Achieving Very High Order for Implicit Explicit Time Stepping: Extrapolation Methods

Mathematics and Computer Science Division
About Argonne National Laboratory
Argonne is a U.S. Department of Energy laboratory managed by UChicago Argonne, LLC under contract DE-AC02-06CH11357. The Laboratory’s main facility is outside Chicago, at 9700 South Cass Avenue, Argonne, Illinois 60439. For information about Argonne and its pioneering science and technology programs, see www.anl.gov.

Availability of This Report
This report is available, at no cost, at http://www.osti.gov/bridge. It is also available on paper to the U.S. Department of Energy and its contractors, for a processing fee, from:
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831-0062
phone (865) 576-8401
fax (865) 576-5728
reports@adonis.osti.gov

Disclaimer
This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor UChicago Argonne, LLC, nor any of their employees or officers, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of document authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof, Argonne National Laboratory, or UChicago Argonne, LLC.
Achieving Very High Order for Implicit Explicit Time Stepping: Extrapolation Methods

by
E.M. Constantinescu1 and A. Sandu2

1Mathematics and Computer Science Division, Argonne National Laboratory
2Department of Computer Science, Virginia Polytechnic Institute and State University

April 2009
Contents

Abstract 1

1. Introduction 1

2. Extrapolation Methods 2
 2.1. Base Methods 3
 2.2. Consistency of the Extrapolation Methods 4

3. Global Error Expansion for Extrapolated IMEX Methods Applied to DAEs 7
 3.1. W-IMEX 7
 3.2. Pure-IMEX Method 15
 3.3. Split-IMEX Method 18

4. Numerical Results for Extrapolated IMEX Applied to DAEs 21

5. Global Error Expansion for Extrapolated IMEX Methods Applied to Stiff ODEs 22
 5.1. W-IMEX 22
 5.2. Pure-IMEX Method 29
 5.3. Split-IMEX Method 30

6. Numerical Results for Extrapolated IMEX Applied to Stiff ODEs 32
 6.1. Van der Pol 33
 6.2. Example from [Hairer and Lubich, 1988] 34

7. Numerical Results for PDEs 34
 7.1. Advection-Reaction Equation 34
 7.2. Boundary/Source Order Reduction 37
 7.2.1. The Order Reduction Phenomenon 37
 7.2.2. Avoiding Order Reduction 38

8. Implementation Considerations 38
9. Discussion 39

References 43

Appendix A. Linearly Implicit Euler Method 45

Appendix B. Transfer Functions 45

Appendix C. Technical Lemmas 46
ACHIEVING VERY HIGH ORDER FOR IMPLICIT EXPLICIT TIME STEPPING:
EXTRAPOLATION METHODS

EMIL M. CONSTANTINESCU† AND ADRIAN SANDU‡

Abstract. In this paper we construct extrapolated implicit-explicit time-stepping methods that allow one to efficiently solve problems with both stiff and nonstiff components. The proposed methods can provide very high order discretizations of ODEs, index-1 DAEs, and PDEs in the method of lines framework. These methods are simple to construct, and easy to implement and parallelize. We establish the existence of perturbed asymptotic expansions of global errors, explain the convergence orders of these methods, and explore their linear stability properties. Numerical results with stiff ODEs, DAEs, and PDEs illustrate the theoretical findings and the potential of these methods to solve multiphysics multiscale problems.

Key words. extrapolation methods, implicit explicit methods, ODE, DAE index-1, PDE

AMS subject classifications.

1. Introduction. Models described by processes that have multiple physics and multiscale components are pervasive in numerical simulations. Typical applications include mechanical and chemical engineering, aeronautics, astrophysics, meteorology and oceanography, financial modeling, and environmental sciences, which are modeled by Navier-Stokes [Bramkamp et al., 2004], convection-diffusion-reaction [Ascher et al., 1995; Ruuth, 1995; Constantinescu et al., 2008], or Black-Scholes. The individual physics or scale components typically have very different properties that are reflected in their discretization; for example, for advection-diffusion-reaction systems, the discrete advection has a relatively slow dynamics, while the diffusion and chemistry are typically fast evolving [Gebhardt et al., 2002; Ruuth, 1995; Verwer et al., 1996]. The dynamics of a process can be categorized in the relative fast and slow terms. The informal expressions stiff and nonstiff are commonly associated with the fast and slow evolution, respectively.

The discretization in time of slow processes with an explicit method is typically more efficient, because of its low cost, than using an implicit scheme, whereas implicit methods are more appropriate for stiff processes because of their favorable stability properties [Hairer and Lubich, 1988; Hairer et al., 1988]. For multiscale processes, purely explicit or implicit methods are not efficient because, in general, explicit methods require prohibitively small time steps and implicit methods are either too difficult to implement or too expensive to compute [Hairer et al., 1993; Lambert, 1991].

An approach to solving problems with both stiff and nonstiff components that has gained widespread popularity is called implicit-explicit (IMEX) method. In the IMEX approach one uses an implicit scheme for the stiff components and an explicit integrator for the slow dynamics such that the combined method has the desired stability and accuracy properties. IMEX linear multistep methods have been investigated in [Ascher et al., 1995; Frank et al., 1997; Hundsdorfer and Ruuth, 2007a], and IMEX Runge-Kutta schemes have been developed in [Ascher et al., 1997; Boscarino, 2007; Pareschi and Russo, 2000; Verwer and Sommeijer, 2004]. These methods are generally limited to low-consistency orders (typically, lower than five). High-order IMEX Runge-Kutta methods are difficult to construct because of a large number of order conditions, and IMEX linear multistep methods have increasing stability restrictions with increasing the order of accuracy.

†Emil Constantinescu was supported in part by the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. Adrian Sandu and Emil Constantinescu were supported by the National Science Foundation through award NSF CCF-0515170. Notice: This report is an updated version of the original study described in [Constantinescu and Sandu, 2008].
‡Emil Constantinescu (emconsta@mcs.anl.gov) Mathematics and Computer Science Division, Argonne National Laboratory, 9700 S Cass Avenue, Argonne, IL 60439, USA.
‡Adrian Sandu (asandu@cs.vt.edu) Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
In this study we propose a new family of IMEX methods using extrapolation. In the extrapolation approach several numerical approximations using the same method but different fractions of the step size are used to eliminate truncation error terms.

We are concerned with solving the following problem

\[y'(x) = F(x, y), \quad F(x, y) = f(x, y) + g(x, y), \quad x > x_0, \quad y(x_0) = y_0, \]

where \(f \) represents the nonstiff part and \(g \) the stiff component of the problem. We seek to apply an explicit method to \(f \) and an implicit method to \(g \). We consider the extrapolation methods [Deuflhard, 1985; Hairer et al., 1993; Hairer and Wanner, 1993] for the efficient integration of (1.1) and extend the pioneering work of Deuflhard [1985] and Deuflhard et al. [1987] on extrapolated linearly implicit and mid-point rule to extrapolated IMEX methods.

The contributions of this paper are the following. We propose three novel implicit-explicit methods. In contrast with IMEX Runge-Kutta and linear multistep strategies, the proposed methods have a simple construction, and implementation, can attain very high orders of accuracy, and are parallelizable. We investigate the linear stability properties and show the existence of perturbed asymptotic expansions of the global discretization errors. We illustrate these theoretical considerations on ODEs, DAEs, and PDEs examples.

The rest of the paper is organized as follows. In Section 2 we review the extrapolation methods along with their consistency and linear stability properties; in Section 3 we investigate the asymptotic error expansion for the extrapolated IMEX methods applied to index-1 differential algebraic problems [Hairer and Wanner, 1993]; and in Section 4 we illustrate the theoretical findings on two numerical examples. In Section 5 we study the error expansion for the extrapolated IMEX schemes applied to stiff ODEs, and in Section 6 we show numerical evidence that supports the theory. In Section 7 we present a typical PDE example and in Section 8 we give some implementation considerations. The conclusions follow in Section 9.

2. Extrapolation Methods. Consider a sequence \(n_j \) of positive integers with \(n_j < n_{j+1} \), \(1 \leq j < M \) and define corresponding step sizes \(h_1, h_2, h_3, \ldots \) by \(h_j = H/n_j \). Further, define the numerical approximation of (1.1) at \(x_0 + H \) using the step size \(h_j \) by

\[T_{j1} := y_{h_j}(x_0 + H), \quad 1 \leq j \leq M. \quad \text{[Base method]} \quad (2.1) \]

Historically, the notation \(T \) comes from the trapezoidal rule, albeit now it is used in place of a generic discretization method. Let us assume that the local error of the \(p \)-th-order method employed to solve (2.1) has an asymptotic expansion of the form

\[y(x) - y_h(x) = e_{p+1}(x) h^{p+1} + \cdots + e_N(x) h^N + E_h(x) h^{N+1}, \]

where \(e_i(x) \) are errors that do not depend on \(h \), and \(E_h \) is bounded for \(x_0 \leq x \leq x_{end} \). This is true for the methods discussed in this paper (see Theorem 2.1 and Section 2.1). By using \(M \) approximations to (2.1) with different \(h_j \)'s one can eliminate the error terms in the global error asymptotic expansion (2.2) by employing the same procedure as in Richardson extrapolation (see [Hairer et al., 1993, Chap. II.9]). High-order approximations of the numerical solution of (1.1) can be determined by solving a linear system with \(M \) equations. Then the \(k \)-th solution represents a numerical method of order \(p + k - 1 \) [Hairer et al., 1993, Chap. II, Thm. 9.1]. The most economical solution to this set of linear equations is given by the Aitken-Neville formula

[Deuflhard, 1982; Neville, 1934; Gasca and Sauer, 2000]:

\[T_{jk+1} = T_{jk} + \frac{T_{jk} - T_{j-1,k}}{(n_j/n_{j-1}) - 1}, \quad j \leq M, \quad k < j. \quad (2.3a) \]

If the numerical method (2.1) is symmetric, then the Aitken-Neville formula yields

\[T_{jk+1} = T_{jk} + \frac{T_{jk} - T_{j-1,k}}{(n_j/n_{j-1})^2 - 1}, \quad j \leq M, \quad k < j. \quad (2.3b) \]
Table 2.1
Tableaux with the $T_{i,k}$ solutions and their corresponding classical orders for a p^{th} order base method.

<table>
<thead>
<tr>
<th>$T_{i,k}$ Tableau</th>
<th>Classical Orders</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{11}</td>
<td>p</td>
</tr>
<tr>
<td>T_{21}</td>
<td>p</td>
</tr>
<tr>
<td>T_{22}</td>
<td>$p + 1$</td>
</tr>
<tr>
<td>T_{31}</td>
<td>p</td>
</tr>
<tr>
<td>T_{32}</td>
<td>$p + 1$</td>
</tr>
<tr>
<td>T_{33}</td>
<td>$p + 2$</td>
</tr>
</tbody>
</table>

Scheme (2.1), (2.3) is called the extrapolation method. For illustration purposes, the $T_{i,k}$ solutions can be represented in a tableau; for example, see Table 2.1. As it can be seen in the second column of Table 2.1, the method is represented by a sequence of lower-order embedded methods. There are several choices for the sequences n_j; however, Deuflhard [1983] showed that the harmonic sequence $n_j = 1, 2, 3, 4, \ldots$ is the most economical one. This sequence will be used for the rest of this study.

2.1. Base Methods. Typical base methods used to compute (2.1) include the forward Euler method

$$y^{n+1} = y^n + h \left(f(y^n) + g(y^n) \right), \quad \text{[Explicit Euler]}$$

and the linearly implicit Euler method (see Appendix A)

$$y^{n+1} = y^n + [I - h (f + g)(y^n)]^{-1} \left(h f(y^n) + h g(y^n) \right), \quad \text{[Linearly implicit]} \quad (2.4a)$$

Method (2.4a) has been used in [Deuflhard, 1985; Deuflhard et al., 1987] as the base method, for solving stiff ODEs of type (1.1) with (2.1), (2.3). Symmetric base methods have also been considered. This class includes implicit mid-point rule and GBS [Deuflhard, 1985; Hairer et al., 1993]. Explicit Euler and the symmetric methods are not addressed further in this study.

In this paper we consider $J = F'(y) \approx J = (g(y))'$ and extend the analysis done by Deuflhard et al. [1987] to problems that have components treated implicitly and explicitly such as in the generic representation given in (1.1). We propose the following base methods for the extrapolation algorithm (2.1), (2.3): the W-IMEX scheme

$$y^{n+1} = y^n + [I - h g'(y^n)]^{-1} \left(h f(y^n) + h g(y^n) \right), \quad \text{[W-IMEX]} \quad (2.4b)$$

the Pure-IMEX method

$$y^{n+1} = y^n + h f(y^n) + [I - h g'(y^n)]^{-1} \left(h g(y^n) \right), \quad \text{[Pure-IMEX]} \quad (2.4c)$$

and the Split-IMEX scheme

$$y^{n+1} = y' + [I - h g'(y^n)]^{-1} \left(h g(y') \right); \quad y' = y^n + h f(y^n). \quad \text{[Split-IMEX]} \quad (2.4d)$$

The W-IMEX scheme is essentially the same as the linearly implicit method except for the Jacobian, which is approximated by using only the stiff part of the problem, which is typically required for the stability of the numerical algorithm. This makes the W-IMEX method computationally cheaper than the linearly implicit one. The Pure-IMEX and Split-IMEX schemes use the same approximation of the Jacobian (as in the W-IMEX); however, the explicit and implicit parts are treated separately, making them truly IMEX schemes. The Split-IMEX scheme evolves the explicit part first and then the implicit one.
2.2. Consistency of the Extrapolation Methods. In Henrici’s notation [Henrici, 1962], one-step methods are expressed as
\[y^{n+1} = y^n + h \Phi(x^n, y^n, h). \] (2.5)

Methods (2.4) can be represented in Henrici’s notation in the following way:
\[
\begin{align*}
\Phi(x^n, y^n, h) &= [I - h (f + g')(y^n)]^{-1} \left(h f(y^n) + h g(y^n) \right), & \text{[implicit Euler]} \\
\Phi(x^n, y^n, h) &= [I - h g'(y^n)]^{-1} \left(h f(y^n) + h g(y^n) \right), & \text{[W-IMEX]} \\
\Phi(x^n, y^n, h) &= h f(y^n) + [I - h g'(y^n)]^{-1} \left(h g(y^n) \right), & \text{[Pure-IMEX]} \\
\Phi(x^n, y^n, h) &= h f(y^n) + [I - h g'(y^n)]^{-1} \left(h g(y^n) + h f(y^n) \right). & \text{[Split-IMEX]}
\end{align*}
\]

A method of order \(p \) applied to a nonstiff differential equation with each term being sufficiently differentiable possesses an expansion of the local error of the (classical) form
\[
y(x + h) - y(x) - h \Phi(x, y(x), h) = d_{p+1}(x) h^{p+1} + \cdots + d_{p+N}(x) h^{N+1} + O(h^{N+2}).
\] (2.6)

Following [Gragg and Stetter, 1964; Hairer et al., 1993] we consider discretization methods that have a global error function \(e_p(x) \) that satisfies (see [Hairer et al., 1993, Chp. II, Thm. 3.6])
\[
y(x) - y_h(x) = e_p(x) h^p + O(h^{p+1}).
\] (2.7)

Methods (2.4) are of this type with \(p = 1 \). Then we have the following result due to Gragg and Stetter [1964].

Theorem 2.1 ([Gragg and Stetter, 1964]). Suppose that a given method with sufficiently smooth increment function \(\Phi \) satisfies the consistency condition \(\Phi(x, y, 0) = f(x, y) \) and possesses an expansion (2.6) for the local error. Then the global error has an asymptotic expansion of the form
\[
y(x) - y_h(x) = e_p(x) h^p + \cdots + e_N(x) h^N + E_h(x) h^{N+1},
\] (2.8)

where \(e_j(x) \), \(j = p, p + 1, \ldots, N \), satisfies (2.7) with \(e_j(x_0) = 0 \) and \(E_h(x) \) is bounded for \(x_0 \leq x \leq x_{\text{end}} \) and \(0 \leq h \leq h_0 \).

Proof. See Gragg [1965] and [Hairer and Wanner, 1993, Chp. II, Thm. 8.1]. \(\square \)

Methods (2.4) possess the local error expansion (2.6) and global error expansion (2.8) and therefore can be extrapolated by using (2.1),(2.3a). It follows that the classical orders of accuracy of the extrapolation methods (2.4) are the ones given in Table 2.2.

Next we discuss the linear stability properties of IMEX methods (2.4b, 2.4c, 2.4d) and their extrapolations.

2.3. Linear Stability Analysis of the Extrapolated IMEX Methods.

In this section we investigate the linear stability properties of extrapolated (2.4) and follow the analysis done by Frank et al. [1997]. Consider methods (2.4) applied to the following linear scalar test problem
\[
y(t)' = \lambda y(t) + \mu y(t),
\] (2.9)
where λ, µ ∈ C; e.g., λ, µ can be the eigenvalues of the nonstiff (f) and stiff (g) parts in a PDE application, respectively.

The transfer or stability functions \(R(z, w) \) defined by

\[
y^{n+1} = R(\lambda h, \mu h)y^n
\]

for (2.4) are given by the following (see Appendix B).

\[
y^{n+1} = \left(\frac{1}{1 - (\lambda h + \mu h)} \right) y^n; \quad R(z, w) = \frac{1}{1 - (z + w)} \quad \text{[Linearly implicit]} \tag{2.11a}
\]

\[
y^{n+1} = \left(\frac{1 + \lambda h}{1 - \mu h} \right) y^n; \quad R(z, w) = \frac{1 + z}{1 - w} \quad \text{[W-IMEX]} \tag{2.11b}
\]

\[
y^{n+1} = \left(\frac{1 + \lambda h - \lambda h \mu h}{1 - \mu h} \right) y^n; \quad R(z, w) = \frac{1 + z - zw}{1 - w} \quad \text{[Pure-IMEX]} \tag{2.11c}
\]

\[
y^{n+1} = \left(\frac{1 + \lambda h(1 - \mu h(1 - \lambda h))}{1 - \mu h - \lambda h \mu h} \right) y^n; \quad R(z, w) = \frac{1 + z}{1 - w} \quad \text{[Split-IMEX]} \tag{2.11d}
\]

The stability region \(S \) is defined by

\[
S = \{ z \in \mathbb{C}, w \in \mathbb{C}; ||R(z, w)|| \leq 1, (S_z \times S_w) \subset (\mathbb{C} \times \mathbb{C}) \}.
\]

A method with a transfer function \(R(\ldots) \) defined by (2.10) is stable if \(R(\ldots) \subseteq S \). In other words, for scalar problems, linear stability requires that \(|R(z, w)| \leq 1 \). As expected, the linearly implicit Euler method has the same transfer function as implicit Euler. Incidentally, the W-IMEX method has the same transfer function as the Split-IMEX scheme. The stability function of the extrapolated methods are calculated from the extrapolation formula (2.3a) as [Hairer and Wanner, 1993, Chap. IV]:

\[
R_{jk+1}(z, w) = R_{jk}(z, w) + \frac{R_{jk}(z, w) - R_{j-1,k}(z, w)}{(n_j/n_j-1) - 1},
\]

where \(R(\ldots) \) is the one-step transfer function for a specific base method and the subscripts denote the corresponding position in the extrapolation tableau.

In practice implicit methods that are \(A \)-stable or \(A(\alpha) \)-stable [Hairer and Wanner, 1993] are desirable for problems with stiff solution components. We take a practical approach and ask the following question: To ensure \(A(\alpha) \)-stability of the stiff part, what is the necessary restriction on the nonstiff part? We consider three stability regions for the stiff part: \(A \)-stable and \(A(\alpha) \)-stable, \(\alpha = 30^\circ, 60^\circ \). In Figure 2.1 we show the stability regions for the implicit part (left column) and the corresponding stability regions of the explicit part of extrapolated (2.4) methods for several \((T_{jk}) \) entries in the extrapolation tableau (see Table 2.1).

We remark that the stability region of the implicit parts can easily accommodate the typical stiff problems encountered in practice. Depending on the problem, the implicit stability region can be relaxed by decreasing \(\alpha \); as a result, the explicit stability region grows, relaxing the step size restriction for the entire method. Moreover, the stability regions of the extrapolated explicit parts encompass a section of the imaginary axis, which is a desirable property when solving certain PDEs via the method of lines [Hundsdorfer and Verwer, 2003]. We also note that the explicit stability regions grow as more \(T_{jk} \) terms are computed.

