managing
Xeon Phi coprocessors. Currently, micsmc has a time resolution of 0.5 seconds
and power measurement resolution of 1 W. The icc compiler (version 13.0.0
20120731), with -mmic (for native MIC libraries) and -O3 optimization flags,
was used to compile the code variants.

We configure each variant to run k times, where k is selected (separately for
each kernel) so that the total run time is at least 50 seconds. Let r1(x), . . . , rk(x)
denote a sequence of k run times for the variant x and let (t1(x), p1(x)), . . . ,
(tm(x), pm(x)) denote a time-stamped sequence of power measurements obtained
from the micsmc utility. To calculate power draw for the variant, we consider
all power readings (ti(x), pi(x)) with r2(x) ≤ ti(x) ≤ 50 (with r1(x) omitted to
remove any cold-cache effect and the time needed for memory allocation on the
card). A 10-second sleep interval in between two successive executions ensures
that the processor returns to a normal temperature and power state.

Results. Figure 3 shows the results obtained on the SPAPT problem fdtd (with
an input size of 500×500). In these plots, we show the average run time, average
power, and average energy required by the code variants. The results show a clear
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Fig. 4. Power, energy, and time for the sparse matrix multiplication kernel on Intel
Xeon Phi

Fig. 5. Power, energy, and time for the quick sort kernel on Intel Xeon Phi

tradeoff between run time and power and the number of threads. The number
of threads adopted has the largest impact on the power draw whereas the code
transformation decisions have the largest impact on run time. We observe that
the code variants are clustered based on the number of threads. The power draw
increases by approximately 5W with an increase of 30 threads. The corresponding
energy plot does not show a tradeoff; it exhibits a race-to-idle condition [33].
Similar trends were seen for other SPAPT problems.

When there is no activity, the coprocessor enters into a complete idle state
(PC-state), where it has an efficient power management module to save power
and energy by power gating [34]. Currently, the power draw we observe is approx-
imately 60 W. After transitioning from an idle state to the normal operating
state, however, we observe high idle power (currently between 80 W and 90 W).
Consequently, even a small run time reduction results in significant energy sav-
ings. We note that some previous works (e.g., [35,36]) subtract idle power from
the power drawn during the normal operating state in order to consider only
the increase in the power draw that can be attributed to a given workload’s
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execution. Our figures show the view from a system operator’s perspective and
take into account the total system power (idle and workload computation power).

Next we focus on the sparse matrix multiplication kernel with the input
trdheim, a large, sparse matrix from the UFL sparse matrix collection [37] with
1,935,324 nonzeros. Other inputs tested (including std1 Jac3 db, biplane-9,
and t3dl from [37]) produced similar results. We study the impact of varying
the number of threads (concurrency) on run time, power, and energy. Figure 4
shows the Pareto front. Although there is a tradeoff between run time and power,
we can observe race-to-idle behavior when it comes to energy efficiency. This
can be due to a number of architectural specializations of the Intel Xeon Phi
to improve bandwidth [32]. The aggregate bandwidths of L1 and L2 caches are
approximately 15 and 7 times faster than the aggregate memory bandwidth,
respectively. A 16-stream hardware prefetcher is used to improve the cache hits.
It uses a special instruction called “streaming store” that allows the cores to
write an entire cache line without reading it first. The interconnect has a 64-byte-
wide data block ring to support the high bandwidth requirement. The memory
controllers are symmetrically interleaved around the ring to provide a uniform
access pattern, which eventually increases the bandwidth response.

Figure 5 shows the results of the quick sort kernel on an input size (the
number of random integers to sort) of 107. We see a similar trend except that
the variants with larger thread counts are slightly slower and thus less energy
efficient.

The results from Intel Xeon Phi show that for compute-limited kernels, the
use of large core counts results in significant performance benefits with respect
to both time and energy. Nevertheless, power is a limiting factor. Because of the
effective high-bandwidth memory subsystem, the bandwidth-limited kernels also
exhibit a similar trend. We note that in all our Intel Xeon Phi experiments, we
observe that the maximum power is between 140 W and 145 W, irrespective of
the type of kernel tested. The average power draw is determined by the number of
threads used rather than the type of computation. This observation underscores
the importance of developing workload-aware parallelization schemes for the
next-generation systems with many cores, so that one uses only the number of
cores (or threads) that the workload can actually exploit.

