
EXPONENTIALLY CONVERGENT RECEDING HORIZON
STRATEGY FOR CONSTRAINED OPTIMAL CONTROL§

WANTING XU† AND MIHAI ANITESCU‡†

Abstract. Receding horizon control has been a widespread method in industrial control engi-
neering as well as an extensively studied subject in control theory. In this work, we consider a lag
L receding horizon strategy that applies the initial L optimal controls from each quadratic program
to each receding horizon. We investigate a discrete-time and time-varying linear-quadratic optimal
control problem that includes a nonzero reference trajectory and constraints on both state and con-
trol. We prove that, under boundedness and controllability conditions, the solution obtained by the
receding horizon strategy converges to the solution of the full problem interval exponentially fast in
the length of the receding horizon for some lag L. The exponential rate of convergence provides a
systematic way of choosing the receding horizon length given a desired accuracy level. We illustrate
our theoretical findings using a small, synthetic production cost model with real demand data.
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1. Introduction. Receding horizon control (RHC), also known as model pre-
dictive control, has been a widely used feedback strategy in various industrial control
applications [e.g., 1, 3, 6, 7, 21]. RHC can be applied to a broad class of optimal
control problems, including those with nonlinear dynamics, time-delay systems, and
constraints on state and control [14, 15]. The essence of RHC is to obtain the cur-
rent control action by solving an optimal control problem defined on a finite horizon
extending from the current time point k. The finite-horizon problem uses the current
state of the system as its initial state, yields sequences of optimal controls and states,
applies the optimal control at time point k to the system, and uses the optimal state
at k + 1 as the initial state of the next receding horizon problem. This on-line fea-
ture of RHC makes the method adaptive to changing system parameters, since only
a finite horizon extending into the future is required for the current control [14], and
particularly attractive when off-line computation of the control policy is difficult [18].

Several results prove the stability of RHC for constrained linear and nonlinear
systems. For example, reference [17] proves that RHC yields an asymptotically stable
closed-loop system for continuous-time nonlinear systems. In addition, reference [11]
establishes stability of RHC for discrete-time, time-varying, constrained nonlinear
systems. Both references employ the value function as a Lyapunov function for the
stability analysis. Stability results for linear systems can be found, for example, in
[12, 13, 19, 20].

In this work, we consider a slight variation of the standard RHC described in
the references above. In particular, on each receding horizon, instead of applying the
optimal control at only the current time point k, we apply the optimal controls at
the initial L time points for some lag L > 0, and the next receding horizon starts
at time point k + L. The same receding horizon strategy is considered in other
references for continuous time, in order to account for the sampling time; see, for
example, [9, 10]. Building on our recent analytical developments in [24], we prove
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that for an inequality-constrained time-varying linear system with a quadratic cost
function and nonzero reference trajectory, the optimal states and controls obtained
by this receding horizon strategy converge, for some lag L, to the solutions on the
full problem interval exponentially fast in the length of the receding horizon. The
appropriate lag L in the result is determined by the problem parameters and, in
particular, by the controllability properties of the constrained system. Our analysis
directly investigates the solutions of a related equality-constrained control problem
and connects them to the original inequality-constrained problem through a sensitivity
analysis. Specifically, we consider the following problem.

min
1

2

n2−1∑
k=n1

uTkRkuk + (xk − dk)TQk(xk − dk)(1.1a)

+ (xn2
− dn2

)TQn2
(xn2

− dn2
)(1.1b)

s.t. xk+1 = Akxk +Bkuk, n1 ≤ k ≤ n2 − 1, xn1
= x0

n1
,(1.1c)

P̃k+1xk+1 + C̃kuk ≥ q̃k, n1 ≤ k ≤ n2 − 1(1.1d)

In (1.1), we refer to xk, uk, and dk as the state, control, and reference trajectory,
respectively. Problem (1.1) lacks nonlinear dynamics, which is studied in some sta-
bility analyses of RHC, for example, [9, 17]. However, we include the inequality path
constraint (1.1d) of state and control as considered in [19, 20]. Furthermore, we al-
low a nonzero reference trajectory dk and prove the exponential convergence of RHC
solutions to the solutions of problem (1.1) instead of a fixed equilibrium point [9, 10].

In our proofs, we use two important results in optimal control theory. One is
developed in [25], where the authors prove that for an unconstrained, switched-time,
and discrete-time linear-quadratic optimal control problem, the optimal trajectory
stabilizes exponentially under some mild conditions. They also give an estimate of
the exponential rate, which we use here. The other one is established in [23], where
the authors propose a Riccati-based approach for solving linear-quadratic optimal
control problems subject to linear equality path constraints. They derive a solution
procedure based on solving the KKT conditions via the Riccati recursion. We borrow
similar manipulations and reductions of the KKT conditions here. Moreover, a few
results regarding the Riccati recursion, closed-loop matrix, and sensitivity analysis
are nearly the same as those in our previous work [24]. We present those proofs in
the Appendix. We note that our previous work [24] had more complex algebra since
it did not use the KKT-based ideas from [23], had bound constraints on control only,
and did not investigate RHC convergence; these features are present in this work.

The rest of the article is organized as follows. In Section 2, we consider an equality
constrained subproblem of (1.1) and investigate the dependences of solutions on the
initial state and terminal reference. In Section 3, we define the lag L receding horizon
strategy and prove the exponential convergence of RHC solutions based on results
derived in Section 2. In Section 4, we demonstrate our theoretical findings using a
synthetic production cost model with real demand data.

2. Path-constrained linear-quadratic problem. In this section, we mainly
consider a subproblem of the constrained linear-quadratic optimal control problem
(1.1). For (1.1), we have that Ak ∈ Rn×n, Bk ∈ Rn×m, P̃k ∈ Rr×n, C̃k ∈ Rr×m,
and Qk ∈ Rn×n, Rk ∈ Rm×m are positive definite. We make the following uniform
boundedness assumption.

Assumption 2.1. For any n1, n2, and n1 ≤ k ≤ n2, we assume that
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(a) ‖Ak‖2 ≤ C̃A, ‖Bk‖2 ≤ C̃B, ‖Qk‖2 ≤ C̃Q, ‖Rk‖2 ≤ CR, ‖P̃k‖2 ≤ CP ,

‖C̃k‖2 ≤ CC , ‖q̃k‖2 ≤ U ;
(b) λmin(Qk) ≥ λQ > 0, λmin(Rk) ≥ λR > 0.
Note that we use symbols with a tilt for some upper bounds in Assumption 2.1 (a),

since we reserve the corresponding straight symbols for the frequently used quantities
defined later in Lemma 2.4. The subproblem of (1.1) we investigate is an equality-
constrained problem obtained by considering some active subsets of the polyhedral
path constraint (1.1d).