In practice, the fast process represented by \(\mu \) has large values on the negative real axis, whereas the slow process represented by \(\lambda \) sits close to the origin in the negative real half plane. The stability regions presented in Figure 2.1 illustrate the relationship between the IMEX solver and the physical process properties. Next we investigate the accuracy of the extrapolated IMEX methods.
Fig. 2.1. Stability region of the implicit part for A-stability and A(α)-stability, α = 30°, 60° and the corresponding stability region of the explicit part for several extrapolated IMEX terms with base methods (2.4).
3. Global Error Expansion for Extrapolated IMEX Methods Applied to DAEs. Consider the following test problem

\[
\begin{align*}
 u' &= f(x, u) + g(x, u) \\
 \text{with } u &= y + \varepsilon z.
\end{align*}
\]

(3.1)

The \(y\) component is associated with the slow evolving process and \(z\) with the stiff part of \(u\). The stiffness is controlled by \(\varepsilon\); that is, the problem is stiffer as \(0 \leq \varepsilon \ll 1\) shrinks. This problem can be reformulated to obtain two processes, \(f\) the slow process and \(g\) the fast process:

\[
\begin{align*}
 \begin{cases}
 y' = f(y, z) = f(y + \varepsilon z) \\
 \varepsilon z' = g(y, z) = g(y + \varepsilon z)
 \end{cases}
 \quad \text{with } \begin{cases}
 y^0 + \varepsilon z^0 = u^0 \\
 y + \varepsilon z = u \\
 (y + \varepsilon z)' = u'.
 \end{cases}
\end{align*}
\]

(3.2)

Then we have

\[
\begin{pmatrix}
 y \\ \\
 \varepsilon z
\end{pmatrix}' = \begin{pmatrix}
 f(y, z) \\ 0
\end{pmatrix} + \begin{pmatrix}
 0 \\ g(y, z)
\end{pmatrix}.
\]

(3.3)

This system can be analyzed in a singular perturbation problem (SPP) setting. We obtain the reduced differential algebraic (DAE) form by taking \(\varepsilon \to 0\):

\[
\begin{pmatrix}
 y' \\ 0
\end{pmatrix} = \begin{pmatrix}
 f(y, z) \\ 0
\end{pmatrix} + \begin{pmatrix}
 0 \\ g(y, z)
\end{pmatrix}.
\]

(3.4)

We assume

\[g_z\text{ is invertible,}\]

and hence (3.4) is an index-1 DAE.

To assess the accuracy of the extrapolated methods, we first analyze the discretization of the reduced system (3.4) with the proposed extrapolated IMEX methods and then address the discretization of the full problem (3.3). We next discuss the consistency properties of extrapolated (2.4). We start with W-IMEX and continue with Pure-IMEX (Sec. 3.2) and Split-IMEX (Sec. 3.3).

3.1. W-IMEX. Applying the W-IMEX method (2.4b) with \(y\) the nonstiff and \(z\) the stiff components to (3.3) yields

\[
\begin{pmatrix}
 I \\ -h \hat{g}_y(0) \\ -h \hat{g}_z(0)
\end{pmatrix}
\begin{pmatrix}
 y_{i+1} - y_i \\ z_{i+1} - z_i
\end{pmatrix} = h \begin{pmatrix}
 f(y_i, z_i) \\ 0
\end{pmatrix} + h \begin{pmatrix}
 0 \\ g(y_i, z_i)
\end{pmatrix}
\]

or

\[
\begin{pmatrix}
 I \\ -h \hat{g}_y(0) \\ -h \hat{g}_z(0)
\end{pmatrix}
\begin{pmatrix}
 y_{i+1} - y_i \\ z_{i+1} - z_i
\end{pmatrix} = h \begin{pmatrix}
 f(y_i, z_i) \\ g(y_i, z_i)
\end{pmatrix},
\]

(3.6)

where \(g(0) = g(y_0, z_0)\). Then the reduced form of (3.6) given by \(\varepsilon \to 0\) is

\[
\begin{pmatrix}
 I \\ -h \hat{g}_y(0) \\ -h \hat{g}_z(0)
\end{pmatrix}
\begin{pmatrix}
 y_{i+1} - y_i \\ z_{i+1} - z_i
\end{pmatrix} = h \begin{pmatrix}
 f(y_i, z_i) \\ g(y_i, z_i)
\end{pmatrix}.
\]

(3.7)

To assess the accuracy of the W-IMEX scheme, we first analyze the reduced system (3.7) and then address the full problem (3.3) in Section 5.1. The following theorems and their proofs follow the ones for the extrapolated linearly implicit Euler method developed by Deuflhard et al. [1987] and briefly described in [Hairer and Wanner, 1993, chap. VI.5]. We start with the reduced problem (DAE) and give the following result.
The error terms in (3.8) are uniformly bounded for x_i from a stability estimate. (a) truncated expansions are constructed, and in the second one (b) an error bound is obtained.

The initial values are the exact solution $y(0)$ assumed to satisfy (3.5) is satisfied. The global error of the IMEX scheme (3.7) then has an asymptotic h-expansion of the form

$$y_i - y(x_i) = \sum_{j=1}^{M} h^j \left(a^{(j)}(x_i) + a_i^{(j)} \right) + O(h^{M+1}),$$

$$z_i - z(x_i) = \sum_{j=1}^{M} h^j \left(b^{(j)}(x_i) + b_i^{(j)} \right) + O(h^{M+1}),$$

where $a^{(j)}(x)$ and $b^{(j)}(x)$ are smooth functions and the perturbations satisfy

$$a_i^{(1)} = 0, \quad a_i^{(2)} = 0, \quad \beta_i^{(1)} = 0, \quad \forall i \geq 0,$$

$$a_i^{(3)} = 0, \quad a_i^{(4)} = 0, \quad \beta_i^{(2)} = 0, \quad \forall i \geq 1,$$

$$a_i^{(3)} = 0, \quad \forall i \geq j - 3, \quad j \geq 5,$$

$$\beta_i^{(3)} = 0, \quad \forall i \geq j - 2, \quad j \geq 3.$$

The error terms in (3.8) are uniformly bounded for $x_i = ih \leq H$, if H is sufficiently small.

Proof. Following Deuflhard et al. [1987], the proof consists of two parts: in the first part (a) truncated expansions are constructed, and in the second one (b) an error bound is obtained.

a) Consider the truncated expansions of the numerical solution

$$\tilde{y}_i = y(x_i) + \sum_{j=1}^{M} h^j \left(a^{(j)}(x_i) + a_i^{(j)} \right)$$

$$\tilde{z}_i = z(x_i) + \sum_{j=1}^{M} h^j \left(b^{(j)}(x_i) + b_i^{(j)} \right)$$

such that the defect of \tilde{y}_i, \tilde{z}_i inserted in the method (3.7) is small (see [Hairer and Lubich, 1984]):

$$\begin{pmatrix} I & 0 \\ -h g_y(0) & -h g_z(0) \end{pmatrix} \begin{pmatrix} \tilde{y}_{i+1} - \tilde{y}_i \\ \tilde{z}_{i+1} - \tilde{z}_i \end{pmatrix} = h \begin{pmatrix} f(\tilde{y}_i, \tilde{z}_i) \\ g(\tilde{y}_i, \tilde{z}_i) \end{pmatrix} + O(h^{M+2}).$$

The initial values are the exact solution $y(0) = y_0, z_0 = z_0$, and the perturbation terms (α, β) are assumed to satisfy

$$a^{(0)}(0) + a_0^{(0)} = 0, \quad b^{(0)}(0) + b_0^{(0)} = 0,$$

$$a_i^{(0)} \to 0, \quad \beta_i^{(0)} \to 0, \quad \text{for } i \to \infty.$$

The Taylor expansions for $f(\tilde{y}_i, \tilde{z}_i)$ and $g(\tilde{y}_i, \tilde{z}_i)$ about $(y(x_i), z(x_i))$ give

$$f(\tilde{y}_i, \tilde{z}_i) = f(y(x_i), z(x_i)) +$$

$$+ f_y(x_i) (ha^{(1)}(x_i) + ha_i^{(1)} + \ldots) + f_z(x_i) (hb^{(1)}(x_i) + hb_i^{(1)} + \ldots) +$$

$$+ f_{yy}(x_i) (ha^{(1)}(x_i) + ha_i^{(1)} + \ldots)^2 + \ldots ,$$

$$g(\tilde{y}_i, \tilde{z}_i) = g(y(x_i), z(x_i)) +$$

$$+ g_y(x_i) (ha^{(1)}(x_i) + ha_i^{(1)} + \ldots) + g_z(x_i) (hb^{(1)}(x_i) + hb_i^{(1)} + \ldots) +$$

$$+ g_{yy}(x_i) (ha^{(1)}(x_i) + ha_i^{(1)} + \ldots)^2 + \ldots.$$
Similarly,

\[
\tilde{y}_{i+1} - \tilde{y}_i = y(x_{i+1}) - y(x_i) + h \left(a^{(1)}(x_{i+1}) - a^{(1)}(x_i) + a^{(1)}_{i+1} - a^{(1)}_i \right) + \ldots ,
\]

\[
hy'(x_i) + \frac{h^2}{2} y''(x_i) + \ldots + h^3 \left(a^{(1)} \right)'(x_i) + h \left(a^{(1)}_{i+1} - a^{(1)}_i \right) + \ldots ,
\]

\[
\tilde{z}_{i+1} - \tilde{z}_i = z(x_{i+1}) - z(x_i) + h \left(b^{(1)}(x_{i+1}) - b^{(1)}(x_i) + \beta^{(1)}_{i+1} - \beta^{(1)}_i \right) + \ldots
\]

Replacing the above in (3.11) yields

\[
\begin{pmatrix}
\begin{array}{cc}
I & 0 \\
-hg_y(0) & -hg_z(0)
\end{array}
\end{pmatrix}.
\]

\[
\begin{pmatrix}
hy'(x_i) + \frac{h^2}{2} y''(x_i) + \ldots + h^3 \left(a^{(1)} \right)'(x_i) + h \left(a^{(1)}_{i+1} - a^{(1)}_i \right) + h^2 \left(a^{(2)} \right)'(x_i) + h^3 \left(a^{(3)} \right)'(x_i) + \ldots \\
hy''(x_i) + \frac{h^3}{2} z'''(x_i) + \ldots + h^2 \left(b^{(1)} \right)'(x_i) + h \left(b^{(1)}_{i+1} - b^{(1)}_i \right) + \ldots
\end{pmatrix}
\]

\[
= \begin{pmatrix}
h f (y(x_i), z(x_i)) + f_y (x_i) \left(h^2 a^{(1)}(x_i) + h^2 a^{(1)}_{i+1} + \ldots \right) + g_y (x_i) \left(h^2 a^{(1)}(x_i) + h^2 a^{(1)}_i + \ldots \right) \\
h g (y(x_i), z(x_i)) + g_y (x_i) \left(h^2 b^{(1)}(x_i) + h^2 b^{(1)}_{i+1} + \ldots \right) + g_z (x_i) \left(h^2 b^{(1)}(x_i) + h^2 b^{(1)}_i + \ldots \right)
\end{pmatrix} + O(h^{M+2}).
\]

(3.13)

Equating coefficients of \(h^3 \) in (3.13) gives

\[
\begin{pmatrix}
y'(x_i) + \left(a^{(1)}_{i+1} - a^{(1)}_i \right) \\
0
\end{pmatrix} = \begin{pmatrix}
f (y(x_i), z(x_i)) \\
g (y(x_i), z(x_i))
\end{pmatrix}.
\]

Using the consistency requirement (3.12b) gives \(a^{(1)}_{i+1} = a^{(1)}_i \), which verifies (3.4) and thus \(a^{(1)}_i = 0, \forall i \geq 0 \). Next we consider the coefficients of \(h^2 \) in (3.13):

\[
\begin{pmatrix}
\frac{1}{2} y''(x) + \left(a^{(1)} \right)'(x) + \left(a^{(2)}_{i+1} - a^{(2)}_i \right) \\
-g_y(0) y'(x) - g_z(0) z'(x) - g_y(0) \left(a^{(1)}_{i+1} - a^{(1)}_i \right) - g_z(0) \left(\beta^{(1)}_{i+1} - \beta^{(1)}_i \right)
\end{pmatrix}
\]

\[
= \begin{pmatrix}
f_y (x) \left(a^{(1)}(x) + a^{(1)}_{i+1} \right) + f_z (x) \left(b^{(1)}(x) + \beta^{(1)}_{i+1} \right) \\
g_y (x) \left(a^{(1)}(x) + a^{(1)}_i \right) + g_z (x) \left(b^{(1)}(x) + \beta^{(1)}_i \right)
\end{pmatrix}.
\]

By separating the smooth terms and the perturbations, we get

\[
\frac{1}{2} y''(x) + \left(a^{(1)} \right)'(x) = f_y (x) a^{(1)}(x) + f_z (x) b^{(1)}(x),
\]

\[
-g_y(0) y'(x) - g_z(0) z'(x) = g_y(0) a^{(1)}(x) + g_z(0) b^{(1)}(x),
\]

\[
\left(a^{(2)}_{i+1} - a^{(2)}_i \right) = f_y (x) a^{(1)}_{i+1} + f_z (x) \beta^{(1)}_{i+1},
\]

\[
-g_y(0) \left(a^{(1)}_{i+1} - a^{(1)}_i \right) - g_z(0) \left(\beta^{(1)}_{i+1} - \beta^{(1)}_i \right) = g_y(0) a^{(1)}_{i+1} + g_z(0) \beta^{(1)}_{i+1}.
\]

These conditions can be simplified by using the consistency requirement \(a^{(1)}_i = 0, \forall i \geq 0 \), and the fact that \(a \) and \(\beta \) do not depend on \(h \) (i.e., \(f_z(x) = f_z(0) \) and \(g_z(x) = g_z(0) \)): The terms of
\(O(h) \) are considered in (3.14c) - (3.14d), yields

\[
\frac{1}{2} y''(x) + (a^{(1)})'(x) = f_x(x) a^{(1)}(x) + f_z(x) b^{(1)}(x), \tag{3.14a}
\]

\[-g_y(0) y'(x) - g_z(0) z'(x) = g_y(x) a^{(1)}(x) + g_z(x) b^{(1)}(x), \tag{3.14b}
\]

\[
(a^{(2)}_{i+1} - a^{(2)}_i) = f_z(0) \beta^{(1)}_i + \gamma^{(2)}_i \eta_i, \tag{3.14c}
\]

\[-g_z(0) (\beta^{(1)}_i - \beta^{(2)}_i) = g_x(0) \eta^{(1)}_i + \eta^{(2)}_i h. \tag{3.14d}
\]

The terms \(\gamma^{(i)}_i \) and \(\eta^{(j)}_i, \forall i, j \) are neglected for the rest of the proof. The system (3.14a)-(3.14b) can be solved in the following way. Compute \(b^{(1)}(x) \) in (3.14b) using (3.5) to give

\[b^{(1)}(x) = -g_z(x)^{-1} \left[g_y(0) y'(x) + g_z(0) z'(x) + g_y(x) a^{(1)}(x) \right], \]

and replace it in (3.14a):

\[
\frac{1}{2} y''(x) + (a^{(1)})'(x) = f_x(x) a^{(1)}(x) - f_z(x) g_z(x)^{-1} \left[g_y(0) y'(x) + g_z(0) z'(x) + g_y(x) a^{(1)}(x) \right],
\]

which leads to the following ODE in \(a^{(1)} \):

\[
(a^{(1)})'(x) + \left(f_z(x) g_z(x)^{-1} g_y(x) - f_y(x) \right) a^{(1)}(x) = -\frac{1}{2} y''(x) - f_z(x) g_z(x)^{-1} \left[g_y(0) y'(x) + g_z(0) z'(x) \right].
\]

Using (3.12a); that is, \(a^{(1)}(0) + a^{(2)}_0 = 0 \), and the fact that \(a^{(1)}_0 = 0 \) gives \(a^{(1)}(0) = 0 \). Therefore \(a^{(1)}(x) \) and \(b^{(1)}(x) \) are uniquely determined by (3.14a) and (3.14b). We continue with (3.14c) and (3.14d) and use \(0 = g(y, z, x) \) for \(x = 0 \):

\[
\frac{dy}{dx} (y(x), z(x)) = \frac{\partial g}{\partial y} \frac{dy}{dx} (y(x), z(x)) + \frac{\partial g}{\partial z} \frac{dz}{dx} (x) = g_y y' + g_z z'.
\]

The above expression is true for \(x = 0 \), and hence the left-hand side of (3.14b) vanishes:

\[g_y(0) a^{(1)}(0) + g_z(0) b^{(1)}(0) = 0 \Rightarrow g_z(0) b^{(1)}(0) = 0 \Rightarrow b^{(1)}(0) = 0. \]

By (3.12a) we have \(\beta^{(1)}_0 = 0 \). In general, \(\beta^{(1)}_i = 0, \forall i \geq 0 \) from (3.14d), and together with (3.14c) we obtain \(\alpha^{(2)}_i = 0, \forall i \geq 0 \).

To compare the coefficients of \(h^3 \), we extend (3.11) with one more term:

\[
\begin{pmatrix}
1 & 0 \\
-hg_y(0) & -hg_z(0)
\end{pmatrix}
\]

\[
\begin{pmatrix}
\frac{h^2}{2} y''(x) + \frac{h^2}{6} y'''(x) + h^3 \left(a^{(1)} \right)'(x) + h^3 \left(a^{(2)} \right)'(x) + h^2 \left(a^{(3)} \right)'(x) + h^3 \left(a^{(3)} \right)'(x) + h^3 \left(a^{(3)} \right)'(x) + \ldots \\
\ldots + \frac{h^2}{2} z''(x) + \frac{h^2}{6} z'''(x) + \ldots + h^2 \left(b^{(1)} \right)'(x) + h \left(\beta^{(3)}_{i+1} - \beta^{(1)}_i \right) + \ldots + h^2 \left(b^{(2)} \right)'(x) + h^2 \left(b^{(2)} \right)'(x) + \ldots
\end{pmatrix}
\]

\[
= \begin{pmatrix}
\frac{h^2}{2} f_x(x) \left(\ldots + h^2 d^{(2)}(x) + h^2 a^{(2)}_i + \ldots \right) + \frac{h^2 f_y(x)}{2} \left(\ldots + h^2 d^{(1)}(x) + h^2 \alpha^{(1)}_i + \ldots \right) + \\
\ldots + \frac{h^2 g_y(x)}{2} \left(\ldots + h^2 d^{(2)}(x) + h^2 a^{(2)}_i + \ldots \right) + \frac{h^2 f_y(x)}{2} \left(\ldots + h^2 d^{(1)}(x) + h^2 \alpha^{(1)}_i + \ldots \right)
\end{pmatrix}
\]

\[
+ \begin{pmatrix}
h f_x(x) \left(\ldots + h^2 d^{(2)}(x) + h^2 \beta^{(2)}_i + \ldots \right) + \frac{h^2 f_x(x)}{2} \left(\ldots + h^2 d^{(1)}(x) + h^2 \beta^{(1)}_i + \ldots \right) + \\
h g_z(x) \left(\ldots + h^2 d^{(2)}(x) + h^2 \beta^{(1)}_i + \ldots \right) + \frac{h^2 g_z(x)}{2} \left(\ldots + h^2 d^{(1)}(x) + h^2 \beta^{(1)}_i + \ldots \right)
\end{pmatrix}
\]

where some contributions of the derivatives \(f_y, f_{zz} \), and \(f_{yz} \) are zero from the fact that their factors are \(\left(a^{(1)}_i, a^{(2)}_i, \right. \text{ and } \beta^{(1)}_i, \forall i \geq 0 \). Then the coefficients of \(h^3 \) in (3.15) give

\[
\left(a^{(2)} \right)'(x) = f_x(x) a^{(2)}(x) + f_z(x) b^{(2)}(x) + a^{(2)}(x), \tag{3.16a}
\]

\[
0 = g_y(x) a^{(2)}(x) + g_z(x) b^{(2)}(x) + a^{(2)}(x). \tag{3.16b}
\]