6.2 Intel Xeon E5530

We now describe our results on an Intel Xeon E5530 workstation with two quad-
core processors. Each core has its own 32 KB L1 cache and 256 KB L2 cache;
each of the quad-core processors has a shared 8 MB L3 cache (for a total of
16 MB of L3 for the 8 cores). The processors can be clocked at 1.60, 1.73,
1.86, 2.00, 2.13, 2.26, or 2.39 GHz. Processor clock frequency is changed by
using the cpufreq-utils package [38] that is available with many popular Linux
distributions.

Setup and Measurement. Component-level (CPUs and DIMMs) power mea-
surements are collected by using a PowerMon2 apparatus [13]. PowerMon2 is a
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hardware and software framework designed to obtain fine-grained (up to 1,024
samples per second) current and voltage measurements for different components
of a target system (e.g., CPUs, memory subsystem, disks, GPUs). We measure
the system-level power draw using the WattsUp Pro power meter [39]. The power
meter is a fairly inexpensive device, costing less than $150 at the time of this
writing. Although the device is easy to use, it provides relatively coarse-grained
measurements, roughly one reading per second. We implemented a command-
line interface on top of the WattsUp driver to monitor and calculate the overall
energy usage of an application.

Since we can measure system level power only at 1-second granularity, we
configure the main computational loops to run k times, where k is selected
(separately for each kernel/input) so that the total run time at the highest CPU
frequency is more than five seconds. This ensures that we collect a sufficient
number of power readings that can be attributed to the main computation of
the kernels. The execution time reported in the paper is for these k iterations
of the computation kernel. A post processing step sweeps through the data to
attribute portions of the power measurements to the actual kernel loops. These
power measurements are then averaged to determine the power draw for a single
execution. To account for the unavoidable noise in this empirical data collection
process, we measure each variant three times. The execution time and the power
draw reported here are averages of these three runs.

Here we discuss results for the fdtd, jacobi, and bicgkernel SPAPT ker-
nels. For fdtd, we selected two different input sizes: 512 × 512 (henceforth ref-
erenced as fdtd512) and 4096 × 4096 (fdtd4096). The selection decision was
driven by our desire to ensure that we have test cases that stress the CPU
and memory subsystem in different ways. Indeed, the last level cache misses per
instruction for the base SPAPT case (no transformations) ranges from 1.8×10−4

for bicgkernel (making it a very compute-bound kernel) to 0.03 for fdtd4096
(making it a memory-bound kernel).

The code transformations applied to the kernels and the transformation
spaces are taken as in [27]. However, we supplement the SPAPT decision spaces
with a CPU clock frequency parameter. For each of the kernels, we select 300 (a
number chosen simply to limit the time required for data collection) randomly
selected variants from the code transformation space. Each of these variants is
evaluated on all available clock frequencies.

Results. Figure 6 shows the Pareto fronts for the objectives time and total sys-
tem power (as measured at the wall). The first observation that demonstrates
the richness of the decision space is that, for a given hardware frequency para-
meter, the power range for the code variants is large. Tradeoffs between time
and system-level power draw are evident. The power draw is lower for slower
clock speeds, but this comes with a slow-down of the computation. Especially
interesting is that the Pareto fronts show cases where one can reduce the power
draw and not impact the performance substantially. Such behavior should be of
high interest to co-design centers designing power-limited hardware targeted to
specific types of computations.
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Fig. 6. Pareto fronts (for each clock frequency) for SPAPT kernels on Intel Xeon E5530
for the objectives time and total system power. The shaded area shows the Pareto front
across all frequencies.

We can also examine particular transformation variants. Figure 7 shows the
energy and time for the five highest-performing (as measured at the fastest clock
rate) variants. This figure shows some interesting tradeoff decisions that we can
explore. For example, for variant v1 of the memory-bound fdtd4096 kernel, we
see that we can trade 0.8% loss in performance with 7.5% decrease in the energy
consumption by running the kernel at the lowest frequency. The energy savings
amount is not as significant for the compute-bound bicgkernel, where one can
trade 1.2% loss in performance with 2.8% decrease in the energy consumption
by running variant v1 at clock frequency 2.12GHz.