2.1. Equality-constrained subproblem. To define the equality-constrained
subproblem, we let Ik ⊂ {1, . . . , r} be some index set of the constraint (1.1d) attaining

the bound. Let Pk = P̃k(Ik, :) and Ck = C̃k(Ik, :) be the corresponding submatrices,
and denote qk = q̃k(Ik). Then the equality constraint corresponding to the index set

I ∆
= {Ik} is Pk+1xk+1 + Ckuk = qk. The equality-constrained problem we consider is

hence the following:

min
1

2

n2−1∑
k=n1

uTkRkuk + (xk − dk)TQk(xk − dk)(2.1a)

+ (xn2
− dn2

)TQn2
(xn2

− dn2
)(2.1b)

s.t. xk+1 = Akxk +Bkuk, n1 ≤ k ≤ n2 − 1, xn1
= x0

n1
,(2.1c)

Ekxk +Hkuk = qk, n1 ≤ k ≤ n2 − 1,(2.1d)

where we denote that

Ek = Pk+1Ak, Hk = Pk+1Bk + Ck.(2.2)

If I is the active set of problem (1.1) at optimality, then problems (1.1) and (2.1) have
the same solutions. Note thatHk in (2.2) is determined by the index set I encoding the
equality constraints under consideration, and hence we define the following uniform
boundedness property of Hk in terms of the index set.

Definition 2.2. Given an index set, let Hk be as in (2.2). With some λH > 0,
the index set is uniformly bounded below with respect to λH , denoted as UDB(λH), if
for any n1 ≤ k ≤ n2, Hk has full row rank and

λmin(HkH
T
k ) ≥ λH > 0.

Definition 2.2 restricts the total number of equality path constraints for an index set
that is UDB(λH) and gives a uniform lower bound on the resulting matrix Hk. In the
rest of this subsection, we restrict our attention to the index sets that are UDB(λH).
First, we define some matrices frequently used in the subsection.

Definition 2.3. For some index set that is UDB(λH), we define the following
matrices for n1 ≤ k ≤ n2 − 1:

Ĥk = (HkR
−1
k HT

k )−1, Q̂k = Qk + ETk ĤkEk,

Âk = Ak −BkR−1
k HT

k ĤkEk, B̂k = Bk −BkR−1
k HT

k ĤkHk,

Xk = R−1
k −R

−1
k HT

k ĤkHkR
−1
k , R̂k = BkXkB

T
k ,

q̂k = BkR
−1
k HT

k Ĥkqk.

Note that Âk and B̂k are modifications, inspired from [23], of Ak and Bk, respectively,
by taking into account the equality constraints (2.1d) as determined by the index
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set. The rationale for Definition 2.3 will be made clear later in Lemma 2.8, which
investigates the KKT conditions. To prepare for that, we first derive some properties
for the matrices defined.

Lemma 2.4. Under Assumption 2.1, for any n1, n2, and n1 ≤ k ≤ n2, if the
index set I is UDB(λH), then we have

‖Âk‖2 ≤ CA, ‖B̂k‖2 ≤ CB , ‖Q̂k‖2 ≤ CQ, λmin(Q̂k) ≥ λQ,
‖Hk‖2 ≤ CH , ‖Ek‖2 ≤ CE , ‖Ĥk‖2 ≤ CĤ ,

for some CA, CB, CQ, CH , CE, CĤ > 0 independent of n1, n2, and the particular
choice of I. Here λQ is the same as that in Assumption 2.1.

Proof. From Assumption 2.1 and Definition 2.3, we have

‖Hk‖2 ≤ ‖Pk+1Bk‖2 + ‖Ck‖2 ≤ CP C̃B + CC
∆
= CH ,

‖Ek‖2 ≤ ‖Pk+1Ak‖2 ≤ CP C̃A
∆
= CE ,

‖Ĥk‖2 ≤ (λH/CR)
−1 ∆

= CĤ ,

‖Âk‖2 ≤ C̃A + C̃BCHCĤCE/λR
∆
= CA,

‖B̂k‖2 ≤ C̃B + C̃BC
2
HCĤ/λR

∆
= CB ,

‖Q̂k‖2 ≤ C̃Q + C2
ECĤ

∆
= CQ,

and λmin(Q̂k) ≥ λmin(Q) ≥ λQ.
Note that throughout the article, we use the notations A � B and A � B to mean

A−B is symmetric positive semidefinite and symmetric positive definite, respectively.
Lemma 2.5. For n1 ≤ k ≤ n2 − 1, if the index set I is UDB(λH), then we have

R̂k = B̂kR
−1
k B̂k, and hence R̂k � 0.

Proof. Since Xk = R−1
k −R

−1
k HT

k ĤkHkR
−1
k , we have XT

k = Xk and

(2.3)

XT
k RkXk = R−1

k − 2R−1
k HT

k ĤkHkR
−1
k +R−1

k HT
k Ĥk(HkR

−1
k HT

k )ĤT
k HkR

−1
k

Def 2.3
= R−1

k − 2R−1
k HT

k ĤkHkR
−1
k +R−1

k HT
k ����ĤkĤ

−1
k ĤT

k HkR
−1
k

= R−1
k −R

−1
k HT

k ĤkHkR
−1
k

= Xk.

Note that B̂k = BkXkRk from Definition 2.3, so we have

R̂k = BkXkB
T
k

(2.3)
= BkXkRkXkB

T
k = (BkXkRk)R−1

k (RkXkB
T
k ) = B̂kR

−1
k B̂Tk .

Since Rk � 0, we have that R̂k � 0.
To prove the results in this subSection, we employ the approach in [23] by con-

sidering the KKT conditions of problem (2.1). We first define and derive properties
for the following matrices, some of which are similar to those in [23].

Definition 2.6. For some index set that is UDB(λH), define the following back-
ward recursions for n1 ≤ k ≤ n2 − 1:

Kn2 = Qn2 , Tn2 = −Qn2dn2 ,(2.4a)

Wk = Rk + B̂Tk Kk+1B̂k,(2.4b)

Mk = (I + R̂kKk+1)−1,(2.4c)
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Dk = MkÂk,(2.4d)

Tk = DT
k Tk+1 + ÂTkKk+1Mkq̂k − ETk Ĥkqk −Qkdk,(2.4e)

Kk = Q̂k + ÂTkKk+1Dk.(2.4f)

Lemma 2.7. For n1 ≤ k ≤ n2 − 1, if the index set I is UDB(λH), then Mk is
well defined, Kk � 0, Wk � 0, Kk+1Mk � 0, and

MT
k = I −Kk+1MkR̂k.(2.5)

Proof. We prove the statement by backward induction based on (2.4a)–(2.4f).
To start, we have Kn2

= Qn2
� 0 as the induction basis. Suppose Kk+1 is positive

definite. Then we have Wk � Rk � 0, and

I + R̂kKk+1 = (K−1
k+1 + R̂k)Kk+1.