10
where \(r^{(2)}(x) \) and \(s^{(2)}(x) \) are known functions that depend on the derivatives of \(y(x), z(x), a^{(1)}(x), b^{(1)}(x) \) and can be shown to be

\[
\begin{align*}
 r^{(2)}(x) &= -\frac{1}{6} y^{'''}(x) + \\
 &+ \frac{1}{2} f_{yy}(x) \left(a^{(1)} \right)^2(x) + \frac{1}{2} f_{zz}(x) \left(b^{(1)} \right)^2(x) + f_{yz}(x) a^{(1)}(x) b^{(1)}(x), \\
 s^{(2)}(x) &= \frac{1}{2} g_y(0) y^{'''}(x) + \frac{1}{2} g_z(0) z^{'''}(x) + g_y(0) \left(a^{(1)} \right)'(x) + g_z(0) \left(b^{(1)} \right)'(x) + \\
 &+ \frac{1}{2} g_{yy}(x) \left(a^{(1)} \right)^2(x) + \frac{1}{2} g_{zz}(x) \left(b^{(1)} \right)^2(x) + g_{yz}(x) a^{(1)}(x) b^{(1)}(x).
\end{align*}
\]

The perturbations can be expressed as

\[
\begin{align*}
 a^{(3)}_{i+1} - a^{(3)}_i &= f_z(0) a^{(2)}_i + f_x(0) b^{(2)}_i, \\
 -g_y(0) \left(a^{(2)}_{i+1} - a^{(2)}_i \right) - g_z(0) \left(b^{(2)}_{i+1} - b^{(2)}_i \right) &= g_y(0) a^{(2)}_i + g_z(0) b^{(2)}_i,
\end{align*}
\]

with additional cancellations of terms that have coefficients \(a^{(1)}_i = 0 \) and \(b^{(1)}_i = 0, \forall i \), and using \(a^{(2)}_i = 0, \forall i \), we get

\[
\begin{align*}
 a^{(3)}_{i+1} - a^{(3)}_i &= f_z(0) b^{(2)}_i, \\
 0 &= g_y(0) b^{(2)}_{i+1}.
\end{align*}
\]

Terms \(a^{(2)}(x) \) and \(b^{(2)}(x) \) are determined in the same way as \(a^{(1)}(x) \) and \(b^{(1)}(x) \). Thus

\[
\begin{align*}
 b^{(2)}(x) &= -g_z(x)^{-1} \left[g_y(x) a^{(2)}(x) + s^{(2)}(x) \right],
\end{align*}
\]

which can be inserted in (3.16a) to give the following linear differential equation:

\[
\begin{align*}
 \left(a^{(3)} \right)'(x) + \left(f_x(x) g_z(x)^{-1} g_y(x) - f_y(x) \right) a^{(2)}(x) = -f_z(x) g_z(x)^{-1} g_y(x) s^{(2)}(x) + r^{(2)}(x).
\end{align*}
\]

Since \(a^{(2)}_i = 0, \forall i \), then \(a^{(2)}(0) = 0 \), and thus expressions (3.19) determine \(a^{(2)}(x) \) and \(b^{(2)}(x) \) uniquely. However, \(b^{(2)}(0) \neq 0 \) in general, and by (3.12a) we have \(\beta^{(2)}_0 \neq 0 \). From (3.18b) \(\beta^{(2)}_i = 0, \forall i \geq 1 \), and together with (3.18a) one obtains \(a^{(3)}_i = 0, \forall i \geq 1 \).

For the coefficients of \(h^4 \) we obtain a similar result as in the previous step:

\[
\begin{align*}
 \left(a^{(3)} \right)'(x) &= f_y(x) a^{(3)}(x) + f_z(x) b^{(3)}(x) + r^{(3)}(x), \\
 0 &= g_y(x) a^{(3)}(x) + g_z(x) b^{(3)}(x) + s^{(3)}(x), \\
 a^{(4)}_{i+1} - a^{(4)}_i &= f_z(0) b^{(3)}_i + f_y(0) a^{(3)}_i, \\
 0 &= g_z(0) b^{(3)}_{i+1} + g_y(0) a^{(3)}_{i+1}.
\end{align*}
\]

The expressions for \(r^{(3)}(x) \) and \(s^{(3)}(x) \) are more complicated (depending on derivatives of \(y(x), z(x), a^{(1)}(x), b^{(1)}(x), \ell = 1, 2 \)), and their representation is not shown here. From (3.12b), the conclusions, however, are that \(\beta^{(3)}_i = 0, \forall i \geq 1 \), and \(a^{(4)}_i = 0, \forall i \geq 1 \).

A general recurrence formula can be constructed for the coefficients of \(h^{i+1}, \forall j \geq 4 \):

\[
\begin{align*}
 \left(a^{(i)} \right)'(x) &= f_y(x) a^{(i)}(x) + f_z(x) b^{(i)}(x) + s^{(i)}(x), \\
 0 &= g_y(x) a^{(i)}(x) + g_z(x) b^{(i)}(x) + s^{(i)}(x), \\
 a^{(i+1)}_{i+1} - a^{(i+1)}_i &= f_z(0) b^{(i)}_i + \beta^{(i)}_i, \\
 0 &= g_z(0) b^{(i)}_{i+1} + a^{(i)}_{i+1}.
\end{align*}
\]
Equation (3.21d) implies that β of α where

\[j = 3(4) \]

For instance, $\sigma = i \beta = i 1 2 3 4 5 6$ $\Delta \rho = 0, 0, 0, 0, 0, 0, 0$ $\alpha = i 3(4)$

This concludes the proof for (3.9c) and (3.9d).

where ϕ_i and σ_i are linear combinations of expressions that contain factors $\alpha^{(\ell)}_{i+1}$, $\beta^{(\ell)}_{i+1}$, $\ell \leq j$. For instance,

\[\phi_i^{(3)} = \alpha_i^{(3)} f_y(0) \text{ and } \phi_i^{(3)} = \alpha_i^{(3)} g_y(0), \]

\[\phi_i^{(4)} = \alpha_i^{(4)} f_y(0) + \frac{1}{2} f_{zy}(0) \beta_i^{(2)} \text{ and } \phi_i^{(4)} = \alpha_i^{(4)} g_y(0) + \frac{1}{2} g_{zy}(0) \beta_i^{(2)}, \]

\[\phi_i^{(5)} = \alpha_i^{(5)} f_y(0) + \frac{1}{2} f_{zy}(0) \beta_i^{(2)} \text{ and } \phi_i^{(5)} = \alpha_i^{(5)} g_y(0) + g_{zy}(0) \beta_i^{(2)} \beta_i^{(3)}, \]

\[\phi_i^{(6)} = \alpha_i^{(6)} f_y(0) + \frac{1}{2} \alpha_i^{(3)} f_{yy}(0) + \frac{1}{2} g_{yy}(0) \beta_i^{(2)} \beta_i^{(3)} \]

\[+ \frac{1}{2} \beta_i^{(3)} + 2 \beta_i^{(2)} \beta_i^{(4)} \]

\[\phi_i^{(6)} = \alpha_i^{(6)} g_y(0) + \frac{1}{2} \alpha_i^{(3)} g_{yy}(0) + g_{yy}(0) \beta_i^{(2)} \beta_i^{(3)} \]

To conclude, let us consider the ϕ and σ values for i and j in Table 3.2 based on the values of α and β in Table 3.1. Here we show the nonzero coefficients of $h^i, 1 \leq j \leq 7$.

Finally, an induction on j with the hypothesis that $\phi_i^{(j)} = 0$ and $\sigma_i^{(j)} = 0$ for $i \geq j - 3$ is used. Equation (3.21d) implies that $\rho_i^{(j)} = 0, \ i \geq j - 3$, and then relations (3.12b) and (3.21c) give $\alpha_i^{(i+1)} = 0, i \geq j - 3$. This concludes the proof for (3.9c) and (3.9d).

b) The second part of this proof consists in estimating a bound on the reminder term; that is, differences $\Delta y_i = y_i - \tilde{y}_i$ and $\Delta z_i = z_i - \tilde{z}_i$. Subtracting (3.11) from (3.7) and eliminating Δy_i and Δz_i, we get

<table>
<thead>
<tr>
<th>$\phi_i^{(j)}$</th>
<th>$\sigma_i^{(j)}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$i = 0$</td>
<td>$i = 0$</td>
</tr>
<tr>
<td>y_0</td>
<td>z_0</td>
</tr>
<tr>
<td>y_1</td>
<td>z_1</td>
</tr>
<tr>
<td>y_2</td>
<td>z_2</td>
</tr>
<tr>
<td>y_3</td>
<td>z_3</td>
</tr>
<tr>
<td>y_4</td>
<td>z_4</td>
</tr>
<tr>
<td>y_5</td>
<td>z_5</td>
</tr>
<tr>
<td>y_6</td>
<td>z_6</td>
</tr>
<tr>
<td>$j = 1$</td>
<td>$j = 1$</td>
</tr>
<tr>
<td>$2(h^2)$</td>
<td>$2(h^2)$</td>
</tr>
<tr>
<td>$3(h^2)$</td>
<td>$3(h^2)$</td>
</tr>
<tr>
<td>$4(h^2)$</td>
<td>$4(h^2)$</td>
</tr>
<tr>
<td>$5(h^2)$</td>
<td>$5(h^2)$</td>
</tr>
<tr>
<td>$6(h^2)$</td>
<td>$6(h^2)$</td>
</tr>
</tbody>
</table>

Table 3.1
Nonzero α and β values represented with “•” marker.

Table 3.2
Nonzero ϕ and σ values represented with “•” marker.
The application of the Lipschitz condition on components following (harmonic) sequence is considered: \[n \] which represent the numerical solution of (3.4) after \(j \); that is, on the that will aid the understanding of the next result. We prove the following result. Similar approaches are found in [Hairer and Wanner, 1993, chap. VI, Thm. 5.4] and [Deuflhard et al., 1987].

\[
\begin{pmatrix}
I & -hg_y(0) & -hg_z(0) \\
-I & 0 & 0 \\
0 & -g(\tilde{y}_i, \tilde{z}_i) & 0 \\
\end{pmatrix}
\begin{pmatrix}
y_{i+1} - y_i \\
z_{i+1} - z_i \\
\end{pmatrix} =
\begin{pmatrix}
I & 0 \\
-I & 0 \\
0 & -g(\tilde{y}_i, \tilde{z}_i) \\
\end{pmatrix}
\begin{pmatrix}
y_{i+1} - \tilde{y}_i \\
z_{i+1} - \tilde{z}_i \\
\end{pmatrix}
\]

\[
= h \left(f(y_i, z_i) - f(\tilde{y}_i, \tilde{z}_i) \right) + \mathcal{O}(h^{M+2})
\]

\[
= h \left(f(y_i, z_i) - f(\tilde{y}_i, \tilde{z}_i) \right) + \mathcal{O}(h^{M+2})
\]

\[
+ \left(\frac{\Delta y_{i+1}}{\Delta z_{i+1}} \right) = \left(\frac{\Delta y_i}{\Delta z_i} \right) + \left(h \left(f(y_i, z_i) - f(\tilde{y}_i, \tilde{z}_i) \right) \right) + \mathcal{O}(h^{M+1})
\]

The application of the Lipschitz condition on \(f(y, z) \) and \(g(y, z) \) gives

\[
\left(\frac{\|\Delta y_{i+1}\|}{\|\Delta z_{i+1}\|} \right) \leq \left(\frac{I}{O(1)} \right) \left(\frac{\|\Delta y_i\|}{\|\Delta z_i\|} \right) + \mathcal{O}(h^{M+2})
\]

where \(|\zeta| < 1\) if \(H \) is sufficiently small. Using Lemma C.1 (see Appendix C) gives \(\|\Delta y_i\| + \|\Delta z_i\| = \mathcal{O}(h^{M+1}) \).

We continue to investigate the orders for the extrapolation with base method (3.7). The following (harmonic) sequence is considered: \(n_j = \{1, 2, 3, \ldots\} \) and \(h_j = H/n_j \). We define the components

\[
Y_{jk} = y_{h_j} (x_0 + H), \quad Z_{jk} = z_{h_j} (x_0 + H),
\]

which represent the numerical solution of (3.4) after \(j \) steps with step size \(h_j \), extrapolated with (2.3a); that is, on the \(k^{th} \) column of the extrapolation tableau. We make the following remarks that will aid the understanding of the next result.

1. Each extrapolation step (2.3a) cancels one smooth term \(|a, b|^{(l)}\) from the error expansion (3.8).

2. The perturbations \(\alpha \) and \(\beta \) propagate through the extrapolation steps (2.3a) in the form described by Table 3.3. Furthermore, we note that the accuracy of the solution on the extrapolation tableau diagonal is affected by terms \(|\alpha, \beta|^{(l)}\).

3. Nonzero smooth terms \(a(0) \) and \(b(0) \) affect the perturbations \(\alpha_0 \) and \(\beta_0 \) through (3.12a); for example, \(b^{(2)}(0) \neq 0 \Rightarrow \alpha^{(2)} \neq 0 \).

We prove the following result. Similar approaches are found in [Hairer and Wanner, 1993, chap. VI, Thm. 5.4] and [Deuflhard et al., 1987].

Table 3.3
Extrapolated perturbation error propagation. The entries represent the perturbations that affect the solutions in the extrapolation tableau.

<table>
<thead>
<tr>
<th>Perturbation coefficients for y_{jk}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a_1^{(1)})</td>
</tr>
<tr>
<td>(b_1^{(1)})</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Perturbation coefficients for z_{jk}</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\beta_1^{(1)})</td>
</tr>
</tbody>
</table>

Theorem 3.2 (Accuracy for the extrapolated W-IMEX applied to DAEs). If the harmonic sequence \(\{1, 2, 3, \ldots\} \) is considered, then the extrapolated values \(Y_{jk} \) and \(Z_{jk} \) satisfy

\[
Y_{jk} - y(x_0 + h) = O(H^{r_1}), \quad Z_{jk} - z(x_0 + h) = O(H^{r_2}),
\]

where the differential-algebraic orders \(r_1 \) and \(r_2 \) are given in Table 9.1 up to \(j = 12, k = 12 \).

Proof. We use the expansion (3.8). It follows from (3.9a) (i.e., \(a_1^{(1)} = \beta_1^{(1)} = 0 \) and from (3.12a) that \(a(x_0) = 0 \) and \(b(x_0) = 0 \). Since \(a_1^{(1)}(x) \) and \(b_1^{(1)}(x) \) are smooth functions, one obtains \(a_1^{(1)}(x_0 + H) = O(H) \) and \(b_1^{(1)}(x_0 + H) = O(H) \). Thus the errors in \(Y_{j1} \) and \(Z_{j1} \) are of \(O(H^2) \), which gives the first column entries in Table 9.1 for the W-IMEX scheme. In the same way one deduces that \(a_1^{(1)}(x_0 + h) = O(H) \); however, since \(\beta_1^{(1)} \neq 0 \), by (3.12a), \(b_1^{(1)}(0) \neq 0 \) (in general), and \(b_1^{(1)}(x_0 + h) = O(1) \). One extrapolation of the numerical method eliminates the terms with \(j = 1 \) in (3.8). The error is thus \(O(H^3) \) for \(Y_{j2} \) and \(O(H^2) \) for \(Z_{j2} \). Equivalently, (3.8) can be expanded to

\[
\begin{align*}
\begin{cases}
y_1 - y(x_1) = h^1 \left(a_1^{(1)}(x_1) + a_1^{(1)} \right) + h^2 \left(a_1^{(1)}(x_1) + a_1^{(2)} \right) + \cdots \\
z_1 - z(x_1) = h^1 \left(b_1^{(1)}(x_1) + \beta_1^{(1)} \right) + h^2 \left(b_1^{(1)}(x_1) + \beta_1^{(2)} \right) + \cdots
\end{cases}
\end{align*}
\]

which gives

\[
\begin{align*}
\begin{cases}
y_1 - y(x_1) = h^1 \left(y(x_1) + O(H) \right) + \cdots = O(H^2) \\
z_1 - z(x_1) = h^1 \left(z(x_1) + O(H) \right) + \cdots = O(H^2)
\end{cases}
\end{align*}
\]
However, for \(j = 2 \), \(a^{(2)}(x_0 + h) = O(H) \) and \(b^{(2)}(x_0 + h) = O(1) \), and thus
\[
\begin{aligned}
&y_1 - y(x_1) = h^2 O(H) + O(H^2) \\
z_1 - z(x_1) = h^2 O(1) + O(H^2)
\end{aligned}
\]

The smooth parts of (3.8) are eliminated one by one; however, the perturbations are not, and the approximation orders are reduced as follows. One order is “lost” on columns \(y_{yj} \) and \(z_{yj} \) from \(O(1) \) smooth part expansion. Thereafter, the orders are increasing by using the extrapolation formula (2.3a) that cancels the smooth terms. The nonzero perturbation terms affect the orders of the extrapolation method by propagating through (2.3a) as shown in Table 3.3. Specifically, for \(y_{yj} \) components, \(\alpha^{(5)}_y \neq 0 \), which limits the order on the diagonal for \(y_{yj} \), \(j \geq 6 \). Using the same argument, one can show that the first subdiagonal \(y_{yj-1}, j \geq 8 \), is limited to 5 and the second one \(y_{yj-2}, j \geq 10 \), is limited to 6 because \(\alpha^{(6)}_y \neq 0 \) and \(\alpha^{(7)}_y \neq 0 \), respectively, and so on. Similarly, for \(z_{yj} \) components, one has \(z_{yj}, j \geq 5 \) to 3; \(z_{yj-1}, j \geq 7 \) to 4; and \(z_{yj-2}, j \geq 9 \) to 5, because \(\beta^{(4)}_z \neq 0 \), \(\beta^{(5)}_z \neq 0 \), and \(\beta^{(6)}_z \neq 0 \), respectively. This process can be continued to find all the entries in Table 9.1.

Of particular interest is the location of the term in the extrapolation tableau that yields the maximum order of accuracy for a given number of steps \(j \), namely, the column that has the highest convergence rate for a given row number. A quick inspection of Table 9.1 reveals that the best choice is \(T_{ij} \) for \(j \leq 4 \); \(T_{i,(j-1)/2+3} \) for \(j \geq 5 \) and odd; and \(T_{i,j/2+2} \) for \(j \geq 6 \) and even. We used boldface fonts to identify the tableau location yielding the most accurate extrapolation term. In Table 9.1 we also show the theoretical orders for the extrapolated linearly implicit Euler method (2.4a) as described in [Hairer and Wanner, 1993; Deuflhard et al., 1987]. The “best” terms are selected by first identifying the most accurate stiff components and then matching them with the best nonstiff counterparts.

We next investigate the error expansion for the other two proposed extrapolated methods.

3.2. Pure-IMEX Method. Applying the Pure-IMEX method (2.4c) to (3.3) yields
\[
\begin{aligned}
&y_{i+1} - y_i = h \left(f(y_i, z_i) + h g(y_i, z_i) \right) \\
z_{i+1} - z_i = h \left(f(y_i, z_i) - h g(y_i, z_i) \right)
\end{aligned}
\]

The reduced form given by \(\varepsilon \to 0 \) is
\[
\begin{aligned}
&y_{i+1} - y_i = h \left(f(y_i, z_i) \right) \\
z_{i+1} - z_i = h \left(f(y_i, z_i) - h g(y_i, z_i) \right)
\end{aligned}
\]

We next formulate a similar pair of theorems (error expansions and extrapolated orders) for the extrapolated Pure-IMEX method.

Theorem 3.3 (Global error expansion of the extrapolated Pure-IMEX method applied to DAEs). Consider problem (3.4) with consistent initial values \((y_0, z_0)\), and suppose that (3.5) is satisfied. The global error of the Pure-IMEX scheme (3.26) then has an asymptotic \(h \)-expansion of the form (3.8), where \(a^{(j)}(x) \) and \(b^{(j)}(x) \) are smooth functions and the perturbations satisfy
\[
\begin{aligned}
\alpha^{(1)}_i &= 0, \forall i \geq 0, \\
\alpha^{(2)}_i &= 0, \beta^{(1)}_i = 0, \forall i \geq 1, \alpha^{(3)}_i = 0, \beta^{(2)}_i = 0, \forall i \geq 2, \\
\alpha^{(j)}_i &= 0, \forall i \geq j - 1, j \geq 4, \\
\beta^{(j)}_i &= 0, \forall i \geq j, j \geq 3.
\end{aligned}
\]
The error terms in (3.8) are uniformly bounded for \(x_i = ih \leq H \), if \(H \) is sufficiently small.