Figure 8 shows the Pareto fronts for each clock frequency for component-level
power draws of the fdtd4096 kernel. When we analyze each of the fronts for
different clock frequencies in isolation, we see a clear tradeoff between DIMM
and CPU power draws for different code variants. We attribute this behavior
intuitively to the optimizations that impact data motion. Code variants that have
better data motion behavior reduce the stress on DIMMs thereby lowering the
DIMM power. At the same time, better data motion leads to more compute work
for the CPU, thereby raising its power demand. Such tradeoffs are of interest in
studies for future architectures where one may consider constraining CPU draw
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Fig. 7. Energy and time on Intel Xeon E5530 for the five highest-performing vari-
ants (v1–v5) from the SPAPT transformation space. The curves illustrate the tradeoff
behavior as clock frequency is changed.

(e.g., for thermal/fault considerations) and/or DIMM draw (e.g., as a proxy for
effective memory footprint or simulator of memory-starved systems).

6.3 Vesta IBM Blue Gene/Q

Vesta is a developmental platform for Mira, a 10-petaflop IBM Blue Gene/Q
supercomputer [40] at Argonne. Vesta’s architecture is the same as Mira’s except
that it has two compute racks (Mira has 48 racks). A rack has 32 node boards,
each of which holds 32 compute cards. Each compute card comprises 16 compute
cores of 1600 MHz PowerPC A2 processors with 16 GB RAM (1GB/core). In
total, Vesta has 2,048 nodes (32,768 compute cores). The nodes are connected via
a proprietary 5-D torus network. The compute nodes are water-cooled for ther-
mal efficiency and run on CNK, a proprietary, lightweight kernel that minimizes
OS noise.

Setup and Measurement. For the power measurements in BG/Q, we use
a power profiling code that periodically samples power draw [41]. Because of
cabling and control system limitations, the code requires a minimum partition
size of 128 nodes, which spans 4 node boards. The profiler code runs one thread
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Fig. 8. Pareto fronts (for each clock frequency) on Intel Xeon E5530 for component-
level power draws

Fig. 9. Power, energy, and time for miniFE on BG/Q

on each node board and records the power on all the domains every 0.25 seconds
along with a time stamp. We refer the reader to [41] for further details on the
power profiling in BG/Q.

We set the input size (controlling the box domain from which a finite-element
problem is assembled and solved) of miniFE to nx = ny = nz = 1000. We
considered a decision space with four parameters: two generic parameters that
control the scaling behavior and two application-specific parameters. The generic
parameters are the number of nodes ({128, 256, 512, 1024}) and the number of
threads per core (either 8 (one thread every other core) or 16 (one thread per
core)). The two miniFE specific parameters are the percentage of unbalance
in the decomposition ({5, 10, 20, 30, 40, 50, 60, 70, 80, 90}) and a Boolean
decision parameter ({Yes, No}) that controls whether matrix-vector products
are performed with overlapping communication and computation. In total, we
had 160 code variants for the experimental analysis.

Results. The results in Figure 9 show that there are tradeoffs between time to
completion and both power and energy. As expected, increasing the node count
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decreases the time to completion but increases the power draw. In addition to
the workload power, the significant increase in the power draw can be attributed
to the fact that each node board consumes an idle power of roughly 1500 W
[41]. The node count of 1024 uses 32 node boards, but 128 uses only 4 node
boards. Concerning energy, the best parameter configuration within each node
count provides a tradeoff between time to completion and energy consumption.
Within a given node count, however, the fastest code variant consumes the least
energy.

7 Conclusions and Outlook

In this paper we have provided a formalism for multi objective optimization stud-
ies of broad applicability in autotuning, architecture design, and other areas of
HPC. With a focus on time, power, and energy, we illustrated that a multi objec-
tive analysis provides richer insight than do constrained and single-objective
formulations. We have also contributed a significant empirical study, spanning a
diverse set of platforms, power measurement technologies, kernels, and decision
spaces. Our findings showed that in some settings objectives are strictly corre-
lated and there is a single, “ideal” decision point; in others, significant tradeoffs
exist.

A key component in most autotuning frameworks is the search algorithm
that carefully orchestrates the selection and evaluation of various parameters
to optimize given (multiple) objectives. Measuring the quality of a parameter
configuration in the decision space is crucial for any search algorithm. Our multi
objective optimization framework can enable the search algorithm to compare
the quality of the parameter configurations in the context of conflicting multiple
objectives.

Future work includes characterizing settings where empirical tradeoffs agree
with those predicted by models (e.g., the roofline work in [9]) and where rela-
tionships between objectives are not as well understood. Significant opportuni-
ties exist for studying the tradeoffs among additional objectives; we especially
mention resiliency since its relationship to power-based and temperature-based
objectives is expected to be a prime concern in future extreme-scale systems [1].
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