Since R̂k � 0 as shown in Lemma 2.5, we have that I + R̂kKk+1 is invertible and
hence Mk is well defined. Also we have

Kk+1Mk
(2.4c)

= Kk+1(I + R̂kKk+1)−1 =
(

(I + R̂kKk+1)K−1
k+1

)−1

= (K−1
k+1 + R̂k)−1 � 0,

which implies that

Kk
(2.4f),(2.4d)

= Q̂k + ÂTk (Kk+1Mk)Âk � Q̂k
Def 2.3
� Qk � 0,

so that Kk is positive definite. By induction we have that Mk is well defined, Kk � 0,
Wk � 0, and Kk+1Mk � 0 for all n1 ≤ k ≤ n2 − 1.

Note that since Kk is symmetric,

M−Tk (I −Kk+1MkR̂k)
(2.4c)

= (I +Kk+1R̂k)(I −Kk+1MkR̂k)

= I +Kk+1(I −Mk − R̂kKk+1Mk)R̂k
(2.4c)

= I +Kk+1(������
I −M−1

k Mk )R̂k

= I.

Therefore (2.5) holds.
Note that (2.5) is also stated (without proof) in [23]. Now we derive a recursion

of the optimal states of problem (2.1) by investigating the KKT conditions.
Lemma 2.8. Let u∗k and x∗k be the optimal controls and states of problem (2.1),

and let λ∗k and η∗k be the Lagrange multipliers associated with the dynamical constraint
(2.1c) and the equality constraint (2.1d), respectively. For n1 ≤ k ≤ n2 − 1, if the
index set I is UDB(λH), then we have

u∗k = R−1
k (HT

k η
∗
k −BTk λ∗k),(2.6a)

η∗k = Ĥk(−Ekx∗k +HkR
−1
k BTk λ

∗
k + qk),(2.6b)

λ∗k = Kk+1x
∗
k+1 + Tk+1,(2.6c)

x∗k+1 = Dkx
∗
k −MkR̂kTk+1 +Mkq̂k,(2.6d)

where Kk and Tk are given by the backward recursions (2.4a)–(2.4f).
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Proof. The KKT conditions of problem (2.1) are

Rku
∗
k +BTk λ

∗
k −HT

k η
∗
k = 0, n1 ≤ k ≤ n2 − 1,(2.7a)

Qk(x∗k − dk) +ATk λ
∗
k − λ∗k−1 − ETk η∗k = 0, n1 + 1 ≤ k ≤ n2,(2.7b)

Qn2(x∗n2
− dn2)− λ∗n2−1 = 0,(2.7c)

x∗k+1 = Akx
∗
k +Bku

∗
k, n1 ≤ k ≤ n2 − 1,(2.7d)

Ekx
∗
k +Hku

∗
k = qk, n1 ≤ k ≤ n2 − 1.(2.7e)

Condition (2.7a) directly gives (2.6a). Substituting (2.6a) into (2.7e) gives

Ekx
∗
k +HkR

−1
k (HT

k η
∗
k −BTk λ∗k) = qk,

⇒ Ekx
∗
k + (HkR

−1
k HT

k )η∗k −HkR
−1
k BTk λ

∗
k = qk,

and this gives (2.6b) from Definition 2.3. Substituting (2.6a) and (2.6b) into (2.7d)
gives

(2.8)

x∗k+1 = Akx
∗
k +BkR

−1
k (HT

k η
∗
k −BTk λ∗k)

= Akx
∗
k +BkR

−1
k

(
HT
k Ĥk(−Ekx∗k +HkR

−1
k BTk λ

∗
k + qk)−BTk λ∗k

)
= (Ak −BkR−1

k HT
k ĤkEk)x∗k −Bk(R−1

k −R
−1
k HT

k ĤkHkR
−1
k )BTk λ

∗
k

+BkR
−1
k HT

k Ĥkqk
Def 2.3

= Âkx
∗
k − R̂kλ∗k + q̂k.

Substituting (2.6b) into (2.7b) gives

Qk(x∗k − dk) +ATk λ
∗
k − λ∗k−1 − ETk Ĥk(−Ekx∗k +HkR

−1
k BTk λ

∗
k + qk) = 0,

⇒ (Qk + ETk ĤkEk)x∗k −Qkdk + (Ak −BkR−1
k HT

k ĤkEk)Tλ∗k − λ∗k−1 − ETk Ĥkqk = 0.

From Definition 2.3, we then have, for n1 ≤ k < n2 − 1,

λ∗k−1 = ÂTk λ
∗
k + Q̂kx

∗
k −Qkdk − ETk Ĥkqk.(2.9)

From (2.7c) we also have

λ∗n2−1 = Qn2
(x∗n2

− dn2
).(2.10)

We prove (2.6c) and (2.6d) by backward induction. The statement (2.6c) holds
for k = n2− 1 from (2.10) and (2.4a). Suppose (2.6c) holds for λ∗k. Then substituting
(2.6c) into (2.8) gives

x∗k+1 = Âkx
∗
k − R̂kKk+1x

∗
k+1 − R̂kTk+1 + q̂k,

which leads to

(I + R̂kKk+1)x∗k+1 = Âkx
∗
k − R̂kTk+1 + q̂k.

tTherefore from (2.4c) we have

x∗k+1 = Mk(Âkx
∗
k − R̂kTk+1 + q̂k),(2.11)
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and (2.6d) holds for x∗k+1. Then for λ∗k−1, using (2.9) and (2.6c), we have

λ∗k−1 = Q̂kx
∗
k + ÂTk (Kk+1x

∗
k+1 + Tk+1)−Qkdk − ETk Ĥkqk

(2.11)
= Q̂kx

∗
k + ÂTkKk+1Mk(Âx∗k − R̂kTk+1 + q̂k) + ÂkTk+1 −Qkdk − ETk Ĥkqk

= (Q̂k + ÂTkKk+1MkÂk)x∗k + ÂTk (I −Kk+1MkR̂k)Tk+1

+ÂTkKk+1Mkq̂k −Qkdk − ETk Ĥkqk
(2.4d),(2.5)

= (Q̂k + ÂTkKk+1Dk)x∗k + ÂTkM
T
k Tk+1 + ÂTkKk+1Mkq̂k −Qkdk − ETk Ĥkqk

(2.4f),(2.4d),(2.4e)
= Kkx

∗
k + Tk,

and hence (2.6c) holds for λ∗k−1.
In the following, we investigate the notion of controllability for the system (2.1c)–

(2.1d). We define the following controllability matrix for the index set I in terms of
the sequence pair {Âk, B̂k} in Definition 2.3.

Definition 2.9. For some n1 ≤ q ≤ n2, t > 0, and some index set I that is
UDB(λH), define the controllability matrix associated with time steps [q, q + t− 1] as

Cq,t(I) =
[
B̂q+t−1 Âq+t−1B̂q+t−2 . . . ,

(∏t−1
l=1 Âq+l

)
B̂q

]
.

To see the relationship between Cq,t(I) and the controllability of the equality con-
strained system (2.1c)–(2.1d), we start by defining the notion of controllability for the
system (2.1c)–(2.1d).