Proof. This proof follows the same ideas used in the proof of Theorem 3.1. We begin with part (a) in which the truncated expansions are constructed. The second part can easily be shown following the same steps as in the W-IMEX method. We focus on the first part only.

We consider again the truncated expansions (3.10) with small defects

\[
\begin{pmatrix}
 I & 0 \\
 -h g_y(0) & -h g_z(0)
\end{pmatrix}
\begin{pmatrix}
 \tilde{y}_{i+1} - \tilde{y}_i \\
 \tilde{z}_{i+1} - \tilde{z}_i
\end{pmatrix} = h \begin{pmatrix}
 f(\tilde{y}_i, \tilde{z}_i) \\
 g(\tilde{y}_i, \tilde{z}_i) - h g_y(0) f(\tilde{y}_i, \tilde{z}_i)
\end{pmatrix} + O(h^{M+1}).
\] (3.29)

The initial values are exact, and the perturbation terms satisfy (3.12). Replacing the Taylor expansion for \(f(\tilde{y}_i, \tilde{z}_i) \) and \(g(\tilde{y}_i, \tilde{z}_i) \) about \((y(x_i), z(x_i))\) in (3.29) yields

\[
\begin{pmatrix}
 I & 0 \\
 -h g_y(0) & -h g_z(0)
\end{pmatrix} \begin{pmatrix}
 h f'(y(x_i), z(x_i)) + h f(x_i) \\
 h g'(y(x_i), z(x_i)) + g_y(x_i)
\end{pmatrix} = \begin{pmatrix}
 -h^2 g_y(0)f'(y(x_i), z(x_i)) \\
 -h^2 g_y(0)f(y(x_i), z(x_i))
\end{pmatrix} + O(h^{M+2}).
\] (3.30)

The coefficients of \(h^1 \) in (3.30) give

\[
\begin{pmatrix}
 y'(x_i) + (\alpha_{i+1}^{(1)} - \alpha_i^{(1)}) \\
 0
\end{pmatrix} = \begin{pmatrix}
 f(y(x_i), z(x_i)) \\
 g(y(x_i), z(x_i))
\end{pmatrix}.
\]

Using the consistency requirements (3.12b) gives (3.4), and hence \(\alpha_i^{(1)} = 0, \forall i \geq 0. \) The coefficients of \(h^2 \) give the following equations

\[
\begin{align*}
\frac{1}{2} y''(x) + (d^{(1)})' (x) &= f_y(x) a^{(1)}(x) + f_z(x) b^{(1)}(x), \\
- g_y(0) y'(x) - g_z(0) z'(x) + f(x) g_y(0) &= g_y(x) a^{(1)}(x) + g_z(x) b^{(1)}(x), \\
(\alpha_{i+1}^{(2)} - \alpha_i^{(2)}) &= f_x(0) \beta_i^{(1)}, \\
- g_z(0) \left(\beta_{i+1}^{(1)} - \beta_i^{(1)} \right) &= g_x(0) \beta_i^{(1)}.
\end{align*}
\] (3.31)

This system can be solved by using (3.5) and computing \(b^{(1)}(x) \) in (3.31b) to give

\[
b^{(1)}(x) = -g_z(x)^{-1} \left[g_y(0) y'(x) + g_z(0) z'(x) + g_y(x) a^{(1)}(x) - f(x) g_y(0) \right],
\]

and then replacing this in (3.31a) to yield

\[
\begin{align*}
\frac{1}{2} y''(x) + (d^{(1)})' (x) &= f_y(x) a^{(1)}(x) - f_z(x) g_z(x)^{-1} \left[g_y(0) y'(x) + g_z(0) z'(x) + g_y(x) a^{(1)}(x) - f(x) g_y(0) \right], \\
(\alpha^{(1)})' (x) + (f_x(x) g_z(x)^{-1} g_y(x) - f_y(x)) a^{(1)}(x) &= 0
\end{align*}
\]

16
Using (3.12a) and \(a_1^{(3)} = 0 \) gives \(a^{(1)}(0) = 0 \). Therefore \(a^{(1)}(x) \) and \(b^{(1)}(x) \) are uniquely determined by (3.31a) and (3.31b). In contrast with the W-IMEX method (3.14b), the left hand side of (3.31b) does not vanish anymore:
\[
g_y(0) a^{(1)}(0) + g_z(0) b^{(1)}(0) = f(0) g_y(0) \Rightarrow g_z(0) b^{(1)}(0) = f(0) g_y(0) \Rightarrow b^{(1)}(0) \neq 0 .
\]

By (3.12a), \(\beta_0^{(1)} \neq 0 \). In general, \(\beta_i^{(1)} = 0 \), \(\forall i \geq 1 \) from (3.31d), and together with (3.31c) and (3.12b) give \(a_i^{(2)} = 0 \), \(\forall i \geq 1 \).

Next we investigate the coefficients of \(h^2 \), which for the smooth part give
\[
\begin{align*}
(a^{(2)})'(x) &= f_y(x) a^{(2)}(x) + f_z(x) b^{(2)}(x) + r^{(2)}(x), \\
0 &= g_y(x) a^{(2)}(x) + g_z(x) b^{(2)}(x) + s^{(2)}(x),
\end{align*}
\]
where \(r^{(2)}(x) \) and \(s^{(2)}(x) \) are known functions that depend on derivatives of \(y(x), z(x), a^{(1)}(x), \) \(b^{(1)}(x) \) and can be shown to be
\[
\begin{align*}
r^{(2)}(x) &= -\frac{1}{6} y''''(x) + \\
&+ \frac{1}{2} f_{yy}(x) (a^{(1)})^2(x) + \frac{1}{2} f_{yz}(x) (b^{(1)})^2(x) + f_{gz}(x) a^{(1)}(x) b^{(1)}(x), \\
s^{(2)}(x) &= \frac{1}{2} g_y(0) y''''(x) + \frac{1}{2} g_z(0) z''''(x) + g_y(0) (a^{(1)})'(x) + g_z(0) (b^{(1)})'(x) + \\
&+ \frac{1}{2} g_{yy}(x) (a^{(1)})^2(x) + \frac{1}{2} g_{yz}(x) (b^{(1)})^2(x) + g_y(x) a^{(1)}(x) b^{(1)}(x) - \left(f_y(x) a^{(2)}(x) + f_z(x) b^{(2)}(x) + \frac{1}{2} (a^{(1)})^2 f_{yy}(0) + \frac{1}{2} (b^{(1)})^2 f_{zz}(0) - \\
&- \left(f_y(0) a_1^{(2)} + f_z(0) b_1^{(2)} \right) g_y(0) + \left(\beta_1^{(1)} b^{(1)}(0) f_{zz}(0) \right) \cdots , \\
&- g_y(0) (a^{(2)}_{i+1} - a_i^{(2)}) - g_z(0) (b^{(2)}_{i+1} - b_i^{(2)}) = g_y(0) a^{(2)}_i + g_{yz}(0) b^{(2)}_i + g_z(0) b^{(2)}_i + \\
&+ \frac{1}{2} (a^{(1)}_i)^2 g_{yy}(0) + \frac{1}{2} (b^{(1)}_i)^2 g_{zz}(0) + \beta_1^{(1)} b^{(1)}(0) g_{zz}(0) + \cdots ,
\end{align*}
\]
where the vanishing terms have been canceled. It follows that
\[
\begin{align*}
\alpha_i^{(3)} - \alpha_i^{(3)} &= f_y(0) a_i^{(2)} + f_z(0) b_i^{(2)} + \frac{1}{2} (a^{(1)}_i)^2 f_{yy}(0) + \frac{1}{2} (b^{(1)}_i)^2 f_{zz}(0) - \\
&- \left(f_y(0) a_1^{(2)} + f_z(0) b_1^{(2)} \right) g_y(0) + \left(\beta_1^{(1)} b^{(1)}(0) f_{zz}(0) \right) \cdots , \\
0 &= g_z(0) b^{(2)}_i + \beta_1^{(1)} b^{(1)}(0) g_{zz}(0) + \cdots ,
\end{align*}
\]

From (3.34), \(\beta_1^{(2)} = 0 \), \(\forall i \geq 2 \) and \(a_1^{(3)} = 0 \), \(\forall i \geq 2 \). This concludes the proof for hypotheses (3.28a) and (3.28b). The general recurrence follows
\[
\begin{align*}
\left(a^{(j)} \right)'(x) &= f_y(x) a^{(j)}(x) + f_z(x) b^{(j)}(x) + r^{(j)}(x), \\
0 &= g_y(x) a^{(j)}(x) + g_z(x) b^{(j)}(x) + s^{(j)}(x), \\
\alpha_i^{(j)} - \alpha_i^{(j)} &= f_y(0) a_i^{(j)} + f_z(0) b_i^{(j)}, \\
0 &= g_z(0) b^{(j)}_i + \alpha_i^{(j)},
\end{align*}
\]
where the smooth terms are determined by (3.35a) and (3.35b). Hypotheses (3.28c) and (3.28d) can be easily verified following the same type of induction on (3.35a) and (3.35b) as in the proof of Theorem 3.1. \(\blacksquare \)
Theorem 3.4 (Accuracy for the extrapolated Pure-IMEX method applied to DAEs). If the harmonic sequence \{1, 2, 3, \ldots\} is considered, then the extrapolated values \(Y_{jk}\) and \(Z_{jk}\) satisfy

\[
Y_{jk} - y(x_0 + h) = O(H^s) \quad \text{and} \quad Z_{jk} - z(x_0 + h) = O(H^s),
\]

where the differential-algebraic orders \(r_{jk}\) and \(s_{jk}\) are given in Table 9.1.

Proof. The orders in Table 9.1 for the Pure-IMEX method can be recovered by using the same procedure as in the proof of Theorem 3.2 with the error expansion given by Theorem 3.3. The major differences are given by the fact that now \(\alpha_i^{(3)}\) is nonzero and thus one classical order is “lost” on the second column of the \(y\) component. Then \(\alpha_i^{(3)}\) gives the third order on the diagonal. For the \(z\) component, \(\beta_i^{(3)}\) is nonzero, and hence the first column of the \(z\) component is 1. Furthermore, \(\beta_i^{(2)}\) does not vanish, and thus the diagonal \(T_{kk}\) is 2 for \(k \geq 2\). The rest follows from the propagation of error terms as described by Table 3.3. \(\square\)

3.3. Split-IMEX Method. The Split-IMEX method (2.4d) applied to (3.3) yields

\[
\begin{pmatrix}
I & 0 \\
-hg_y(0) & \varepsilon I - hg_z(0)
\end{pmatrix}
\begin{pmatrix}
y_{j+1} - y_j \\
z_{j+1} - z_j
\end{pmatrix} = h
\begin{pmatrix}
I & 0 \\
-hg_y(0) & \varepsilon I - hg_z(0)
\end{pmatrix}
\begin{pmatrix}
f(y_j, z_j) \\
0
\end{pmatrix}
\]

\[
+h
\begin{pmatrix}
0 \\
g(y_i + hf(y_i, z_i), z_i)
\end{pmatrix}
or
\begin{pmatrix}
I & 0 \\
-hg_y(0) & \varepsilon I - hg_z(0)
\end{pmatrix}
\begin{pmatrix}
y_{j+1} - y_j \\
z_{j+1} - z_j
\end{pmatrix} = h
\begin{pmatrix}
0 \\
g(y_i + hf(y_i, z_i), z_i) - hg_y(0)f(y_i, z_i)
\end{pmatrix}.
\]

The DAE reduced form given by \(\varepsilon \to 0\) is

\[
\begin{pmatrix}
I & 0 \\
-hg_y(0) & -hg_z(0)
\end{pmatrix}
\begin{pmatrix}
y_{j+1} - y_j \\
z_{j+1} - z_j
\end{pmatrix} = h
\begin{pmatrix}
0 \\
f(y_i, z_i)
\end{pmatrix}.
\]

We continue with a similar pair of theorems (error expansions and extrapolated orders) for the extrapolated Split-IMEX method.

Theorem 3.5 (Global error expansion of the extrapolated Split-IMEX method applied to DAEs). Consider problem (3.4) with consistent initial values \((y_0, z_0)\), and suppose that (3.5) is satisfied. The global error of the Split-IMEX scheme (3.38) then has an asymptotic h-expansion of the form (3.8), where \(a_i^{(j)}(x)\) and \(b_i^{(j)}(x)\) are smooth functions and the perturbations satisfy

\[
\begin{aligned}
a_i^{(1)} &= 0, \quad a_i^{(2)} = 0, \quad b_i^{(1)} = 0, \quad \forall i \geq 0, \\
\alpha_i^{(3)} &= 0, \quad b_i^{(2)} = 0, \quad \forall i \geq 1, \\
\alpha_i^{(4)} &= 0, \quad \forall i \geq j - 2, \quad j \geq 4, \\
b_i^{(4)} &= 0, \quad \forall i \geq j - 1, \quad j \geq 3.
\end{aligned}
\]

The error terms in (3.8) are uniformly bounded for \(x_i = ih \leq H\) if \(H\) is sufficiently small.

Proof. This proof follows the same ideas used in the proof of Theorem 3.1. We begin with part (a) in which the truncated expansions are constructed. The second part can easily be shown to follow the same steps as in the W-IMEX case.

We consider again the truncated expansions (3.10) with defects

\[
\begin{pmatrix}
I & 0 \\
-hg_y(0) & -hg_z(0)
\end{pmatrix}
\begin{pmatrix}
\tilde{y}_{j+1} - \tilde{y}_j \\
\tilde{z}_{j+1} - \tilde{z}_j
\end{pmatrix} =
\begin{pmatrix}
I & 0 \\
-hg_y(0) & -hg_z(0)
\end{pmatrix}
\begin{pmatrix}
f(\tilde{y}_i, z_i) \\
0
\end{pmatrix}
\]

\[
= h
\begin{pmatrix}
0 \\
g(\tilde{y}_i + hf(\tilde{y}_i, z_i), z_i) - hg_y(0)f(\tilde{y}_i, z_i)
\end{pmatrix} + O(h^{M+1}).
\]
The initial values are exact, and the perturbation terms satisfy (3.12). Replacing the Taylor expansion for \(f(y_i, z_i)\) and \(g(y_i, z_i)\) about \((y(x_i), z(x_i))\) in (3.40) yields
\[
\begin{pmatrix}
1 & 0 \\
-hg_y(0) & -hg_z(0)
\end{pmatrix} = \begin{pmatrix}
\frac{1}{2} y''(x) + \frac{h^4}{2!} y^{(4)}(x) + h^2 \left(a^{(1)}(x) \right)'(x) + h \left(\alpha^{(1)}_{i+1} - \alpha^{(1)}_i \right) + h^3 \left(a^{(2)}(x) \right)'(x) + h^2 \left(\alpha^{(2)}_{i+1} - \alpha^{(2)}_i \right) + \ldots \\
hz'(x) + \frac{h^4}{2!} z^{(4)}(x) + h^2 \left(b^{(1)}(x) \right)'(x) + h \left(\beta^{(1)}_{i+1} - \beta^{(1)}_i \right) + h^3 \left(\beta^{(2)}_{i+1} - \beta^{(2)}_i \right) + \ldots
\end{pmatrix}
\]
\[
= \begin{pmatrix}
hf \left(y(x_i), z(x_i) \right) + f_y(x_i) g_y(x_i) + f_z(x_i) g_z(x_i) + f(x_i) g_y(x_i) + f(x_i) g_z(x_i) + f(x_i) g_x(x_i) - f(x_i) g_y(0) \\
hg \left(y(x_i), z(x_i) \right) + g_y(x_i) g_y(x_i) + g_z(x_i) g_z(x_i) + g_z(x_i) g_x(x_i) + g_z(x_i) g_y(x_i) - g_z(x_i) g_y(0)
\end{pmatrix} + \begin{pmatrix}
f_z(x_i) \left(h^2 b^{(1)}(x_i) + h^2 \beta^{(1)}_{i+1} + \ldots \right) + \ldots \\
g_z(x_i) \left(h^2 g^{(1)}(x_i) + h^2 \beta^{(1)}_{i+1} + \ldots \right) + \ldots
\end{pmatrix}
+ \begin{pmatrix}
0 \ldots \\
-h^2 g_y(0) f(y(x_i), z(x_i)) + h^2 g_y(x_i) f(y(x_i), z(x_i)) + \ldots
\end{pmatrix} + O(h^{M+2}).
\]

The coefficients of \(h^1\) in (3.41) give
\[
\begin{pmatrix}
y'(x_i) + \left(\alpha^{(1)}_{i+1} - \alpha^{(1)}_i \right) \\
f(y(x_i), z(x_i)) \\
g(y(x_i), z(x_i))
\end{pmatrix} = \begin{pmatrix}
y'(x_i) + \alpha^{(1)}_i \\
f(y(x_i), z(x_i)) \\
g(y(x_i), z(x_i))
\end{pmatrix}
\]

Using the consistency requirements (3.12b) gives (3.4) and hence \(\alpha^{(1)}_i = 0, \forall i \geq 0\). The \(h^2\) terms give the following system:
\[
\begin{align*}
\frac{1}{2} y''(x) + \left(a^{(1)}(x) \right)'(x) &= f_y(x) a^{(1)}(x) + f_z(x) b^{(1)}(x), \quad (3.42a) \\
-g_y(0) y'(x) - g_z(0) z'(x) &= g_y(x) a^{(1)}(x) + g_z(x) b^{(1)}(x) + f(x) g_y(x) - f(x) g_y(0), \quad (3.42b) \\
\left(\alpha^{(2)}_{i+1} - \alpha^{(2)}_i \right) &= f_z(0) \beta^{(1)}_{i+1}, \quad (3.42c) \\
-g_z(0) \left(\beta^{(1)}_{i+1} - \beta^{(1)}_i \right) &= g_z(0) g_z(x) = g_z(0) g^{(1)}(x).
\end{align*}
\]

The differential equation (3.42a)-(3.42b) can be solved by using (3.5) and computing \(b^{(1)}(x)\) in (3.42b) to give
\[
b^{(1)}(x) = -g_z(x)^{-1} \left[g_y(0) y'(x) + g_z(0) z'(x) + g_y(x) a^{(1)}(x) + f(x) g_y(x) - f(x) g_y(0) \right],
\]
and then replacing it into (3.42a) yields
\[
\frac{1}{2} y''(x) + \left(a^{(1)}(x) \right)'(x) = f_y(x) a^{(1)}(x) - f_z(x) g_z(x)^{-1} \left[g_y(0) y'(x) + g_z(0) z'(x) + g_y(x) a^{(1)}(x) + f(x) g_y(x) - f(x) g_y(0) \right],
\]
\[
\left(a^{(1)}(x) \right)'(x) + f_z(x) g_z(x)^{-1} g_y(x) - f_y(x) \right] a^{(1)}(x) =
\]
\[
= -\frac{1}{2} y''(x) - f_z(x) g_z(x)^{-1} \left[g_y(0) y'(x) + g_z(0) z'(x) + f(x) g_y(x) - f(x) g_y(0) \right].
\]

Using (3.12a) and \(\alpha^{(1)}_0 = 0\), one has that \(a^{(1)}(0) = 0\). Therefore \(a^{(1)}(x)\) and \(b^{(1)}(x)\) are uniquely determined by (3.42a) and (3.42b). The left-hand side of (3.42b) at \(x = 0\) gives
\[
g_y(0) a^{(1)}(0) + g_z(0) b^{(1)}(0) + f(0) g_y(0) - f(0) g_y(0) = 0 \Rightarrow g_z(0) b^{(1)}(0) = 0 \Rightarrow b^{(1)}(0) = 0.
\]

By (3.12a) and (3.42d), \(\beta^{(1)}_0 = 0\), and in general \(\beta^{(1)}_i = 0, \forall i \geq 0\), from (3.42d). Further, by using (3.42c) and (3.12b) one obtains \(\alpha^{(2)}_i = 0, \forall i \geq 0\).
Next we investigate the coefficients of h^3, which for the smooth part give
\begin{align}
\left(a^{(2)} \right) (x) &= f_y(x) a^{(2)}(x) + f_z(x) b^{(2)}(x) + r^{(2)}(x), \\
0 &= g_y(x) a^{(2)}(x) + g_z(x) b^{(2)}(x) + s^{(2)}(x),
\end{align}
where $r^{(2)}(x)$ and $s^{(2)}(x)$ are known functions that depend on derivatives of $y(x), z(x), a^{(1)}(x), b^{(1)}(x)$ and can be shown to be
\begin{align}
r^{(2)}(x) &= -\frac{1}{6} y''''(x) + \\
&\quad + \frac{1}{2} f_{yy}(x) \left(a^{(1)} \right)^2 (x) + \frac{1}{2} f_{zz}(x) \left(b^{(1)} \right)^2 (x) + f_y(x) a^{(1)}(x) b^{(1)}(x), \\
s^{(2)}(x) &= \frac{1}{2} g_y(0) y''''(x) + \frac{1}{2} g_z(0) z''''(x) + g_y(0) \left(a^{(1)} \right)' (x) + g_z(0) \left(b^{(1)} \right)' (x) + \\
&\quad + \left(f_y(x) a^{(1)}(x) + f_z(x) b^{(1)}(x) \right) g_y(x) + \frac{1}{2} g_{yy}(x) \left(a^{(1)}(x) + f(x) \right)^2 + \\
&\quad + \frac{1}{2} g_{zz}(x) \left(b^{(1)} \right)^2 (x) + g_y(x) \left(a^{(1)}(x) + f(x) \right) b^{(1)}(x) - \left(f_y(x) a^{(1)}(x) + f_z(x) b^{(1)}(x) \right) g_y(0).
\end{align}
The perturbations can be expressed as
\begin{align}
\alpha_i^{(3)} - \alpha_i^{(3)} &= f_y(0) \alpha_i^{(2)} + f_z(0) \alpha_i^{(1)} \beta_i^{(2)} + f_z(0) \beta_i^{(2)} + \frac{1}{2} \left(\alpha_i^{(1)} \right)^2 f_{yy}(0) + \frac{1}{2} \left(\beta_i^{(1)} \right)^2 f_{zz}(0) - \\
&\quad - \left(f_y(0) \alpha_i^{(1)} + f_z(0) \beta_i^{(2)} \right) g_y(0) + \beta_i^{(1)}(0) f_{zz}(0) + \cdots, \\
- g_y(0) \left(a_{i+1}^{(2)} - \alpha_i^{(2)} \right) - g_z(0) \left(\beta_i^{(2)} \right) &= g_y(0) \alpha_i^{(2)} + \frac{1}{2} g_z(0) \alpha_i^{(1)} \beta_i^{(2)} + g_y(0) \beta_i^{(2)} + \\
&\quad + \frac{1}{2} \left(\alpha_i^{(1)} \right)^2 g_{yy}(0) + \frac{1}{2} \left(\beta_i^{(1)} \right)^2 g_{zz}(0) + \beta_i^{(1)}(0) g_{zz}(0) + \cdots,
\end{align}
where the vanishing terms have been canceled. It follows that
\begin{align}
\alpha_i^{(3)} - \alpha_i^{(3)} &= f_y(0) \beta_i^{(2)}, \\
0 &= g_z(0) \beta_i^{(2)}.
\end{align}
From (3.45), $\beta_i^{(2)} = 0, \forall i \geq 1$, and $\alpha_i^{(3)} = 0, \forall i \geq 1$.

The coefficients in h^4 reveal that the perturbations satisfy
\begin{align}
\alpha_i^{(4)} - \alpha_i^{(4)} &= f_y(0) \alpha_i^{(3)} + f_z(0) \beta_i^{(3)}, \\
0 &= g_y(0) \beta_i^{(3)} + g_y(0) \alpha_i^{(3)} + f(0) g_{zz}(0) \beta_i^{(2)}.
\end{align}
From (3.46) we have that $\beta_i^{(3)} = 0, \forall i \geq 2$ and $\alpha_i^{(4)} = 0, \forall i \geq 2$. This concludes the proof for hypotheses (3.39a) and (3.39b). The general recurrence formula follows as
\begin{align}
\left(a^{(l)} \right)'(x) &= f_y(x) a^{(l)}(x) + f_z(x) b^{(l)}(x) + r^{(l)}(x), \\
0 &= g_y(x) a^{(l)}(x) + g_z(x) b^{(l)}(x) + s^{(l)}(x), \\
\alpha_i^{(l+1)} - \alpha_i^{(l+1)} &= f_y(0) \beta_i^{(l)} + \beta_i^{(l)}, \\
0 &= g_z(0) \beta_i^{(l)} + \alpha_i^{(l)},
\end{align}
where the smooth terms are determined by (3.47a) and (3.47b). Hypotheses (3.39c) and (3.39d) can be easily verified following the same type of induction on (3.47a) and (3.47b) as in the proof of Theorem 3.1. \(\square\)
Theorem 3.6 (Accuracy for the extrapolated Split-IMEX method applied to DAEs). If the harmonic sequence \(\{1, 2, 3, \ldots\} \) is considered, then the extrapolated values \(Y_{\bar{k}} \) and \(Z_{\bar{k}} \) satisfy

\[
Y_{\bar{k}} - y(x_0 + h) = O(H^s), \quad Z_{\bar{k}} - z(x_0 + h) = O(H^s),
\]

where the differential-algebraic orders \(r_{\bar{k}} \) and \(s_{\bar{k}} \) are given in Table 9.1.

Proof. The orders in Table 9.1 for the Split-IMEX method can be recovered by using the same procedure as in the proof of Theorem 3.2 with the error expansion given by Theorem 3.5. In contrast with the proof of Theorem 3.4, \(\alpha_0^{(3)} \) is nonzero, and thus one classical order is “lost” on the third column of the \(y \) component. Then \(\alpha_1^{(4)} \) gives the fourth order on the diagonal. For the \(z \) component, \(\beta_1^{(2)} \) is nonzero, and hence the second column of the \(z \) component is 2. Furthermore, \(\beta_1^{(3)} \) does not vanish, and thus the diagonal \(T_{\bar{k}k} \) is 3 for \(k \geq 3 \). The rest follows from the propagation of error terms as described by Table 3.3.

The previous theorem concludes the set of theoretical results for the proposed three extrapolated IMEX methods applied to DAEs. The results point to the W-IMEX scheme as being the most accurate; however, from the implementation point of view, the Split-IMEX scheme is superior. The Split-IMEX method gives a good balance between accuracy and computational cost.

4. Numerical Results for Extrapolated IMEX Applied to DAEs. We illustrate the theoretical findings using two DAE examples: the reduced van der Pol equation and a trigonometric problem developed by us. The reduced van der Pol equation comes from the stiff van der Pol ODE with \(\epsilon \to 0 \), which is a typical example for numerical stiffness analysis. In this case the numerical results with Split-IMEX have a slightly higher order than what the theory predicts. We explain this phenomenon and use the trigonometric equation to illustrate that the numerical orders concur with the theoretical ones.

Methods (2.4) are implemented in Matlab by using variable-precision arithmetic with 64 digits of accuracy. For van der Pol a reference solution is computed with very high accuracy.

Methods (2.4) are implemented in the following way:

\[
\begin{align*}
\begin{pmatrix} y_{i+1} \\ z_{i+1} \end{pmatrix} &= \begin{pmatrix} y_i \\ z_i \end{pmatrix} + h \begin{pmatrix} I - hf_y(0) & -hf_z(0) \\ -hg_y(0) & -hg_z(0) \end{pmatrix}^{-1} \begin{pmatrix} f(y_i, z_i) \\ g(y_i, z_i) \end{pmatrix}, \quad \text{linearly implicit} \quad (4.1a) \\
\begin{pmatrix} y_{i+1} \\ z_{i+1} \end{pmatrix} &= \begin{pmatrix} y_i \\ z_i \end{pmatrix} + hJ^{-1} \begin{pmatrix} f(y_i, z_i) \\ g(y_i, z_i) \end{pmatrix}, \quad \text{W-IMEX} \quad (4.1b) \\
\begin{pmatrix} y_{i+1} \\ z_{i+1} \end{pmatrix} &= \begin{pmatrix} y_i \\ z_i \end{pmatrix} + h \begin{pmatrix} f(y_i, z_i) \\ 0 \end{pmatrix} + hJ^{-1} \begin{pmatrix} 0 \\ g(y_i, z_i) \end{pmatrix}, \quad \text{Pure-IMEX} \quad (4.1c) \\
\begin{pmatrix} \overline{y}_{i+1} \\ \overline{z}_{i+1} \end{pmatrix} &= \begin{pmatrix} \overline{y}_{i+1} \\ \overline{z}_{i+1} \end{pmatrix} + hJ^{-1} \begin{pmatrix} 0 \\ g(y_i, z_i) \end{pmatrix}, \quad \text{Split-IMEX} \quad (4.1d)
\end{align*}
\]

where

\[
\overline{J} = \begin{pmatrix} I & 0 \\ -hg_y(0) & -hg_z(0) \end{pmatrix}, \quad \begin{pmatrix} \overline{y}_{i+1} \\ \overline{z}_{i+1} \end{pmatrix} = \begin{pmatrix} y_i \\ z_i \end{pmatrix} + h \begin{pmatrix} f(y_i, z_i) \\ 0 \end{pmatrix}.
\]

The experiments consist in integrating the problem by taking successively smaller steps \(H \) while using the same sequence \(n_i \).

4.1. Experiments with the Van Der Pol Equation. The reduced van der Pol equation is given by

\[
\begin{align*}
y' &= -z \\
0 &= y - (\frac{z^3}{3} - z) = g(y, z)
\end{align*}
\]

(4.2)
are the second set of main results of this paper. Their solution described by Lemma C.2 will be the basis for proving the next theorems, which form (in line with (3.16)):

The favorable convergence results obtained for DAEs in the previous sections do not extend directly to the stiff ODEs (5.1) and noting that $g(y, z)$ is nonzero. The experimental orders for the Split-IMEX method are higher than the orders predicted by the theory. We can explain this disagreement by paying a closer attention to the diagonal terms corresponding to the γ and α components.

Next we explore an example that has $g(y, z)$ nonzero in order to illustrate the theoretical findings for the Split-IMEX method.

4.2. Experiments with a Trigonometric Equation. We next investigate the numerical solution of the following DAE discretized by using the Split-IMEX method:

$$\begin{align*}
y' &= \frac{y}{z\sqrt{\frac{y^2}{z^2} - 1}} = f(y, z) \\
0 &= z^2 - \frac{1}{1 + y^2} - y^2 \left(\frac{1}{z^2} - 1\right) = g(y, z)
\end{align*} \tag{4.3}$$

The exact solution is $y(t) = \sinh(t)$, $z(t) = \tanh(t)$. We start with $t_0 = 0.5$ and note that $g(y, z)$ is nonzero. The experimental orders for Split-IMEX are shown in Table 4.1. The orders can be verified to be the same as the theoretical ones given in Table 9.1. We note that the results happen because of variations in the convergence slope, which is caused either by linear instability or by round-off. The edited places are marked in parentheses.

5. Global Error Expansion for Extrapolated IMEX Methods Applied to stiff ODEs. In this section we extend the theoretical results for the global error expansion of extrapolated implicit-explicit methods applied to stiff ODEs. For this analysis we consider the following singular perturbation system [Hairer and Lubich, 1988; Auzinger et al., 1990]:

$$\begin{align*}
y' &= f(y, z), \quad y(0) = y_0 \\
\varepsilon z' &= g(y, z), \quad z(0) = z_0, \quad 0 < \varepsilon \ll 1,
\end{align*} \tag{5.1}$$

which is solved using the W-IMEX (3.6), Pure-IMEX (3.25), and Split-IMEX (3.37) schemes. The favorable convergence results obtained for DAEs in the previous sections do not extend directly to the stiff ODEs ($\varepsilon \neq 0$, $\varepsilon \leq h$). In this case, the asymptotic expansions of the global error is more complicated, especially for “small” values of H. Moreover, different convergence regimes can be identified for the numerical approximations in the extrapolation tableau that depend on H/ε. We study the asymptotic behavior of the global error for the proposed IMEX methods and explore the reasons for the changes in their convergence slope.

5.1. W-IMEX. We start with the W-IMEX method and consider equations of the following form (in line with (3.16)):

$$\begin{align*}
a' &= f_g(x)a + f_c(x)b + c(x, \varepsilon), \\
cb' &= g_g(x)a + g_c(x)b + d(x, \varepsilon).
\end{align*} \tag{5.2}$$

Their solution described by Lemma C.2 will be the basis for proving the next theorems, which are the second set of main results of this paper.

Theorem 5.1 (Global error expansion for the extrapolated W-IMEX applied to stiff ODEs). Assume that the solution of (5.1) is smooth. Under the condition (given by (5.3))

$$\|I - \gamma g_c(x)\| \leq \frac{1}{1 + \gamma} \quad \text{for} \quad \gamma \geq 1,$$
Numerical approximation of the extrapolated local orders for the trigonometric DAE using the Split-IMEX scheme (based on L_1 error norm).

<table>
<thead>
<tr>
<th></th>
<th>y_{jk}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>1.9 3.0</td>
</tr>
<tr>
<td>3</td>
<td>1.9 3.0 3.0</td>
</tr>
<tr>
<td>4</td>
<td>2.0 3.0 2.9 4.0</td>
</tr>
<tr>
<td>5</td>
<td>2.0 3.0 3.0 4.0 4.0</td>
</tr>
<tr>
<td>6</td>
<td>2.0 3.0 3.0 4.9 4.9 4.0</td>
</tr>
<tr>
<td>7</td>
<td>2.0 3.0 3.0 4.9 4.9 4.1</td>
</tr>
<tr>
<td>8</td>
<td>2.0 3.0 3.0 4.9 4.9 4.9 4.9 (4)</td>
</tr>
<tr>
<td>9</td>
<td>2.0 3.0 3.0 4.9 4.9 5.9 5.0 5.0 (4)</td>
</tr>
<tr>
<td>10</td>
<td>2.0 3.0 3.0 4.9 4.9 5.9 5.9 5.0 5.0 (4)</td>
</tr>
<tr>
<td>11</td>
<td>2.0 3.0 3.0 4.9 4.9 6.8 6.9 5.9 5.1 (4)</td>
</tr>
<tr>
<td>12</td>
<td>2.0 3.0 3.0 4.9 4.9 6.8 8.1 6.9 6.0 5.2 (4)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>z_{jk}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>2.0 2.0</td>
</tr>
<tr>
<td>3</td>
<td>2.2 2.0 3.0</td>
</tr>
<tr>
<td>4</td>
<td>1.8 2.0 2.9 3.0</td>
</tr>
<tr>
<td>5</td>
<td>1.9 2.0 2.9 4.0 3.0</td>
</tr>
<tr>
<td>6</td>
<td>1.9 2.0 2.9 3.9 4.0 3.1</td>
</tr>
<tr>
<td>7</td>
<td>1.9 2.0 2.9 3.9 5.0 4.0 3.2</td>
</tr>
<tr>
<td>8</td>
<td>1.9 2.0 2.9 3.9 4.9 4.0 4.0 (3)</td>
</tr>
<tr>
<td>9</td>
<td>2.0 2.0 2.9 3.9 4.9 6.0 5.0 4.0 (3)</td>
</tr>
<tr>
<td>10</td>
<td>2.0 2.0 2.9 3.9 4.9 5.9 5.9 5.0 4.1 (3)</td>
</tr>
<tr>
<td>11</td>
<td>2.0 2.0 3.0 3.9 4.9 5.9 7.0 5.9 5.0 4.2 (3)</td>
</tr>
<tr>
<td>12</td>
<td>2.0 2.0 3.0 3.9 4.9 5.9 6.9 6.9 6.0 5.0 4.3 (3)</td>
</tr>
</tbody>
</table>

The numerical solution of (3.6) possesses for $\varepsilon \leq h$ a perturbed asymptotic expansion of the form

$$y_i = y(x_i) + h a^{(1)}(x_i) + h^2 a^{(2)}(x_i) + O(h^3) - \varepsilon f_z(0) g_x(0) \left(1 - \frac{h}{\varepsilon} g_x(0) \right)^{-1} \left(h b^{(1)}(0) + h^2 b^{(2)}(0) \right),$$

$$z_i = z(x_i) + h b^{(1)}(x_i) + h^2 b^{(2)}(x_i) + O(h^3) - \left(1 - \frac{h}{\varepsilon} g_x(0) \right)^{-1} \left(h b^{(1)}(0) + h^2 b^{(2)}(0) \right),$$

where $x_i = i h \leq H$ with H sufficiently small independent of ε. The smooth functions $a^{(1)}(0) = O(\varepsilon h)$, $a^{(2)}(0) = O(h)$, $b^{(1)}(0) = O(\varepsilon)$, $b^{(2)}(0) = O(1)$.

23
Inserting it in (5.7b) at x yields
\[
\hat{y}_i = y(x_i) + \sum_{j=1}^{M} h^j \left(a_i^{(j)}(x_i) + \alpha_i^{(j)} \right)
\]
\[
\hat{z}_i = z(x_i) + \sum_{j=1}^{M} h^j \left(b_i^{(j)}(x_i) + \beta_i^{(j)} \right)
\]
(5.5)
such that
\[
\begin{pmatrix}
\frac{1}{h} & 0 \\
- h g_y(0) & -h g_z(0)
\end{pmatrix}
\begin{pmatrix}
\hat{y}_{i+1} - \hat{y}_i \\
\hat{z}_{i+1} - \hat{z}_i
\end{pmatrix} = h \left(f \left(y(x), z(x) \right) \right) + O(h^{M+2})
\]
(5.6)
is satisfied.

a) The smooth functions $a(x)$ and $b(x)$ depend on ε but are independent of h. The perturbation terms $a_i^{(j)}$ and $\beta_i^{(j)}$, $\forall i \geq 1$, depend smoothly on ε and ε/h. We also consider (3.12a) and (3.12b) satisfied.

$M = 0$. This case is easily verified.