Definition 2.10. Given an index set, define Ek and Hk as in (2.2). At time
step q, the system

(2.12)
xk+1 = Akxk +Bkuk, q ≤ k ≤ n2 − 1, xq = x0

q,

Ekxk +Hkuk = qk, q ≤ k ≤ n2 − 1

is controllable in t steps if for any x0
q and x, there exist admissible controls {uk}k=q:q+t−1

and corresponding states {xk}k=q+1:q+t satisfying (2.12) and xq+t = x.
Proposition 2.11. If the index set I is UDB(λH) and the resulting constrained

system (2.1c)–(2.1d) of problem (2.1) is controllable at time point q in t steps, then
Cq,t(I) has full row rank.

Proof. The system (2.1c)–(2.1d) being controllable in t steps implies that there
exist admissible controls {uk}k=q:q+t−1 and corresponding states {xk}k=q+1:q+t so
that xq+t = x for any x. Then we have, for q ≤ k ≤ q + t− 1,

xk+1 = Akxk +Bkuk
(2.1d)

= Akxk +Bkuk −BkR−1
k HT

k Ĥk(Ekxk +Hkuk − qk)

Def 2.3
= Âkxk + B̂kuk + q̂k,

which means that the same sequences {uk} and {xk} also satisfy the linear dynamics

xk+1 = Âkxk + B̂kuk + q̂k(2.13)

and that xq+t = x. In other words, (2.13) can be controlled in t steps to x. Since x
is arbitrary, it follows that Cq,t(I) has full row rank.

Proposition 2.11 connects the controllability of the equality-constrained system
(2.1c)–(2.1d) to the full rank of a related controllability matrix Cq,t(I). For our
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purpose, however, we need a uniform boundedness property of the controllability
matrix, which is stronger than the standard assumption of merely full rankness.

Definition 2.12. For some index set I that is UDB(λH), let Âk, B̂k be as in
Definition 2.3. With some 0 < t < n2 − n1 and λC > 0, the index set is uniformly
completely controllable with respect to λC , denoted as UCC(λC), if the sequence pair
{Âk, B̂k} is uniformly completely controllable [11, Definition 3.1], i.e., for any n1 ≤
q ≤ n2,

λmin
(
Cq,t(I)CTq,t(I)

)
≥ λC > 0.

The main purpose of this subsection is to investigate the dependencies of the
solutions of problem (2.1) on the initial value x0

n1
and terminal reference dn2 for some

index set that is UDB(λH) and UCC(λC). To start, we derive properties for the
quantities defined in Definition 2.6. The proofs of the results regarding the Riccati
matrix Kk and closed-loop matrix Dk are structurally the same as those in [24], and
hence they are provided in the Appendix.

Lemma 2.13. For n1 ≤ k ≤ n2 − 1, if the index set I is UDB(λH), we have

Mk = I − B̂kW−1
k B̂Tk Kk+1,(2.14a)

Kk = Q̂k + ÂTkKk+1Âk − ÂTkKk+1B̂kW
−1
k B̂Tk Kk+1Âk,(2.14b)

where Mk, Kk, and Wk are from Definition 2.6.
Proof. Definition 2.6 and Lemma 2.5 imply that

Mk =
(
I + B̂kR

−1
k B̂Tk Kk+1

)−1

.

Then we have

M−1
k

(
I − B̂kW−1

k B̂Tk Kk+1

)
=
(
I + B̂kR

−1
k B̂Tk Kk+1

)(
I − B̂kW−1

k B̂Tk Kk+1

)
= I + B̂kR

−1
k B̂Tk Kk+1 − B̂kW−1

k B̂Tk Kk+1 − B̂kR−1
k B̂Tk Kk+1B̂kW

−1
k B̂Tk Kk+1

= I + B̂k

(
R−1
k −W

−1
k −R−1

k B̂Tk Kk+1B̂kW
−1
k

)
B̂Tk Kk+1

= I + B̂k

(
R−1
k Wk − I −R−1

k B̂Tk Kk+1B̂k

)
W−1
k B̂Tk Kk+1

= I + B̂k

(
R−1
k

(
Wk − B̂Tk Kk+1B̂k

)
− I
)
W−1
k B̂Tk Kk+1

(2.4b)
= I + B̂k

(
������
R−1
k Rk − I

)
W−1
k B̂Tk Kk+1

= I.

Hence, Mk = I − B̂kW−1
k B̂Tk Kk+1. Substituting (2.14a) into (2.4d) and (2.4f), we

have

Kk = Q̂k + ÂTkKk+1

(
I − B̂kW−1

k B̂Tk Kk+1

)
Âk,

which proves (2.14b).
Proposition 2.14. Under Assumption 2.1, if the index set I is UDB(λH) and

UCC(λC), then for any n1 ≤ q ≤ n2, we have ‖Kq‖2 ≤ β for some β > 0 independent
of n1, n2, and the particular choice of I.
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Proof. See Appendix A.1; also see [24, Proposition 2.7].
Proposition 2.15. Under Assumption 2.1, for any q ≤ j ≤ n2 − 1, if the index

set I is UDB(λH) and UCC(λC), then we have∥∥∥∥∥∥
j∏
l=q

Dl

∥∥∥∥∥∥
2

≤ C1ρ
j−q+1,

where C1 =
√
β/λQ, ρ = 1/

√
1 + (λQ/β), and C1, ρ are independent of n1, n2, and

the particular choice of I.
Proof. See Appendix A.2; also see [24, Proposition 2.8].
In the following, we show the dependencies of the solutions to problem (2.1) on

the initial state and terminal reference decay exponentially. To start, we prove a short
lemma about the recursion defined in (2.4e).

Lemma 2.16. For n1 + 1 ≤ k ≤ n2, if the index set I is UDB(λH), then we have

‖∇dn2
Tk‖2 ≤ Csρn2−k(2.15)

for some Cs > 0 independent of n1, n2, and the particular choice of I.
Proof. Recursion (2.4e) gives

∇dn2
Tk = −

(
n2−1∏
l=k

Dl

)T
Qn2

.

The statement is proved by using Proposition 2.15 and taking Cs = C̃QC1 for C̃Q
defined in Assumption 2.1.

Proposition 2.17. Let x∗k and u∗k be the optimal states and controls of problem
(2.1). Under Assumption 2.1, if the index set I is UDB(λH) and UCC(λC), then

‖∇xn1
x∗k‖2 ≤ Z1ρ

k−n1 , ‖∇dn2
x∗k‖2 ≤ Z2ρ

n2−k, n1 + 1 ≤ k ≤ n2,

‖∇xn1
u∗k‖2 ≤ Z1ρ

k−n1 , ‖∇dn2
u∗k‖2 ≤ Z2ρ

n2−k, n1 ≤ k ≤ n2 − 1,

for some Z1, Z2 > 0 independent of n1, n2, and the particular choice of I.
Proof. FromAssumption 2.1 and Lemma 2.4 we have, for Xk and R̂k defined in

Definition 2.3,

‖Xk‖2 ≤ 1/λR + C2
HCĤ/λ

2
R

∆
= CX , ‖R̂k‖2 ≤ C̃2

BCX
∆
= CR̂.