$M = 1$. We insert (5.5) in (5.6) and compare the smooth coefficients of h^2:
\[
\left(\hat{a}^{(1)} \right)(x) + \frac{1}{2} y''(x) = f_y(x) a^{(1)}(x) + f_z(x) b^{(1)}(x),
\]
\[
\frac{1}{2} \varepsilon z''(x) - g_y(0) y'(x) - g_z(0) z'(x) + \varepsilon \left(b^{(1)} \right)'(x) = g_y(x) a^{(1)}(x) + g_z(x) b^{(1)}(x).
\]
(5.7a)
(5.7b)
By Lemma C.2, the initial value $b^{(1)}(0)$ is uniquely determined by $a^{(0)}(0)$. Differentiating $\varepsilon z'(x) = g(y(x), z(x))$ gives
\[
\varepsilon z''(x) = g_y(x) y'(x) + g_z(x) z'(x),
\]
and inserting it in (5.7b) at $x = 0$ yields
\[
g_y(0) a^{(1)}(0) + g_z(0) b^{(1)}(0) = -\frac{1}{2} \left(g_y(0) y'(0) + g_z(0) z'(0) \right) + \varepsilon \left(b^{(1)} \right)'(0),
\]
\[
g_y(0) a^{(1)}(0) + g_z(0) b^{(1)}(0) = O(\varepsilon),
\]
(5.8)
with known right-hand side. The perturbation terms up to $O(h^2)$ give
\[
a^{(1)}_{i+1} - a_i^{(1)} = h f_y(x_i) a_i^{(1)} + h f_z(x_i) \beta_i^{(1)},
\]
\[
\varepsilon \left(b^{(1)}_{i+1} - b_i^{(1)} \right) - h g_y(0) \left(a^{(1)}_{i+1} - a_i^{(1)} \right) - h g_z(0) \left(\beta_i^{(1)} - \beta_i^{(1)} \right) = h g_y(x_i) a_i^{(1)} + h g_z(x_i) \beta_i^{(1)}.
\]
(5.9a)
(5.9b)
Next we try to eliminate as many terms in (5.9) as possible by replacing $f_y(x_i)$ with $f_y(0)$, $g_y(x_i)$ with $g_y(0)$, and so on. With $x_i = ih$, the following substitution is of order h: $f_y(x_i) = f_y(0) = O(h)$ for $i \leq 1$. Then we are left with
\[
\left\{ \begin{array}{c}
a^{(1)}_{i+1} - a_i^{(1)} = h f_y(0) a_i^{(1)} + h f_z(0) \beta_i^{(1)} + O(h^2) \\
\varepsilon \left(b^{(1)}_{i+1} - b_i^{(1)} \right) - h g_y(0) \left(a^{(1)}_{i+1} - a_i^{(1)} \right) - h g_z(0) \left(\beta_i^{(1)} - \beta_i^{(1)} \right) = h g_y(0) a_i^{(1)} + h g_z(0) \beta_i^{(1)}
\end{array} \right.
\]
After further cancellations we obtain
\[
\begin{align*}
\frac{a_i^{(1)} - a_i^{(1)}}{\varepsilon} &= hf_{y}(0)a_i^{(1)} + hf_{z}(0)b_i^{(1)} + O(h^2) \\
\frac{\varepsilon}{\beta_i^{(1)} + h g_{z}(0) a_i^{(1)} - h g_{z}(0) p_i^{(1)}} &= O(h^2)
\end{align*}
\] (5.10)

In the second expression of (5.10), we note that $\beta_i^{(1)}$ is multiplied by ε, whereas $a_i^{(1)}$ is not and thus can be ignored (for $\varepsilon \ll h$). Then we get
\[
\begin{align*}
\alpha_i^{(1)} - \alpha_i^{(1)} &= hf_{z}(0)\beta_i^{(1)} \\
\varepsilon(\beta_i^{(1)} - \beta_i^{(1)}) &= hg_{z}(0)\beta_i^{(1)}.
\end{align*}
\] (5.11a)(5.11b)

We next analyze the solutions of (5.7), (5.11) when substituted in (5.6). From (5.11b) we obtain
\[
\begin{align*}
\beta_i^{(1)} &= (1 - h g_{z}(0))^{-1} \beta_i^{(1)}, \\
\beta_0^{(1)} &= (1 - h g_{z}(0))^{-1} \beta_0^{(1)}, \\
\beta_2^{(1)} &= (1 - h g_{z}(0))^{-1} \beta_1^{(1)} = (1 - h g_{z}(0))^{-1} (1 - h g_{z}(0))^{-1} (1 - h g_{z}(0))^{-2} \beta_0^{(1)},
\end{align*}
\] with
\[
\beta_i^{(1)} = (1 - h g_{z}(0))^{-i} \beta_0^{(1)}. \tag{5.12}
\]

Substituting (5.12) in (5.11a) and using (3.12b), we get
\[
\begin{align*}
\alpha_i^{(1)} - \alpha_i^{(1)} &= hf_{z}(0)\beta_i^{(1)} = hf_{z}(0) \left(1 - \frac{h}{\varepsilon} g_{z}(0) \right)^{-1} \beta_i^{(1)}, \\
\alpha_i^{(1)} &= \alpha_i^{(1)} - hf_{z}(0) \left(1 - \frac{h}{\varepsilon} g_{z}(0) \right)^{-1} \beta_0^{(1)}, \\
\alpha_i^{(1)} &= \alpha_i^{(1)} - hf_{z}(0) \left(1 - \frac{h}{\varepsilon} g_{z}(0) \right)^{-1} \beta_0^{(1)}, \\
\alpha_i^{(1)} &= \alpha_i^{(1)} - hf_{z}(0) \sum_{k=1}^{\infty} \left(1 - \frac{h}{\varepsilon} g_{z}(0) \right)^{-1} \beta_0^{(1)} + \left(1 - \frac{h}{\varepsilon} g_{z}(0) \right)^{-i+1} \beta_0^{(1)}, \\
\alpha_i^{(1)} &= -hf_{z}(0) \left(1 - \frac{h}{\varepsilon} g_{z}(0) \right)^{-1} \left(1 - \frac{h}{\varepsilon} g_{z}(0) \right)^{-1+1} \beta_0^{(1)} = \varepsilon f_{z}(0) g_{z}^{-1}(0) \left(1 - \frac{h}{\varepsilon} g_{z}(0) \right)^{-1} \beta_0^{(1)}.
\end{align*}
\] (5.13)

Expression (5.13) at $i = 0$ with $\varepsilon \ll h$ yields
\[
\alpha_0^{(1)} = \varepsilon f_{z}(0) g_{z}^{-1}(0) \left(1 - \frac{h}{\varepsilon} g_{z}(0) \right) \beta_0^{(1)} = O(h) \beta_0^{(1)} = O(ch). \tag{5.14}
\]

In the previous relation we used (5.8) and (3.12a) to bound $\beta_0^{(1)}$. From consistency assumptions (3.12a) (i.e., $a^{(0)} + \alpha_0^{(0)} = 0$, $b^{(0)} + \beta_0^{(0)} = 0$), with (5.8) and (5.14) and Lemma C.2, we
have that the coefficients $a^{(1)}(0)$, $b^{(1)}(0)$, $a^{(1)}_0$, $\beta^{(1)}_0$ are uniquely determined; moreover, we have $a^{(1)}(0) = O(\varepsilon h)$ and $b^{(1)}(0) = O(\varepsilon)$ (as $\alpha^{(1)} = O(\varepsilon h)$, $\beta^{(1)} = O(\varepsilon)$). Now the relation (5.6) can be verified for $M = 1$, $\varepsilon \leq h$, as follows. Replacing (5.5) in (5.6) gives

$$h \left(\alpha^{(1)}_{i+1} - \alpha^{(1)}_i + y' \right) + h^2 \frac{1}{2} y'' + (a^{(2)})' (x) =$$

$$= h \left(f(x) + h^2 \left(\left(\alpha^{(1)}_i + a^{(1)}(0) \right) f_y(x) + \left(\beta^{(1)}_i + b^{(1)}(0) \right) f_y(x) \right) + O(h^3) \right),$$

$$h \varepsilon \left(\beta^{(1)}_{i+1} - \beta^{(1)}_i + z' \right) + h^2 \frac{1}{2} \varepsilon z''' + g_y(0) \left(\alpha^{(1)}_i - \alpha^{(1)}_{i+1} \right) + g_z(0) \left(\beta^{(1)}_i - \beta^{(1)}_{i+1} \right) - z' g_z(0) - y' g_y(0) + \varepsilon \left(b^{(1)} \right)'(x) =$$

$$= h \left(g(x) + h^2 \left(\left(\alpha^{(1)}_i + a^{(1)}(0) \right) g_y(x) + \left(\beta^{(1)}_i + b^{(1)}(0) \right) g_z(x) \right) + O(h^3) \right).$$

Smooth terms $a^{(1)}(x)$, $(a^{(1)})' (x)$, $b^{(1)}(x)$, $(b^{(1)})' (x)$ will cancel all $O(1)$ terms according to (5.7) except for the perturbation terms, which require $a^{(1)}_i = O(h^2)$ and $\beta^{(1)}_i = O(h)$. It follows that relation (5.6) is satisfied for $a^{(1)}_i = O(\varepsilon h)$ and $\beta^{(1)}_i = O(\varepsilon)$, $\varepsilon \leq h$.

$M = 2$. We again insert (5.5) in (5.6) and compare the smooth coefficients of h^3:

$$\left(a^{(2)} \right)' (x) + \frac{1}{6} y'''(x) =$$

$$= a^{(2)}(x) f_y(x) + \frac{1}{2} \left(a^{(1)} \right)^2(x) f_y(x) + a^{(1)}(x) b^{(1)}(0) f_y(x) + f_x(x) b^{(2)}(x) + \frac{1}{2} \left(b^{(1)} \right)^2(x) f_x(x),$$

$$\frac{1}{6} \varepsilon z'''(x) - \frac{1}{2} g_y(0) y''(x) - \frac{1}{2} g_z(0) z''(x) - \varepsilon \left(a^{(1)} \right)'(x) + g_y(0) \left(b^{(1)} \right)'(x) =$$

$$= g_y(x) a^{(2)}(x) + g_z(x) b^{(2)}(x) + \frac{1}{2} g_{yy}(x) \left(a^{(1)} \right)^2(x) + g_{yz}(x) a^{(1)}(x) b^{(1)}(x) + \frac{1}{2} g_{zz}(x) (b^{(1)}(x))^2,$$

which has the same form as (5.2). Equation (5.16a) gives

$$\left(a^{(2)} \right)' (x) = a^{(2)}(x) f_y(x) + f_x(x) b^{(2)}(x) + c(x, \varepsilon),$$

$$c(x, \varepsilon) = \frac{1}{6} y'''(x) + \frac{1}{2} \left(a^{(1)} \right)^2(x) f_y(x) + a^{(1)}(x) b^{(1)}(0) f_y(x) + \frac{1}{2} \left(b^{(1)} \right)^2(x) f_x(x).$$

Using $\varepsilon z'(x) = g(y(x), z(x))$ yields

$$\varepsilon z'''(x) = g_y(x) y''(x) + g_z(x) z''(x) +$$

$$+ \left(g_{yz}(x) z'(x) + g_{yy}(x) y'(x) \right) y'(x) + \left(g_{zz}(x) z'(x) + g_{yz}(x) y'(x) \right) z'(x),$$

and then inserting it in (5.16b) gives

$$\varepsilon \left(b^{(2)} \right)'(x) = g_y(x) a^{(2)}(x) + g_z(x) b^{(2)}(x) + d(x, \varepsilon),$$

$$d(x, \varepsilon) = -\frac{1}{6} \left[\left(g_{yz}(x) z'(x) + g_{yy}(x) y'(x) \right) y'(x) + \left(g_{zz}(x) z'(x) + g_{yz}(x) y'(x) \right) z'(x) \right]$$

$$+ \frac{1}{2} g_y(0) y''(x) + \frac{1}{2} g_z(0) z''(x) + g_y(0) \left(a^{(1)} \right)'(x) + g_z(0) \left(b^{(1)} \right)'(x)$$

$$- \frac{1}{6} \left(g_y(x) y''(x) + g_z(x) z''(x) \right) + \frac{1}{2} g_{yy}(x) \left(a^{(1)} \right)^2(x) + g_{yz}(x) a^{(1)}(x) b^{(1)}(x) + \frac{1}{2} g_{zz}(x) (b^{(1)}(x))^2.$$
Further, by evaluating at \(x = 0 \) we obtain
\[
\varepsilon \left(b^{(2)} \right)'(0) = g_y(0) a^{(2)}(0) + g_z(0) b^{(2)}(0) + d(0, \varepsilon),
\]
\[
d(0, \varepsilon) = -\frac{1}{6} \left[\left(g_{yy}(0) y'(0) + g_{yz}(0) y'(0) \right) y'(0) + \left(g_{zz}(0) z'(0) + g_{yz}(0) y'(0) \right) z'(0) \right] +
\]
\[
+ \frac{1}{3} g_y(0) y''(0) + \frac{1}{3} g_z(0) z''(0) + \frac{1}{3} g_{y}(0) b^{(1)}(0) \left(\frac{a^{(1)}}{0} \right) + g_z(0) b^{(1)}(0) + \frac{1}{2} g_{zz}(0) \left(b^{(1)}(0) \right)^2.
\]
It follows from Lemma C.2 and \(d(0, \varepsilon) = O(1) \) that
\[
g_y(0) a^{(2)}(0) + g_z(0) b^{(2)}(0) = O(1).
\]
Just as in the \(M = 1 \) case, for the perturbations we require
\[
\alpha_i^{(2)} - \alpha_i^{(2)} = hf_i(0) \beta_i^{(2)}
\]
\[
\varepsilon \left(\beta_i^{(2)} - \beta_i^{(2)} \right) = h g_z(0) \beta_i^{(2)}
\]
and
\[
\beta_i^{(2)} = \left(I - \frac{h}{\varepsilon g_z(0)} \right)^{-i} \beta_0^{(2)},
\]
\[
\alpha_i^{(2)} = \varepsilon f_z(0) g_z^{-1}(0) \left(I - \frac{h}{\varepsilon g_z(0)} \right)^{-i} \beta_0^{(2)},
\]
\[
\alpha_0^{(2)} = \varepsilon f_z(0) g_z^{-1}(0) \left(I - \frac{h}{\varepsilon g_z(0)} \right) \beta_0^{(2)}.
\]
are obtained just as for (5.12), (5.13), and (5.14), respectively. The values \(a^{(1)}(0), b^{(1)}(0), \alpha_i^{(1)}, \beta_0^{(1)} \) are uniquely determined by (3.12a), (5.17), and (5.19c). We again remark that using Lemma C.2 together with (5.16) gives \(a^{(2)}(0) = O(h) \) and \(b^{(1)}(0) = O(1) \); moreover, by using (3.12a) we obtain that \(\alpha_i^{(2)} = O(h) \) for \(\varepsilon \leq h \). The verification of (5.6) for \(M = 2 \) is tedious, but it can be shown to be satisfied in general by considering the following remarks. The coefficients of \(h^1 \) can be ignored because they vanish for large \(\varepsilon \)'s. The assumption (5.3) gives \(\beta_i^{(1)} = O(\varepsilon^{-2i}) \) and \(\beta_i^{(2)} = O(2^{-i}) \). These terms can also be neglected; however, in practice, they can give additional convergence regimes that quickly vanish. The convergence (\(H \to 0, H/\varepsilon \to \infty \)) will have different slopes that are determined by the ratio of \(H \) and \(\varepsilon \).

This analysis gets complicated for \(M \geq 3 \); however, we do not need to go any further to understand the error behavior in practical applications.

b) The second part of the proof consists in estimating a bound on the reminder term just as we did for the proof of Theorem 3.1, that is, differences \(\Delta y_i = y_i - \hat{y}_i \) and \(\Delta z_i = z_i - \hat{z}_i \). Subtracting (5.6) from (3.6) and eliminating \(\Delta y_i \) and \(\Delta z_i \) gives
\[
\begin{pmatrix}
 I & 0 \\
 -h g_y(0) & \varepsilon I - h g_z(0)
\end{pmatrix}
\begin{pmatrix}
 y_{i+1} - y_i \\
 z_{i+1} - z_i
\end{pmatrix}
- \begin{pmatrix}
 I & 0 \\
 -h g_y(0) & \varepsilon I - h g_z(0)
\end{pmatrix}
\begin{pmatrix}
 \hat{y}_{i+1} - \hat{y}_i \\
 \hat{z}_{i+1} - \hat{z}_i
\end{pmatrix}
= \begin{pmatrix}
 \frac{I}{h} g_y(y_i, z_i) - \frac{I}{h} g_{yz}(y_i, z_i) + \frac{O(h^{M+2})}{h} \\
 \frac{I}{g_y(y_i, z_i)} - \frac{I}{g_{yz}(y_i, z_i)} + \frac{O(h^{M+2})}{g_y(y_i, z_i)}
\end{pmatrix}
\begin{pmatrix}
 y_{i+1} - y_i \\
 z_{i+1} - z_i
\end{pmatrix}
=
\begin{pmatrix}
 I & 0 \\
 -h g_y(0) & \varepsilon I - h g_z(0)
\end{pmatrix}
\begin{pmatrix}
 \Delta y_{i+1} \\
 \Delta z_{i+1}
\end{pmatrix}
- \begin{pmatrix}
 I & 0 \\
 -h g_y(0) & \varepsilon I - h g_z(0)
\end{pmatrix}
\begin{pmatrix}
 \Delta y_i \\
 \Delta z_i
\end{pmatrix}
=
of the global error for the linearly implicit method [Hairer and Wanner, 1993, p. 438], the first subdiagonal (we now focus on the global error expansion of the stiff component (5.4), which gives the following leading term:

\[
Z_{j1} = \left(I - \frac{h}{\varepsilon} g_z(0) \right)^{-\eta_j + 1} \left(h b^{(1)}(0) + h^2 b^{(2)}(0) \right) = h^2 \left(I - \frac{h}{\varepsilon} g_z(0) \right)^{-\eta_j + 1} b^{(2)}(0).
\]

We further consider \(g_z(0) \approx -1 \), and with \(H = h/n_j \) we have

\[
T_{j1} = \left(\frac{H}{\varepsilon n_j} \right)^2 \left(1 + \frac{H}{\varepsilon n_j} \right)^{-\eta_j + 1} b^{(2)}(0),
\]

\[
Z_{j1} = \varepsilon^2 T_{j1} b^{(2)}(0).
\]

The error propagates through the extrapolation tableau through (2.3a). Similar to the behavior of the global error for the linearly implicit method [Hairer and Wanner, 1993, p. 438], the first subdiagonal \((T_{j,j-1}) \) with \(n_1 = 1 \) gives

\[
T_{j,j-1} = \text{const.} \left(\frac{H}{\varepsilon} \right)^{2-n_2} + O \left(\frac{H}{\varepsilon} \right)^{2-n_2},
\]

where the constant is determined by (2.3a). This suggests a superposition of the convergence slopes predicted for DAEs and a factor \(O(\varepsilon^2) \).
5.2. Pure-IMEX Method. We now consider the Pure-IMEX method applied to SPP (5.1) to give (3.25).

Theorem 5.2 (Global error expansion for the extrapolated Pure-IMEX method applied to stiff ODEs). Assume that the solution of (5.1) is smooth. Under the condition (5.3) the numerical solution of (3.25) possesses for \(\varepsilon \leq h \) a perturbed asymptotic expansion of the form

\[
y_i = y(x_i) + h a^{(1)}(x_i) + h^2 a^{(2)}(x_i) + O(h^3) -
\]

\[
- \varepsilon f_z(0) g_z^{-1}(0) \left(I - \frac{h}{\varepsilon g_z(0)} \right)^{-1} \left(h b^{(1)}(0) + h^2 b^{(2)}(0) \right),
\]

\[
z_i = z(x_i) + h b^{(1)}(x_i) + h^2 b^{(2)}(x_i) + O(h^3) -
\]

\[
- \left(I - \frac{h}{\varepsilon g_z(0)} \right)^{-1} \left(h b^{(1)}(0) + h^2 b^{(2)}(0) \right),
\]

where \(x_i = \varepsilon h \leq H \) with \(H \) sufficiently small independent of \(\varepsilon \). The smooth functions \(a^{(1)}(0) = O(h) \), \(a^{(2)}(0) = O(h) \), \(b^{(1)}(0) = O(1) \), \(b^{(2)}(0) = O(1) \).

Proof. The proof goes along the same lines as for Theorem 5.1. We begin with the same assumptions (5.2), (5.5), and instead of (5.6) one obtains

\[
\begin{pmatrix}
I & 0 \\
-h g_y(0) & \varepsilon I - h g_z(0)
\end{pmatrix}
\begin{pmatrix}
\tilde{y}_{i+1} - \frac{\tilde{y}_i}{z_{i+1} - \tilde{z}_i}
\end{pmatrix}
= h
\begin{pmatrix}
\hat{g}(\tilde{y}_i, \tilde{z}_i) f(\tilde{y}_i, \tilde{z}_i) - h g_y(0) f(\tilde{y}_i, \tilde{z}_i)
\end{pmatrix}
+ \begin{pmatrix}
O(h^{M+1}) \\
O(h^{M+1})
\end{pmatrix}.
\]

Equation (5.23b) leads to

\[
g_y(0) a^{(1)}(0) + g_z(0) b^{(1)}(0) = -\frac{1}{2} \left(g_y(0) y'(0) + g_z(0) z'(0) \right) + f(0) g_y(0) + \varepsilon \left(b^{(1)} \right)'(0),
\]

\[
g_y(0) a^{(1)}(0) + g_z(0) b^{(1)}(0) = O(1)
\]

with known right-hand side. The perturbation terms up to \(O(h^2) \) give the same expression as in the W-IMEX case (5.9) that yields (5.10) and eventually (5.11). The values for \(a^{(1)}_i \) and \(\beta^{(1)}_i \) are given by (5.13) and (5.12), respectively. By using the consistency assumptions (3.12a) and (5.12) we obtain

\[
a^{(3)}_0 = \varepsilon f_z(0) g_z^{-1}(0) \left(I - \frac{h}{\varepsilon g_z(0)} \right) \beta^{(1)}_0 = O(h) \beta^{(1)}_0 = O(h),
\]

which yields \(a^{(1)}(0) = O(h) \) and \(b^{(1)}(0) = O(1) \) \((a^{(1)}_i = O(h), \beta^{(1)}_i = O(1)) \). With these assumptions (5.22) can be verified.
For $M = 2$ we have the following expansion:

$$
\begin{align*}
(a^{(2)})''(x) + \frac{1}{6} y''(x) &= \\
&= a^{(2)}(x) f_y(x) + \frac{1}{2} (a^{(1)})^2(x) f_y(x) + a^{(1)}(x) b^{(1)}(x) f_y(x) + f_x(x) b^{(2)}(x) + \frac{1}{2} (b^{(1)})^2(x) f_x(x) , \\
&= \frac{1}{6} \varepsilon z''(x) - \frac{1}{2} g_y(0) y''(x) - \frac{1}{2} g_z(0) z''(x) - g_y(0) (a^{(1)})'(x) - g_z(0) (b^{(1)})'(x) + \varepsilon (b^{(2)})'(x) = \\
&= -f_y(x) g_y(0) a^{(1)}(x) - f_z(x) g_z(0) b^{(1)}(x) + \\
&+ g_y(x) a^{(2)}(x) + g_z(x) b^{(2)}(x) + \frac{1}{2} g_{yy}(x) (a^{(1)})^2(x) + g_{yz}(x) a^{(1)}(x) b^{(1)}(x) + \frac{1}{2} g_{zz}(x) (b^{(1)})^2(x) ,
\end{align*}
$$

which has the same form as (5.2). We obtain again (5.17) and (5.19). Using $b^{(2)}(0) = O(1)$ yields $a^{(2)}(0) = O(h)$ and $b^{(1)}(0) = O(1)$. The rest is similar to the proof of Theorem 5.1.

The convergence behavior of this method is very similar to the one discussed for the W-IMEX scheme (Sec. 5.1); however, in this case the superposition of the error has a factor of $O(\varepsilon)$.

5.3. Split-IMEX Method

We consider the Split-IMEX method applied to SPP (5.1) to give (3.37).

Theorem 5.3: (Global error expansion for the extrapolated Split-IMEX method applied to stiff ODEs). Assume that the solution of (5.1) is smooth. Under the condition (5.3) the numerical solution of (3.37) possesses for $\varepsilon \leq h$ a perturbed asymptotic expansion of the form

$$
\begin{align*}
\hat{y}_i &= y(x_i) + h(1)^{(1)}(x_i) + h^2 a^{(2)}(x_i) + O(h^3) - \\
&- \varepsilon f_z(0) g_z^{-1}(0) \left(I - \frac{h}{\varepsilon} g_z(0) \right)^{-i+1} \left(h b^{(1)}(0) + h^2 b^{(2)}(0) \right) , \\
\hat{z}_i &= z(x_i) + h b^{(1)}(x_i) + h^2 b^{(2)}(x_i) + O(h^3) - \\
&- \left(I - \frac{h}{\varepsilon} g_z(0) \right)^{-i+1} \left(h b^{(1)}(0) + h^2 b^{(2)}(0) \right) ,
\end{align*}
$$

where $x_i = ih \leq H$ with H sufficiently small independent of ε. The smooth functions $a^{(1)}(0) = O(\varepsilon h)$, $a^{(2)}(0) = O(h)$, $b^{(1)}(0) = O(\varepsilon)$, $b^{(2)}(0) = O(1)$.

Proof. The proof goes along the same lines as for Theorem 5.1. We begin with the same assumptions (5.2), (5.5), and thus (5.6) becomes

$$
\begin{align*}
\begin{pmatrix}
I \\
-h g_y(0) \\
\varepsilon I - h g_z(0)
\end{pmatrix}
\begin{pmatrix}
\hat{y}_{i+1} - \hat{y}_i \\
\hat{z}_{i+1} - \hat{z}_i
\end{pmatrix}
= h
\begin{pmatrix}
f(\hat{y}_i, \hat{z}_i) \\
g(\hat{y}_i + h f(\hat{y}_i, \hat{z}_i), \hat{z}_i) - h g_y(0) f(\hat{y}_i, \hat{z}_i)
\end{pmatrix}
+ O\left(h^{M+2}\right).
\end{align*}
$$

For $M = 1$ we obtain

$$
\begin{align*}
(a^{(1)})''(x) + \frac{1}{6} y''(x) &= f_y(x) a^{(1)}(x) + f_z(x) b^{(1)}(x) , \\
&= \frac{1}{6} \varepsilon z''(x) - g_y(0) y''(x) - g_z(0) z''(x) + \varepsilon (b^{(1)})'(x) = g_y(x) a^{(1)}(x) + g_z(x) b^{(1)}(x) + f(x) (g_y(x) - g_z(0)) ,
\end{align*}
$$
Equation (5.29b) leads to

\[
\begin{align*}
g_y(0) a^{(1)}(0) + g_z(0) b^{(1)}(0) &= -\frac{1}{2}(g_y(0) y'(0) + g_z(0) z'(0)) + \varepsilon (b^{(1)})'(0), \\
g_y(0) a^{(1)}(0) + g_z(0) b^{(1)}(0) &= O(\varepsilon) \tag{5.30}
\end{align*}
\]

with known right-hand side. We continue with an in-depth analysis for the rest of the proof because some derivations are not obvious. The perturbation terms up to \(O(h^2)\) give the same expression as in the W-IMEX case (5.9) that yields (5.10) and eventually (5.11):

\[
\begin{align*}
\alpha_{i+1}^{(1)} - \alpha_i^{(1)} &= hf_z(x_i) a_i^{(4)} + hf_z(x_i) \beta_i^{(1)}, \tag{5.31a} \\
\varepsilon \left(\beta_{i+1}^{(1)} - \beta_i^{(1)} \right) &= \varepsilon \left(a_{i+1}^{(1)} - a_i^{(1)} \right) g_y(0) + \left(\beta_{i+1}^{(1)} - \beta_i^{(1)} \right) g_z(0) = \varepsilon f_z(0) g_y^{-1}(0) (I - h \epsilon g_z(0))^{-i+1} \beta_0^{(1)} \tag{5.31b} \end{align*}
\]

The values for \(\alpha_i^{(1)}\) and \(\beta_i^{(1)}\) are given by (5.13) and (5.12), respectively. By using the consistency assumptions (3.12a) and (5.12) we obtain

\[
\alpha_i^{(1)} = -hf_z(0) \left(\frac{h}{\varepsilon g_z(0)} \right)^{-i} \left(I - \frac{h}{\varepsilon g_z(0)} \right)^{-i+1} \beta_0^{(1)} = \varepsilon f_z(0) g_y^{-1}(0) (1 - \frac{h}{\varepsilon g_z(0)})^{-i+1} \beta_0^{(1)}
\]

and

\[
\alpha_0^{(1)} = \varepsilon f_z(0) g_y^{-1}(0) \left(I - \frac{h}{\varepsilon g_z(0)} \right) \beta_0^{(1)} = O(h) \beta_0^{(1)} = O(\varepsilon), \quad (5.32)
\]

which yields \(a^{(1)}(0) = O(\varepsilon)\) and \(b^{(1)}(0) = O(\varepsilon)\) \((\alpha_i^{(1)} = O(\varepsilon), \beta_i^{(1)} = O(\varepsilon))\). With these assumptions (5.22) can be verified.

For \(M = 2\) we have the following expansions:

\[
\begin{align*}
\left(a^{(2)} \right)'(x) + \frac{1}{6} y'''(x) &= \frac{1}{2} a^{(2)}(x) f_y(x) + \frac{1}{2} \left(a^{(1)} \right)^2 f_y y(x) + \frac{1}{2} (a^{(1)}(x) b^{(1)}(x) f_y f_x(x) + f_x(x) b^{(2)}(x) + \frac{1}{2} (b^{(1)})^2 f_x(x) f_x(x), \\
\frac{1}{6} \varepsilon z'''(x) - \frac{1}{2} g_y(0) y''(x) - \frac{1}{2} g_z(0) z''(x) - g_y(0) (a^{(1)})(x) - g_z(0) b^{(1)}(x) + \varepsilon \left(b^{(2)} \right)'(x) &= \left(a^{(1)} \right)'(x) - g_y(0) (b^{(1)})'(x) + \varepsilon \left(b^{(2)} \right)'(x) \tag{5.33b}
\end{align*}
\]
which have the same form as (5.2). We also have

\[
\frac{\alpha_i^{(1)} - \alpha_i^{(2)}}{a_i^{(2)}} + h\left(\frac{\alpha_i^{(2)} - \alpha_i^{(1)}}{a_i^{(2)}} - \varepsilon\frac{\beta_i^{(2) - \beta_i^{(1)}}}{\alpha_i^{(2)}}\right) = h f_x(x_i) \alpha_i^{(2)} + h f_y(x) \beta_i^{(1)} + \frac{1}{2} \left(\frac{\alpha_i^{(1)}}{\varepsilon} f_{yy}(x_i) + \frac{\alpha_i^{(1)}}{\varepsilon} f_{y\varepsilon}(x_i) + \frac{1}{2} \left(\frac{\beta_i^{(1)}}{\varepsilon}\right)^2 f_{zz}(x_i)\right),
\]

\(5.34a\)

\[
- h^2 \left(\frac{\alpha_i^{(2)} - \alpha_i^{(3)}}{a_i^{(2)}} \frac{\nu_i(0)}{O(h)} + \frac{\beta_i^{(2) - \beta_i^{(3)}}}{\alpha_i^{(2)}} \frac{\nu_i(0)}{O(h)} + h f_x(x_i) \alpha_i^{(2)} + h f_y(x) \beta_i^{(1)} + \frac{1}{2} \left(\frac{\beta_i^{(1)}}{\varepsilon}\right)^2 f_{zz}(x_i)\right),
\]

\(5.34b\)

We obtain again (5.17) and (5.19). Using \(b^{(2)}(0) = O(1)\) yields \(a^{(2)}(0) = O(h)\) and \(b^{(1)}(0) = O(1)\). The rest is similar to the proof of Theorem 5.1. \(\square\)

The convergence behavior of this method is asymptotically similar to the one discussed for the W-IMEX scheme (Sec. 5.1).

6. Numerical Results for Extrapolated IMEX Applied to Stiff ODEs. We investigate the numerical properties of the proposed extrapolated IMEX methods applied to stiff ODEs. We consider two stiff ordinary differential equations: stiff van der Pol and an example proposed by Hairer and Lubich [1988]. We also consider for comparison several IMEX Runge-Kutta schemes: [ARS(implicit stages, explicit (effective) stages, classical order)] (Ascher-Ruth-Spiteri) developed by Ascher et al. [1997]; [PR (implicit stages, explicit (effective) stages, classical order)] (Pareschi and Russo) introduced by Pareschi and Russo [2000]; and the [ARK order (embedded order) stages] (Additive Runge-Kutta) methods developed by Kennedy and Carpenter [2003]. All IMEX Runge-Kutta methods require solving a (non)linear system of equations. The implicit part of the ARK methods is of ESDIRK type, namely, explicit first stage with the same value on the diagonal of the Butcher tableau, which improves the computation efficiency.

The implementation is done in Matlab® by using high-precision (64-digit) arithmetic. The experiments consist in integrating the problem by taking successively smaller steps \(H\) and computing the \(L_1\) error norm for each step size. We compare the results of the proposed IMEX methods and the above-mentioned IMEX Runge-Kutta schemes with a third-order reference solution computed with the stiff solver RODAS 3 [Sandu et al., 1997] and a step size of \(10^{-9}\). The nonlinear solver used in the computation of the reference solution and in the IMEX Runge-Kutta methods is implemented with classical Newton iterations. The process is stopped when the difference between sequential iterates is below \(10^{-25}\).
6.1. Van der Pol. We consider the van der Pol equation (see [Hairer and Wanner, 1993; Boscarino, 2007])

\[
y' = z, \quad \varepsilon z' = \left(1 - y^2\right)z - y = \begin{pmatrix} z \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ \left(1 - y^2\right)z - y \end{pmatrix} = f(y, z) = g(y, z)
\]

with [Boscarino, 2007]

\[
y(0) = 2, \quad z(0) = -\frac{2}{3} + \frac{10}{81} \varepsilon - \frac{292}{2187} \varepsilon^2 - \frac{1814}{19683} \varepsilon^3 + O(\varepsilon^4), \quad \varepsilon = 10^{-5}.
\]

The stiff part is represented by \(z\) or \(g(y, z)\). In Figure 6.1 we show the error for the stiff solution component (\(z\)) of the van der Pol equation using extrapolated linearly implicit and IMEX methods (2.4) for the optimal convergence rates with 3, 6, 9, and 12 extrapolation steps, that is, optimal \(k\) for each method’s \(T_{3k}, T_{6k}, T_{9k}, T_{12k}\) extrapolation terms. The specific terms are selected from Table 9.1 for each method. The convergence rates correspond to the theoretical expectations, the error decreases until it reaches \(O(\varepsilon)\) for Pure-IMEX and \(O(\varepsilon^2)\) for the others.

We compare the extrapolated IMEX methods with several IMEX Runge-Kutta methods. In Figure 6.2 we show the \(L_1\) error norm of the local errors of the stiff component for second and third-order PR methods, two third-order ARS methods, and third- to fifth-order ARK methods. The order reduction phenomenon can be clearly seen. The convergence behavior is explained in detail in [Boscarino, 2007].
The computational cost of the extrapolated IMEX methods increases linearly with each additional extrapolation step. For T_{jk} one needs $j(j+1)/2$ right-hand-side evaluations. In contrast, for an s_i-implicit, s_r-explicit-stage IMEX Runge-Kutta scheme, one needs $[(s_r - s_i) + s_i \times \# \text{ of Newton iterations}]$ function evaluations. In this study we do not focus on the actual computational cost, which can change with the implementation and application.

6.2. Example from [Hairer and Lubich, 1988]. In this section we present a second stiff differential equation example presented in [Hairer and Lubich, 1988]:

$$
y' + \varepsilon z' = -(1+y)z + y^2 = \begin{pmatrix} -y \\ 0 \end{pmatrix} + \begin{pmatrix} 0 \\ -(1+y)z + y^2 \end{pmatrix} = f(y,z) + g(y,z)$$

(6.3)

with

$$y(0) = 0.3, \quad z(0) = 0.06923086345026332, \quad \varepsilon = 10^{-6}.$$

In Figure 6.3 we show the same results for the stiff solution components obtained after one step (H) with the extrapolated linearly implicit and proposed IMEX methods using the same setting as in the previous section (6.1).

In Figure 6.4 we present the stiff component local errors using several IMEX Runge-Kutta methods. The conclusions mirror the ones presented in Section 6.1.

7. Numerical Results for PDEs. We next investigate the discretization accuracy of the advection-reaction (time-dependent) PDE using the W-IMEX, Pure-IMEX, and Split-IMEX schemes. In this section we use x as the spatial variable and t as the temporal variable. The implementation is carried out in Matlab® with double precision. The estimated numerical order of convergence is computed by using the L_1 error norm given by $L_1(= \Delta x/m \sum_{i=1}^{m} |\text{Err}_i|)$, where m is the number of variables, at the final time using different step sizes (H). We also discuss the order reduction phenomenon due to stiff boundary or source terms [Sanz-Serna et al., 1987; Sanz-Serna and Verwer, 1989; Carpenter et al., 1995] and explore numerically the behavior of the proposed IMEX methods in such cases.

7.1. Advection-Reaction Equation. We start with the advection-reaction PDE and use the setting described in Hundsdorfer and Ruuth [2007a]:

$$y_t + \alpha_1 y_x = -k_1 y + k_2 z + s_1, \quad 0 < x < 1 \quad \alpha_1 = 1, \quad k_1 = 10^6, \quad s_1 = 0$$

$$z_t + \alpha_2 z_x = k_1 y - k_2 z + s_2, \quad 0 < t \leq t_{\text{max}} \quad \alpha_2 = 0, \quad k_2 = 2k_1, \quad s_2 = 1.$$

(7.1)
Figs. 6.3. Local error vs. step size for the stiff solution component of equation 6.3 investigated in [Hairer and Lubich, 1988] using extrapolated linearly implicit and IMEX methods for the optimal convergence rates with 3, 6, 9, and 12 extrapolation steps.

Fig. 6.4. Local error vs. step size for the stiff solution component of equation 6.3 proposed in [Hairer and Lubich, 1988] using several IMEX Runge-Kutta methods and T₈₅ Split-IMEX for comparison.
This example has two physics components: advection and reaction. We treat the advection term explicitly and the reaction term implicitly because of its numerical stiffness.

For the spatial discretization we use the fourth order central finite difference scheme for the interior points and third order biased schemes at the domain boundaries. We consider a uniform grid: \(x_i = i \Delta x, \ i = 1 \ldots m \) with \(\Delta x = 1/m \). The solution components for \(m = 400 \) at \(t = 1 \) and the inflow boundary condition are displayed in Figure 7.1. The inflow boundary profile is propagated inside the domain through the first component of (7.1).

The experimental orders are shown in Table 7.1. They are in accordance with the theoretical predictions, with some components having slightly more optimistic results, which is expected because the linearity of this example makes W-IMEX and Split-IMEX equivalent.

The W-IMEX and the Split-IMEX schemes give the best results, while the Pure-IMEX scheme is slightly inferior. We note that the experimental orders increase with the addition of more terms in the extrapolation tableau. Although not seen here, with a more complex example we conjecture that the W-IMEX method will have a higher order of convergence than the Split-IMEX.

In Fig. 7.2.b we show the CPU time versus the global error of the Split-IMEX method compared to ARK orders 3–5 [Kennedy and Carpenter, 2003] and IMEX-BDF orders 2–5 [Hundsdorfer and Ruuth, 2007b] methods. The implementation is done in FORTRAN by using quad precision. For the Split-IMEX scheme we consider orders up to 18. The linear system is solved with LAPACK LU factorization. The timing experiments are performed on an eight-core processor. The Split-IMEX method compares well with RK and LM methods on low
accuracy and is superior for high-accuracy results. We further considered a straightforward OpenMP parallelization of the extrapolation row calculations. The timing results show that on a 8-core machine, Split-IMEX is superior in efficiency to the considered LM and RK methods. No effort has been made to optimize the parallel performance, but additional improvements seem possible by optimizing the code and by employing more CPUs. Moreover, LM methods in general and IMEX-BDF in particular may become unstable if the eigenvalues of the implicit term are relatively large and close to the imaginary axis, whereas the proposed methods allow for A-stability on the implicit part.

7.2. Boundary/Source Order Reduction. Extrapolation methods with explicit methods such as the treatment of f in the proposed IMEX schemes can be represented as explicit Runge-Kutta methods, which have the stage order equal to one. These methods suffer from order reduction. To illustrate the boundary/source order reduction phenomenon, we consider a classic test initial value problem with a nonlinear source proposed in [Sanz-Serna et al., 1987]:

$$\frac{\partial y}{\partial t} = -\frac{\partial y}{\partial x} + b(x, t), \quad 0 \leq x \leq 1, \quad 0 \leq t \leq 1, \quad y(0, t) = b(0, t), \quad y(0, t) = y_0(x), \quad (7.2)$$

with the initial condition $y_0(x) = 1 + x$ and (left) boundary and source term defined by $b(x, t) = (t - x)/(1 + t)^2$. The exact solution, $y(x, t) = (1 + x)/(1 + t)$, and the forcing are illustrated in Figure 7.2. Because the solution is linear in space, the first order upwind can be used in the space discretization without introducing discretization errors.

7.2.1. The Order Reduction Phenomenon. Order reduction due to stiff boundary or source terms is discussed in [Brenner et al., 1982]. Sanz-Serna et al. [1987] show that Runge-Kutta methods with $p \geq 3$ suffer from order reduction. This theoretical result is also verified in our numerical experiments. The discretization error is computed in the L_∞ norm. Special boundary/source treatment to avoid boundary/source order reduction have been discussed in [Abarbanel et al., 1996; Carpenter et al., 1993; Pathria, 1997; Calvo and Palencia, 2002; Carpenter et al., 1995; Sanz-Serna and Verwer, 1989; Sanz-Serna et al., 1987].

Case 1: Classical order retention. Here we consider a fixed spatial resolution: $\Delta x = 1/100$. The numerical orders are displayed in Table 7.2.