Lemmas 2.13 and 2.4 and Proposition 2.14 give

‖Mk‖2 ≤ 1 + C2
Bβ/λR

∆
= CM , ‖Dk‖2 ≤ ‖Mk‖2‖Âk‖2 ≤ CMCA

∆
= CD,

where the first inequality uses the relation Wk � Rk, which is given by (2.4b) and
Lemma 2.7. From Lemma 2.8 we have

x∗k+1 = Dkx
∗
k −MkR̂kTk+1 +Mkq̂k,(2.16)

so

‖∇xn1
x∗k‖2 =

∥∥∥∥∥
k−1∏
l=n1

Dl

∥∥∥∥∥
2

≤ C1ρ
k−n1 ,(2.17)
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which follows from Proposition 2.15. Also, from (2.16) we have

∇dn2
x∗k+1 = Dk

(
∇dn2

x∗k
)
−MkR̂k

(
∇dn2

Tk+1

)
(2.18)

and ∇dn2
xn1

= 0. From Recursion (2.18) we have

∇dn2
x∗k = −

k∑
i=n1+1

(
k−1∏
l=i

Dl

)
Mi−1R̂i−1

(
∇dn2

Ti
)
,

from which, using Proposition 2.15 and Lemma 2.16, we have, for C
∆
= C1CMCR̂Cs,

(2.19)

‖∇dn2
x∗k‖2 ≤

k∑
i=n1+1

C1ρ
k−iCMCR̂Csρ

n2−i

= Cρn2−k
k∑

i=n1+1

ρ2(k−i)

≤ C

1− ρ2
ρn2−k.

Equation (2.6a) gives

u∗k = R−1
k (HT

k η
∗
k −BTk λ∗k)

(2.6b)
= R−1

k HT
k Ĥk(−Ekx∗k +HkR

−1
k BTk λ

∗
k + qk)−R−1

k BTk λ
∗
k

Def 2.3
= −R−1

k HT
k ĤkEkx

∗
k −XkB

T
k λ
∗
k +R−1

k HT
k Ĥkqk

(2.6c)
= −R−1

k HT
k ĤkEkx

∗
k +R−1

k HT
k Ĥkqk −XkB

T
k (Kk+1x

∗
k+1 + Tk+1)

(2.6d)
= −R−1

k HT
k ĤkEkx

∗
k +R−1

k HT
k Ĥkqk

− XkB
T
k Kk+1(Dkx

∗
k −MkR̂kTk+1 +Mkq̂k)−XkB

T
k Tk+1

= −(R−1
k HT

k ĤkEk +XkB
T
k Kk+1Dk)x∗k +R−1

k HT
k Ĥkqk

− XkB
T
k (I −Kk+1MkR̂k)Tk+1 −XkB

T
k Kk+1Mkq̂k.

In this expression, for the term multiplying x∗k and Tk+1, we have the following from
Assumption 2.1 and Lemma 2.4, respectively:

‖R−1
k HT

k ĤkEk +XkB
T
k Kk+1Dk‖2 ≤ CHCĤCE/λR + CXC̃BβCD

∆
= Y1,

‖XkB
T
k (I −Kk+1MkR̂k)‖2 ≤ CXC̃B(1 + βCMCR̂)

∆
= Y2.

Note that from (2.4e), Tk does not depend on the initial value xn1
. Therefore we have

(2.20) ‖∇xn1
u∗k‖2 ≤ Y1‖∇xn1

x∗k‖2
(2.17)

≤ Y1C1ρ
k−n1

and

(2.21)

‖∇dn2
u∗k‖2 ≤ Y1‖∇dn2

x∗k‖2 + Y2‖∇dn2
Tk+1‖2

(2.19),Lemma 2.16

≤ Y1C

1− ρ2
ρn2−k +

Y2Cs
ρ

ρn2−k.
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Considering (2.17), (2.19), (2.20), and (2.21) and letting

Z1 = max (C1, Y1C1), Z2 = max (
C

1− ρ2
,
Y1C

1− ρ2
+
Y2Cs
ρ

),

prove the statement.
Proposition 2.17 is the main result of this subsection. It shows that the effect of

the initial state (or terminal reference) on the solutions of problem (2.1) decays expo-
nentially fast in the time distance between the solution and the initial (or terminal)
time point. Moreover, under the uniform boundedness Assumption 2.1, the decay rate
is independent of the problem interval [n1, n2], and the particular choice of the index
set given it is UDB(λH) and UCC(λC). This property is essential for proving that
a receding horizon strategy approximates the solution on the full horizon in Section
3. We now conclude this subsection with a boundedness result of the solutions and
adjoint variables of problem (2.1).

Assumption 2.18. For any n1, n2 and n1 ≤ k ≤ n2, we have ‖dk‖2 ≤ m0 and
‖x0

n1
‖2 ≤ u0.
Lemma 2.19. Let x∗k and λ∗k be the optimal states and adjoint variables of problem

(2.1), respectively. Under Assumptions 2.1 and 2.18, if the index set I is UDB(λH)
and UCC(λC), then we have

‖x∗k‖2 ≤ Cg, n1 + 1 ≤ k ≤ n2; ‖λ∗k‖2 ≤ Cλ, n1 ≤ k ≤ n2 − 1

for some Cg, Cλ > 0 independent of n1, n2, and the particular choice of I.
Proof. In (2.4e), denote Tn2 = Tn2 and for k < n2,

T k = ÂTkKk+1Mkq̂k − ETk Ĥkqk −Qkdk,

so that Tk = DT
k Tk+1 + T k and Tn2

= −Qn2
dn2

. As a result, we have

Tk =

n2∑
i=k

(
i−1∏
l=k

Dl

)T
T i.(2.22)

From Assumption 2.1 and Definition 2.3 we have

‖qk‖2 ≤ U, ‖q̂k‖2 ≤ C̃BCHCĤU/λR
∆
= Cq̂.

From Lemmas 2.13 and 2.4 and Proposition 2.14 we have ‖Mk‖2 ≤ 1+C2
Bβ/λR

∆
= CM .

Then using Assumption 2.1, Lemma 2.4, and Proposition 2.14, we have

‖T k‖2 ≤ CAβCMCq̂ + CECĤU + C̃Qm0
∆
= CT .

Combining the above with Proposition 2.15, we have

‖Tk‖2 ≤
n2∑
i=k

CTC1ρ
i−k ≤ CTC1/(1− ρ)

∆
= CT .(2.23)

Denote Gk
∆
= −MkR̂kTk+1 + Mkq̂k. Then, from Lemma 2.8, we have x∗k+1 =

Dkx
∗
k +Gk. Thus,

x∗k =

k−1∑
i=n1

(
k−1∏
l=i+1

Dl

)
Gi +

(
k−1∏
l=n1

Dl

)
xn1

.
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Note that ‖Gk‖2 ≤ CMCR̂CT + CMCq̂
∆
= CG,. Thus, from Proposition 2.15 we have

‖x∗k‖ ≤
k−1∑
i=n1

(
CGC1ρ

k−i−1
)

+ C1u0ρ
k−n1 ≤ C1CG/(1− ρ) + C1u0

∆
= Cg.(2.24)

Next, we prove that the bound on λ∗k. Lemma 2.8 gives

λ∗k = Kk+1x
∗
k+1 + Tk+1.