Case 2: Order reduction. Here we refine in space and time maintaining a CFL of 0.5 [Laney, 1998]. In this case we notice order reduction to second order. The numerical orders are displayed in Table 7.3.
7.2. Illustration of the classical order retention

<table>
<thead>
<tr>
<th>Time</th>
<th>Forward Euler Extrapolation</th>
<th>Linear Implicit Euler Extrapolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.003</td>
<td>0.976</td>
<td>0.976</td>
</tr>
<tr>
<td>1.001</td>
<td>2.153</td>
<td>0.986</td>
</tr>
<tr>
<td>1.001</td>
<td>2.002 3.155</td>
<td>0.990 1.69 2.354</td>
</tr>
<tr>
<td>1.001</td>
<td>2.001 2.862 4.325</td>
<td>0.992 1.71 2.449 2.851</td>
</tr>
<tr>
<td>1.001</td>
<td>2.001 2.794 4.010 5.244</td>
<td>0.994 1.73 2.494 2.954 3.569</td>
</tr>
</tbody>
</table>

7.3. Illustration of the order reduction phenomenon

<table>
<thead>
<tr>
<th>Time</th>
<th>Forward Euler Extrapolation</th>
<th>Linear Implicit Euler Extrapolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.999</td>
<td>0.913</td>
<td>0.917 1.010</td>
</tr>
<tr>
<td>0.997</td>
<td>1.900</td>
<td>0.917 1.010</td>
</tr>
<tr>
<td>0.997</td>
<td>1.899 2.032</td>
<td>0.918 1.010 1.014</td>
</tr>
<tr>
<td>0.997</td>
<td>1.898 2.032 2.006</td>
<td>0.919 1.010 1.014 1.015</td>
</tr>
<tr>
<td>0.997</td>
<td>1.898 2.031 2.033 2.019</td>
<td>0.919 1.010 1.014 1.015 1.006</td>
</tr>
</tbody>
</table>

7.2.2. Avoiding Order Reduction. One way to avoid order reduction is by integrating the Dirichlet boundary condition along with the solution [Carpenter et al., 1995]. For example (7.2) we have

\[
\frac{\partial y}{\partial t} = - \begin{bmatrix} 0 \\ F(y) \end{bmatrix} + \begin{bmatrix} b'(0, t) \\ b(x, t) \end{bmatrix}, \quad F(y) \approx \frac{\partial y}{\partial x}, \quad \overline{y}(x, t) = \begin{bmatrix} b(0, t) \\ y(x, t) \end{bmatrix},
\]

(7.3)

with the same initial condition.

The numerical orders are estimated just as before for the two settings:

Case 1: Classical order retention. Here we consider a fixed spatial resolution: \(\Delta x = 1/100 \). The numerical orders are displayed in Table 7.4.

Case 2: Order reduction. Here we refine both in space and time maintaining a CFL of 0.5. In this case we notice order reduction to third order. The numerical orders are displayed in Table 7.5.

The equivalence between the extrapolation methods and explicit or implicit Runge-Kutta methods has the potential to allow the strategy to avoid order reduction applied to Runge-Kutta to be applied just as well to the extrapolation methods and extrapolated IMEX methods.

8. Implementation Considerations. In this section we present a few implementation considerations for the extrapolation methods, extrapolated IMEX, and extrapolation methods applied to stiff systems.

Construction of extrapolation methods. The extrapolation methods can be described as a set of increasingly accurate composite schemes. Lower-order embedded approximations are computed sequentially, which provides necessary information for a step size \(H \) control strategy [Hairer and Wanner, 1993]. Because each computational step in the extrapolation procedure is a consistent approximation of the solution, these methods do not have predetermined number of extrapolation steps (rows in extrapolation tableau), and hence one can consider an adaptive order approach based on error approximations given by the embedded lower order methods. Very high order approximations are easily obtained with no limitation on the theoretical achievable convergence order.

Implementation of extrapolation methods. To apply the proposed extrapolation methods, one needs to implement the base methods (2.4) and the extrapolation steps (2.3a). The Jacobian \(g' \) is evaluated only at the beginning of the step. Therefore several computational simplifications may occur, especially if \(g \) is linear.
Extended system - classical order retention

<table>
<thead>
<tr>
<th></th>
<th>Forward Euler Extrapolation</th>
<th>Linear Implicit Euler Extrapolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.003</td>
<td></td>
<td>1.000</td>
</tr>
<tr>
<td>1.001 2.002</td>
<td></td>
<td>1.000 2.001</td>
</tr>
<tr>
<td>1.001 2.001 3.003</td>
<td></td>
<td>0.999 2.002 2.461</td>
</tr>
<tr>
<td>1.001 2.001 3.003 4.174</td>
<td></td>
<td>0.999 2.002 2.530 3.150</td>
</tr>
<tr>
<td>1.001 2.001 3.003 3.877 4.360</td>
<td></td>
<td>0.999 2.002 2.560 3.248 3.699</td>
</tr>
</tbody>
</table>

Extended system - order reduction

<table>
<thead>
<tr>
<th></th>
<th>Forward Euler Extrapolation</th>
<th>Linear Implicit Euler Extrapolation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.999</td>
<td></td>
<td>0.988</td>
</tr>
<tr>
<td>0.998 2.000</td>
<td></td>
<td>0.987 1.915</td>
</tr>
<tr>
<td>0.997 1.999 2.893</td>
<td></td>
<td>0.987 1.915 2.006</td>
</tr>
<tr>
<td>0.997 1.999 2.893 3.025</td>
<td></td>
<td>0.987 1.915 2.007 2.008 2.009</td>
</tr>
<tr>
<td>0.997 1.99 2.893 3.022 2.993</td>
<td></td>
<td>0.987 1.915 2.007 2.008 2.009</td>
</tr>
</tbody>
</table>

Cost, memory, and parallelization. In the classical setting ($\varepsilon \approx h$), the extrapolation methods are less efficient than the popular Runge-Kutta or linear multistep schemes for the same classical order of accuracy. It is not clear, however, whether the proposed IMEX methods are less efficient because they do not necessitate nonlinear solver iterations. Moreover, the extrapolation methods can be parallelized very easily [Rauber and Rünger, 1997]. Each entry on the first extrapolation tableau column ($T_{j,1}$) can be computed independently. Moreover, the computational cost is predetermined

\[
\text{Cost for } T_{jk} \propto \frac{j(j+1)}{2} \times \text{function evaluations},
\]

and thus each entry can be optimally scheduled on multiprocessor or multicore architectures. This strategy can lead to more efficient overall implementations with the total computational cost $\propto j$. In contrast, the IMEX Runge-Kutta methods have a computational cost proportional to the number of implicit stages multiplied by the number of iterations required by the nonlinear solver.

The memory requirements for full extrapolation tableaux are proportional to $j(j+1)/2$. However, as we discuss below, for stiff problems, a large number of tableau entries need not be computed, and thus the number of registers required in practice can be reduced.

Extrapolation methods for stiff systems. For stiff nonlinear problems, the diagonal entries in the extrapolation tableau are typically not the best approximations for a given number of extrapolation steps. The theoretical results indicate that the errors propagate in the diagonal direction. The optimal entries in the extrapolation tableau are emphasized in Table 9.1 given one of the three proposed IMEX methods or the linearly implicit one. This is equivalent to starting the extrapolation procedure with a shifted harmonic sequence $n_j = \ell, \ell + 1, \ldots$, $j = 1, 2, \ldots$, and $\ell \geq 1$ can be chosen to include the optimal values (see Table 9.1). If a sufficiently large number of extrapolation steps is computed, then the diagonal and several subdiagonal entries are not necessary, and hence cost and memory requirements are alleviated.

9. Discussion. In this paper we construct extrapolated implicit-explicit discretization methods that allow one to efficiently solve problems that have both stiff and nonstiff components. These methods are well suited for the time integration of multiphysics multiscale partial differential equations. We propose three new extrapolation methods: W-IMEX, Pure-IMEX, and Split-IMEX. These methods have very low implementation costs and can easily reach very high orders of accuracy. The W-IMEX method resembles the linearly implicit scheme.
in implementation and performance. However, the W-IMEX scheme does not require the evaluation of the entire Jacobian, which makes it computationally cheaper.

The closely related Pure-IMEX and Split-IMEX methods are truly implicit-explicit methods. The Split-IMEX method has the explicit part sequentially decoupled from the implicit one and has more favorable properties than the Pure-IMEX method.

The methods under investigation can attain a very high discretization order for ODEs, index-1 DAEs, and PDEs in the method of lines framework. In this study we have not extensively assessed the efficiency of these methods. However, numerical tests indicate that they compare well with existing IMEX RK and LM methods and are superior when even a straightforward OpenMP parallelization is considered.

The proposed extrapolated IMEX methods parallelize very well and are apt to be implemented on the emerging multicore computational architectures. They have low-order embedded approximations by construction, which facilitates implementations of error control mechanisms. Moreover, they do not require a predetermined number of steps, making them very robust by allowing variable-order strategies.

Numerical results with stiff ODEs, DAEs, and PDEs illustrate our theoretical findings. In our numerical experiments, the Split-IMEX scheme performed best in terms of efficiency and accuracy.
Table 9.1

Theoretical local extrapolation orders for linearly implicit, W-IMEX, Pure-IMEX, and Split-IMEX methods for index-1 DAEs. Boldface fonts represent the "best" or optimal choice for a given number of steps.

Orders \((r_b)\) for component \(y_b\) for Linearly implicit|W-IMEX|Pure-IMEX|Split-IMEX

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Orders \((s_b)\) for component \(z_b\) for Linearly implicit|W-IMEX|Pure-IMEX|Split-IMEX

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Numerical local extrapolation orders for the van der Pol equation using the linearly implicit, W-IMEX, Pure-IMEX methods and for the trigonometric equation using the Split-IMEX scheme (based on L_1 error norm). These results can be compared with the theoretical ones presented in Table 9.1.

Orders component y_{jk} (linearly implicit[W-IMEX]Pure-IMEX) for van der Pol and (Split-IMEX) for the trigonometric example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>1.9</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>1.9</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>2.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
<td>3.0</td>
</tr>
</tbody>
</table>

Orders component z_{jk} (linearly implicit[W-IMEX]Pure-IMEX) for van der Pol and (Split-IMEX) for the trigonometric example

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.2</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>1.8</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>1.9</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>1.9</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>1.9</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>1.9</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>1.9</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>1.9</td>
<td>2.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td>2.0</td>
<td>1.0</td>
<td>2.0</td>
<td>3.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References.

Appendix A. Linearly Implicit Euler Method.
In this section we review the linearly implicit method. Consider the implicit Euler method applied to problem (1.1) under smoothness assumptions:

\[
y_{i+1} = y_i + hF(x_{i+1}, y_{i+1}) = y_i + h (f(y_{i+1} - y_i) + F(x_{i+1}, y_i)) + O(h^2) = y_i + h (f(y_{i+1} - y_i) + F(x, y_i) + O(h)) + O(h^2),
\]

where \(f \) is an approximation to \(\frac{\partial}{\partial y}(x_i, y_i) \). Then the linearly implicit Euler method is given by

\[
(I - hf) (y_{i+1} - y_i) = hF(x, y_i).
\]

This method has been used in [Deuflhard, 1985; Deuflhard et al., 1987] as the base method, for solving stiff ODEs of type (1.1) with (2.1), (2.3). In this study we consider \(f = F(y) = (f(y) + g(y))' \).

Appendix B. Transfer Functions. The stability functions for methods (2.4) applied to (2.9) are computed in the following way. For linear implicit Euler (2.4a) we have

\[
y_{n+1} = y_n + (1 - h (\lambda + \mu))^{-1} (h \lambda y_n + h \mu y_n),
\]

\[
y_{n+1} = (1 + (1 - h (\lambda + \mu))^{-1} h (\lambda + \mu)) y_n = (1 + \frac{h \lambda + h \mu}{1 - h (\lambda + \mu)}) y_n,
\]

\[
R(z, w) = 1 + \frac{z + w}{1 - (z + w)} = \frac{1}{1 - (z + w)}.
\]

The stability function for the W-IMEX scheme (2.4b) is given by

\[
y_{n+1} = y_n + [I - h g'(y_n)]^{-1} (h f(y_n) + h g(y_n)),
\]

\[
y_{n+1} = (1 + (1 - h \mu)^{-1} (h \lambda + h \mu)) y_n = (1 + \frac{h \lambda + h \mu}{1 - h \mu}) y_n,
\]

\[
R(z, w) = 1 + \frac{z + w}{1 - w} = \frac{1 + z}{1 - w}.
\]

For the Pure-IMEX method (2.4c) we have

\[
y_{n+1} = y_n + h f(y_n) + [I - h g'(y_n)]^{-1} (h g(y_n)),
\]

\[
y_{n+1} = (1 + h \lambda + (1 - h \mu)^{-1} (h \mu)) y_n = (1 + h \lambda + \frac{h \mu}{1 - h \mu}) y_n,
\]

\[
R(z, w) = 1 + z + \frac{w}{1 - w} = \frac{1 + w + z - zw + w}{1 - w} = \frac{1 + z - zw}{1 - w}.
\]

For the Split-IMEX (2.4d) method we obtain

\[
y_{n+1} = y' + [I - h g'(y')]^{-1} (h g(y')); \quad y' = y_n + h f(y_n) = y_n + h \lambda y_n
\]

\[
y_{n+1} = y_n + h \lambda y_n + \frac{h g(y_n + h \lambda y_n)}{1 - h g'(y_n)} = y_n + h \lambda y_n + \frac{h \mu(y_n + h \lambda y_n)}{1 - h \mu}
\]

\[
y_{n+1} = (1 + h \lambda + \frac{h \mu(1 + h \lambda)}{1 - h \mu}) y_n,
\]

\[
R(z, w) = 1 + z + \frac{w(1 + z)}{1 - w} = \frac{1 + z}{1 - w}.
\]
Appendix C. Technical Lemmas. The following lemma is adapted from [Hairer and Wanner, 1993, Lemma 3.9, chap. VI] and [Deuflhard et al., 1987, Lemma 2].

Lemma C.1 (Bounded series). Let \(\{u_n\} \) and \(\{v_n\} \) be two sequences of nonnegative numbers satisfying componentwise

\[
\begin{pmatrix} u_{n+1} \\ v_{n+1} \end{pmatrix} \leq \begin{pmatrix} I & 0 \\ \alpha O(1) & 1 \end{pmatrix} \begin{pmatrix} u_n \\ v_n \end{pmatrix} + M \begin{pmatrix} h \\ 1 \end{pmatrix}
\] (C.1)

with \(0 \leq \alpha < 1 \) and \(M \geq 0 \). Then the following estimates hold for \(\varepsilon \leq ch, h \leq h_0 \) and \(nh \leq \text{Const} \):

\[
\begin{align*}
u_n &\leq C (u_0 + M) \\
v_n &\leq C (u_0 + (\varepsilon + \alpha^n)v_0 + M)
\end{align*}
\] (C.2)

Proof. The matrix in (C.1) is transformed to diagonal form and iterated to obtain

\[
\begin{pmatrix} u_n \\ v_n \end{pmatrix} \leq T^{-1} \begin{pmatrix} I & 0 \\ 0 & \lambda^n \end{pmatrix} T \begin{pmatrix} u_0 \\ v_0 \end{pmatrix} + M \sum_{j=1}^n T^{-1} \begin{pmatrix} I & 0 \\ 0 & \lambda^{n-j} \end{pmatrix} T \begin{pmatrix} h \\ 1 \end{pmatrix},
\]

where \(\lambda = \alpha + O(\varepsilon) \) are the eigenvalues, and the transformation matrix \(T \) (composed of eigenvectors) satisfies

\[
T = \begin{pmatrix} 1 & 0 \\ O(1) & 1 \end{pmatrix}.
\]

The statement follows from the fact that \((\alpha + O(\varepsilon))^n = O(\alpha^n) + O(\varepsilon)\) for \(\varepsilon \leq ch \) and \(nh \leq \text{Const} \).

 Lemma C.2 ([Hairer and Wanner, 1993, chap. IV, Lem. 5.5]). Suppose that the logarithmic norm of \(g_{\varepsilon}(x) \) satisfies

\[
\mu (g_{\varepsilon}(x)) \leq -1 \quad \text{for} \quad 0 \leq x \leq \overline{x}.
\] (C.3)

For a given value

\[
a(0) = a^{(0)} + \varepsilon a^{(1)} + \cdots + \varepsilon^N a^{(N)} + O(\varepsilon^{N+1})
\]

there exists a unique (up to \(O(\varepsilon^{N+1}) \))

\[
b(0) = b^{(0)} + \varepsilon b^{(1)} + \cdots + \varepsilon^N b^{(N)} + O(\varepsilon^{N+1})
\]

such that the solutions \(a(x), b(x) \) of (5.2) and their first \(N \) derivatives are bounded independently of \(\varepsilon \).

Proof. The proof is discussed in [Hairer and Wanner, 1993] and relies on introducing the following finite expansions

\[
\tilde{a}(x) = \sum_{i=0}^N \varepsilon^i a^{(i)}(x), \quad \tilde{b}(x) = \sum_{i=0}^N \varepsilon^i b^{(i)}(x)(x)
\]

in (5.2) and compare the powers of \(\varepsilon \). This leads to a differential-algebraic system, from which we obtain that \(a^{(0)}(0) \) determines \(b^{(0)}(0), b^{(1)}(1) \) determines \(a^{(0)}(1) \), and so on. Specifically, we
have
\[
\left(a^{(0)}\right)'(x) + \varepsilon \left(a^{(1)}\right)'(x) + \varepsilon^2 \left[(a^{(2)}b)\right]'(x) = f_x(x) \left(a^{(0)}(x) + \varepsilon a^{(1)}(x) + \varepsilon^2 a^{(2)}(x)\right) +
+ f_x(x) \left(b^{(0)}(x) + \varepsilon b^{(1)}(x) + \varepsilon^2 (b^{(2)}b)\right) + c(x, \varepsilon) + O(\varepsilon^3),
\]
\[
\varepsilon \left[(b^{(0)}\right)'(x) + \varepsilon \left(b^{(1)}\right)'(x) + \varepsilon^2 \left[(b^{(2)}\right)'(x)\right) = g_y(x) \left(a^{(0)}(x) + \varepsilon a^{(1)}(x) + \varepsilon^2 (a^{(2)}b)\right) +
+ g_x(x) \left(b^{(0)}(x) + \varepsilon b^{(1)}(x) + \varepsilon^2 (b^{(2)}b)\right) + d(x, \varepsilon) + O(\varepsilon^3).
\]
By comparing the coefficients of \(\varepsilon^0 \) we obtain the following DAE:
\[
\left(a^{(0)}\right)'(x) = f_x(x)a^{(0)}(x) + f_x(x)b^{(0)}(x) + c(x, 0), \\
\left(b^{(0)}\right)'(x) = g_y(x)a^{(0)}(x) + g_x(x)b^{(0)}(x) + d(x, 0),
\]
which leads to
\[
b^{(0)}(x) = -g_x^{-1}(x) \left(g_y(x)a^{(0)}(x) + d(x, 0)\right), \\
\left(a^{(0)}\right)'(x) = f_x(x)a^{(0)}(x) - f_x(x) \left[g_x^{-1}(x) \left(g_y(x)a^{(0)}(x) + d(x, 0)\right)\right] + c(x, 0).
\]
The coefficients of \(\varepsilon^1 \) give
\[
\left(a^{(1)}\right)'(x) = f_x(x)a^{(1)}(x) + f_x(x)b^{(1)}(x) + c(x, 1), \\
\left(b^{(1)}\right)'(x) = g_y(x)a^{(1)}(x) + g_x(x)b^{(1)}(x) + d(x, 1),
\]
which leads to
\[
b^{(1)}(x) = -g_x^{-1}(x) \left(g_y(x)a^{(1)}(x) - \left(b^{(0)}\right)'(x) + d(x, 1)\right), \\
\left(a^{(1)}\right)'(x) = f_x(x)a^{(1)}(x) - f_x(x) \left[g_x^{-1}(x) \left(g_y(x)a^{(1)}(x) - \left(b^{(0)}\right)'(x) + d(x, 0)\right)\right] + c(x, 1).
\]
These relations confirm that \(a^{(0)}(0)\) determines \(b^{(0)}(1)\), and \(a^{(1)}(0)\) determine \(b^{(1)}(0)\), and so on. \(\Box\)