Using Proposition 2.14, (2.23) and (2.24), we have

‖λ∗k‖2 ≤ β‖x∗k+1‖2 + CT ≤ βCg + CT
∆
= Cλ.

This completes the proof.

2.2. Path-constrained inequality problem. In this subsection, we return
to the inequality-constrained problem (1.1). Using the results established for (2.1),
we investigate the solutions and adjoint variables of (1.1). We make the following
controllability assumption of the active set of problem (1.1) at optimality.

Assumption 2.20. Let A be the active set of problem (1.1) at optimality. Then
(a) A is UDB(λH) as defined in Definition 2.2;
(b) the equality-constrained system (2.1c)–(2.1d) corresponding to A is control-

lable in t steps as defined in Definition 2.10 for any n1 ≤ q ≤ n2;
(c) under (b), Cq,t(A) has full row rank by Proposition 2.11, and we further

assume that A is UCC(λC) as defined in Definition 2.12.
Corollary 2.21. Let x∗k and λ∗k be respectively the optimal states and adjoint

variables of problem (1.1). Under Assumptions 2.1, 2.18, and 2.20, we have

‖x∗k‖2 ≤ Cg, n1 + 1 ≤ k ≤ n2; ‖λ∗k‖2 ≤ Cλ, n1 ≤ k ≤ n2 − 1

for Cg, Cλ > 0 defined in Lemma 2.19.
Proof. Note that when the index set for problem (2.1) is the active set A of

problem (1.1) at optimality, problems (1.1) and (2.1) have the same solutions and
adjoint variables. Since A is UDB(λH) and UCC(λC) by Assumption 2.20, applying
Lemma 2.19 gives the result.

3. Lag L receding horizon strategy. In this section, we prove an exponen-
tially decaying approximation error for a lag L receding horizon strategy. Let N > L
be the length of each but the last receding horizon, and let n0 = b(n2 − n1 − N +
1)/Lc+ 1 be the number of receding horizons. Then for i = 1, . . . , n0, define the ith
receding horizon Ri = [n′1(i), n′2(i)] as

n′1(i) = n1 + L(i− 1), n′2(i) =

{
n′1(i) +N − 1, 1 ≤ i ≤ n0 − 1,

n2, i = n0.
(3.1)

For simplicity, we denote m
∆
= n′1(n0) to be the starting index of the last receding

horizon. Note that with (3.1), we have n′1(i + 1) = n′1(i) + L and that the length
N1 = n2−m+1 of the last receding horizon satisfies N ≤ N1 < N+L. On a receding
horizon Ri, we define the following parametrized problem whose parameters are the
initial state and terminal reference.
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Definition 3.1. For i = 1, . . . , n0, define the parametrized problem P iθ with
θ = (θ(h), θ(d)) as follows:

min
1

2

n′
2(i)−1∑
k=n′

1(i)

wTk Rkwk + (hk − dk)TQk(hk − dk)(3.2a)

+ (hn′
2(i) − dn′

2(i))
TQn′

2(i)(hn′
2(i) − dn′

2(i))(3.2b)

s.t. hk+1 = Akhk +Bkwk, n′1(i) ≤ k ≤ n′2(i)− 1(3.2c)

P̃k+1hk+1 + C̃kwk ≥ q̃k, n′1(i) ≤ k ≤ n′2(i)− 1(3.2d)

hn′
1(i) = θ(h), dn′

2(i) = θ(d),(3.2e)

where dn′
1(i):n′

2(i)−1 is the reference trajectory of problem (1.1).

The parametrized problem P iθ is essentially a subproblem of (1.1) restricted on
the receding horizon Ri with terminal reference parametrized by θ(d) and reinitialized
with θ(h). Denote x∗k(P iθ), u

∗
k(P iθ) as the optimal state and control, respectively, of

problem P iθ at some time point k ∈ Ri. Then the RHC policy (e.g., [9, 14]) is the
sequence {ũk}n2

k=n1
defined as

(3.3)
ũn′

1(i)+j−1 = u∗n′
1(i)+j−1(P iθ0(i)), 1 ≤ j ≤ L, 1 ≤ i ≤ n0 − 1,

ũk = u∗k(Pn0

θ0(n0)), m ≤ k ≤ n2 − 1,

where θ0(i) = (x̃n′
1(i), dn′

2(i)), and the state sequence {x̃k}n2

k=n1
is defined as

(3.4)

x̃n′
1(1) = x0

n1
,

x̃n′
1(i)+j = x∗n′

1(i)+j(P
i
θ0(i)), 1 ≤ j ≤ L, 1 ≤ i ≤ n0 − 1,

x̃k = x∗k(Pn0

θ0(n0)), m+ 1 ≤ k ≤ n2.

In other words, the RHC policies ũn′
1(i)+j−1 for 1 ≤ j ≤ L and 1 ≤ i ≤ n0 − 1 are

obtained by solving problem P iθ0(i) on Ri initialized with x̃n′
1(i) = x̃n′

1(i−1)+L, which

in turn is obtained by solving P i−1
θ0(i−1) on Ri−1. On the last receding horizon, ũk for

m ≤ k ≤ n2 − 1 are defined as the optimal controls of problem Pn0

θ0(n0) on Rn0
. To

bound the error of this RHC strategy, we need to relate the solutions of problems P iθ0(i)

to those of problem (1.1). To start, we consider a different choice of the parameter
θ1(i). The following result establishes a connection between the solutions of (1.1) and
those of P iθ1(i).

Proposition 3.2. Let (u∗n1:n2−1, x
∗
n1+1:n2

) and λ∗k be the solutions and opti-
mal adjoint variables of problem (1.1) with some initial value x0

n1
, and let η∗k be the

optimal Lagrange multipliers associated with the path constraints (1.1d). For each
i = 1, . . . , n0, define

(3.5)

ĥn′
1(i) =

{
x0
n1
, i = 1

x∗n′
1(i), i = 2, . . . , n0,

d̂n′
2(i) =

{
−Q−1

n′
2(i)

(
λ∗n′

2(i)−1 + P̃Tn′
2(i)η

∗
n′
2(i)−1

)
+ x∗n′

2(i), i = 1, . . . , n0 − 1

dn2
, i = n0.

Then (u∗n′
1(i):n′

2(i)−1, x
∗
n′
1(i)+1:n′

2(i)) satisfies the KKT conditions and the second-order

sufficient conditions of problem P iθ1(i) with θ1(i) = (ĥn′
1(i), d̂n′

2(i)).



14 W. XU AND M. ANITESCU

Proof. The KKT conditions for problem (1.1) are

Rku
∗
k +BTk λ

∗
k − C̃Tk η∗k = 0, k ∈ [n1, n2 − 1](3.6a)

Qk(x∗k − dk) +ATk λ
∗
k − λ∗k−1 − P̃Tk η∗k−1 = 0, k ∈ [n1 + 1, n2 − 1](3.6b)

Qn2
(x∗n2

− dn2
)− λ∗n2−1 − P̃Tn2

η∗n2−1 = 0,(3.6c)

x∗k+1 = Akx
∗
k +Bku

∗
k, k ∈ [n1, n2 − 1],(3.6d)

xn1
= x0

n1
,(3.6e)

P̃k+1x
∗
k+1 + C̃ku

∗
k ≥ q̃k, k ∈ [n1, n2 − 1](3.6f)

η∗k ≥ 0, k ∈ [n1, n2 − 1](3.6g)

η∗k(j)
(
P̃k+1(j, :)x∗k+1 + C̃k(j, :)u∗k − q̃k(j)

)
= 0, k ∈ [n1, n2 − 1].(3.6h)

Then for problem P iθ1(i), the KKT conditions are satisfied by (u∗n′
1(i):n′

2(i)−1, x
∗
n′
1(i)+1:n′

2(i))

with the same Lagrange multipliers λ∗k and η∗k as follows. Note that for problem P iθ1(i),

the initial state and terminal reference are ĥn′
1(i) and d̂n′

2(i) defined in (3.5):

Rku
∗
k +BTk λ

∗
k − C̃Tk η∗k = 0, k ∈ [n′1(i), n′2(i)− 1](3.7a)

Qk(x∗k − dk) +ATk λ
∗
k − λ∗k−1 − P̃Tk η∗k−1 = 0, k ∈ [n′1(i) + 1, n′2(i)− 1](3.7b)

Qn′
2(i)(x

∗
n′
2(i) − d̂n′

2(i))− λ∗n′
2(i)−1 − P̃

T
n′
2(i)η

∗
n′
2(i)−1 = 0,(3.7c)

x∗k+1 = Akx
∗
k +Bku

∗
k, k ∈ [n′1(i), n′2(i)− 1],(3.7d)

xn′
1(i) = ĥn′

1(i),(3.7e)

P̃k+1x
∗
k+1 + C̃ku

∗
k ≥ q̃k, k ∈ [n′1(i), n′2(i)− 1](3.7f)

η∗k ≥ 0, k ∈ [n′1(i), n′2(i)− 1](3.7g)

η∗k(j)
(
P̃k+1(j, :)x∗k+1 + C̃k(j, :)u∗k − q̃k(j)

)
= 0, k ∈ [n′1(i), n′2(i)− 1],(3.7h)

where (3.7a)–(3.7b) and (3.7f)–(3.7h) directly follow from (3.6a)–(3.6b) and (3.6f)–

(3.6h), respectively. Equation (3.7c) follows from the definition of d̂n′
2(i) in (3.5).

Equation (3.7d) follows from (3.6d), (3.7e), and (3.5). The second-order condition is
satisfied by virtue of the strong convexity of the problem.

Lemma 3.3. Under Assumptions 2.1, 2.18, and 2.20, for ĥn′
1(i) and d̂n′

2(i) defined
in (3.5), we have, for i = 1, . . . , n0,

‖ĥn′
1(i)‖2, ‖d̂n′

2(i)‖2 ≤ Cθ

for some Cθ > 0 independent of i, n1, and n2.
Proof. For i = 1, . . . , n0 − 1, KKT conditions of problem (1.1) give

λ∗n′
2(i)−1 + P̃Tn′

2(i)η
∗
n′
2(i)−1 = Qn′

2(i)(x
∗
n′
2(i) − dn′

2(i)) +ATn′
2(i)λ

∗
n′
2(i).

Then Assumptions 2.1 and 2.18 and Corollary 2.21 give

‖λ∗n′
2(i)−1 + P̃Tn′

2(i)η
∗
n′
2(i)−1‖2 ≤ C̃Q(Cg +m0) + C̃ACλ.

Combining this with (3.5), we have

‖d̂n′
2(i)‖2 ≤

(
C̃Q(Cg +m0) + C̃ACλ

)
/λQ + Cg

∆
= Cd̂,
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for i = 1, . . . , n0 − 1. From (3.5), we have ‖d̂n′
2(i)‖ ≤ min(Cd̂,m0) for i = 1, . . . , n0.

Similarly, from Assumption 2.18, Corollary 2.21, and (3.5) we have ‖ĥn′
1(i)‖2 ≤

min (u0, Cg) for i = 1, . . . , n0. Taking Cθ = min (Cd̂,m0, u0, Cg) concludes the proof.

Proposition 3.2 shows that the solution of P iθ1(i) is identical to the solution, re-

stricted to Ri, of problem (1.1). However, problem P iθ1(i) is only notional and cannot

be defined without first solving problem (1.1). Hence we need to investigate the rela-
tionship between solutions of problems P iθ1(i) and P iθ0(i), the latter of which gives the

RHC solutions. Since problem P iθ1(i) can be viewed as resulting from a perturbation

of the parameters of problem P iθ0(i), we employ the following parametric sensitivity

results derived from [5].
Definition 3.4. For θ ∈ Rq, define the one-sided directional derivative of y(θ)

along a direction p ∈ Rq at θ0 as

Dpy(θ0) = lim
t↓0

y(θ0 + tp)− y(θ0)

t
,

given that the limit exists.
Lemma 3.5. Consider the following parametrized quadratic programming prob-

lem,

(3.8)

min f(y, θ)
∆
= yTGy/2 + yT c(θ) + θTFθ + yT c1 + θT c2 + C

s.t. Ay − r ≤ 0

By − d(θ) = 0,

where G, F are positive definite, θ ∈ Rq, and AT =
[
a1, . . . , am

]
∈ Rn×m. Denote

the solution of problem (3.8) as y(θ). When θ = θ0, let y0 = y(θ0) and the Lagrange
multiplier corresponding to y0 be λ̄. Denote I(y0, θ0) = {i : aTi y0 = ri, i = 1, . . . ,m}
be the set of active inequality constraints, I+(y0, θ0, λ̄) = {i ∈ I(y0, θ0) : λ̄i > 0}
and I0(y0, θ0, λ̄) = {i ∈ I(y0, θ0) : λ̄i = 0}. If the linear independence constraint
qualification holds at y(θ0), then for any direction p ∈ Rq, we have

Dpy(θ0) =

(
dy∗I′(θ0)(θ)

dθ

∣∣∣∣∣
θ=θ0

)
p,

where y∗I′(θ0)(θ) is the solution of the problem

(3.9)

min f(y, θ) = yTGy/2 + yT c(θ) + θTFθ + yT c1 + θT c2 + C

s.t. AI′(θ0)y − r′ = 0

By − d(θ) = 0

and where I ′(θ0) = I+(y0, θ0, λ̄) ∪ I1 for some I1 ⊂ I0(y0, θ0, λ̄) and AI′(θ0) =
[aTi ]i∈I′(θ0), r

′ = [ri]i∈I′(θ0).
Proof. See Appendix A.3; see also [24, Lemma 3.5].
Note that problem P iθ has the same structure as that defined by (3.8), and

Lemma 3.5 connects the dependence on parameters of the solutions for the inequality-
constrained problem (3.8) with that of a related equality-constrained problem (3.9),
whose equality constraints are subsetted from the active constraints of (3.8) at op-
timality. The equality-constrained problem has smooth and regular KKT conditions
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which facilitate the derivation for the dependence of solutions on parameters as shown
in Section 2.1. Now we are ready to investigate the effect on solutions of perturbing
the parameters of P iθ . Since the proof for each receding horizon is the same, for no-
tational simplicity we suppress the dependence of n′1(i), n′2(i) and P iθ on i whenever
the index of the receding horizon under consideration is clear. To connect the solu-
tions of Pθ1 and Pθ0 , we consider a continuously indexed family of problems Pθs for
θs = θ0 + s(θ1 − θ0) and s ∈ [0, 1]. Let Pk+1(s)hk+1 + Ck(s)wk = qk(s) be the active
constraints of problem Pθs at optimality. We let

Ek(s) = Pk+1(s)Ak, Hk(s) = Pk+1(s)Bk + Ck(s).(3.10)

Thus, the active constraints of Pθs are

hk+1 = Akhk +Bkwk n′1 ≤ k ≤ n′2 − 1, hn′
1

= θ(h)
s ,(3.11a)

Ek(s)hk +Hk(s)wk = qk(s), n′1 ≤ k ≤ n′2 − 1,(3.11b)

where θs = (θ
(h)
s , θ

(d)
s ). As in Assumption 2.20 (a), we make the following uniform

boundedness assumption about the active constraints of Pθs .
Assumption 3.6. For i = 1, . . . , n0 and s ∈ [0, 1], let θ0(i) = (x̃n′

1(i), dn′
2(i)),

θ1(i) = (ĥn′
1(i), d̂n′

2(i)) as defined in (3.5), and θs(i) = θ0(i) + s(θ1(i) − θ0(i)). Then

the active sets of problems P iθs(i) at optimality are UDB(λH) as in Definition 2.2.

In particular, Assumption 3.6 implies that Hk(s) defined in (3.10) has full row
rank, with which we can now apply Lemma 3.5 to problem Pθs .

Lemma 3.7. Denote θ0 = (x̃n′
1
, dn′

2
) and θ1 = (ĥn′

1
, d̂n′

2
) as defined in (3.5). For

θ = (θ(h), θ(d)), let x(θ) be the solution of problem Pθ. Under Assumption 3.6, for
s ∈ [0, 1] and θs = θ0 + s(θ1 − θ0), we have

Dθ1−θ0x (θs) =

(
dys(θ)

dθ

∣∣∣
θ=θ0+s(θ1−θ0)

)
(θ1 − θ0),

and ys(θ) is the solution of the following equality-constrained problem:

min
1

2

n′
2−1∑
k=n′

1

wTk Rkwk + (hk − dk)TQk(hk − dk)(3.12a)

+ (hn′
2
− θ(d)

s )TQn′
2
(hn′

2
− θ(d)

s )(3.12b)

s.t. hk+1 = Akhk +Bkwk, n′1 ≤ k ≤ n′2 − 1, hn′
1

= θ(h)
s ,(3.12c)

E′k(s)hk +H ′k(s)wk = q′k(s), n′1 ≤ k ≤ n′2 − 1,(3.12d)

where rows of E′k(s) and H ′k(s) are respectively subsets of rows of Ek(s) and Hk(s)
defined by the active constraints of Pθs at optimality as in (3.10). In other words,
E′k(s)hk +H ′k(s)wk = q′k(s) is a subset of the equality constraints (3.11b).

Proof. Problem Pθs is an instance of problem (3.8) with the following parameters:

G = diag
([
Rn′

1
. . . Rn′

2−1 Qn′
1+1 . . . Qn′

2

])
, c(θ) =

[
0(n′

2−n′
1)m+(n′

2−n′
1−1)n

−Qn′
2
θ

(d)
s

]
,

A =

 −C̃n′
1

−P̃n′
1+1

. . .
. . .

−C̃n′
2−1 −P̃n′

2

 , r =

 −q̃n′
1

...
−q̃n′

2−1

 , F =

[
Qn′

1
/2

Qn′
2
/2

]
,
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B =


−Bn′

1
I

. . . −An′
1+1 I

. . .

−Bn′
2−1 −An′

2−1 I

 , d(θ) =

[
An′

1
θ

(h)
s

0(n′
2−n′

1−1)n

]
.

Here Ax ≤ r and Bx = d(θ) correspond respectively to the inequality constraints
(3.2d) and the dynamical constraints (3.2c). Note that A and B have the same number
of columns. G and F are positive definite from Assumption 2.1. The quantities c1, c2,
and C of problem (3.8) do not enter in the proof, so their definitions are not shown.

Let A(s) be the matrix whose rows are subsets of rows of A corresponding to
the active constraints Pk+1(s)hk+1 +Ck(s)wk = qk(s) at optimality for problem Pθs .
Then we define

A(s)
∆
=

 −Cn′
1
(s) −Pn′

1+1(s)
. . .

. . .

−Cn′
2−1(s) −Pn′

2
(s)

 .
In the following we show that rows of A(s) and B are linearly independent. Denote

αT =
[
αTn′

1+1, . . . , α
T
n′
2

]
, βT =

[
βTn′

1
, . . . , βTn′

2−1

]
.

Then

αTA(s) + βTB =
[
xn′

1
. . . xn′

2−1 yn′
1+1 . . . yn′

2

]
,

where

xk = −αTk+1Ck(s)− βTk Bk, yk =

{
βTk−1 − βTk Ak − αTk Pk(s), k < n′2
βTn′

2−1 − αTn′
2
Pn′

2
(s), k = n′2.

Now we let αTA(s) + βTB = 0. We show that α, β = 0 by backward induction. We
have {

xn′
2−1 = 0

yn′
2

= 0
⇒

{
αTn′

2
Cn′

2−1(s) + βTn′
2−1Bn′

2−1 = 0

βTn′
2−1 = αTn′

2
Pn′

2
(s)

⇒ αTn′
2
Cn′

2−1(s) + αTn′
2
Pn′

2
(s)Bn′

2−1 = 0

(3.10),Asmp 3.6⇒ αn′
2

= 0⇒ βn′
2−1 = 0.

Suppose αk, βk−1 = 0 for some n′1 + 1 < k ≤ n′2. Then we have{
xk−2 = 0

yk−1 = 0
⇒

{
αTk−1Ck−2(s) + βTk−2Bk−2 = 0

βTk−2 = ���βTk−1Ak−1 + αTk−1Pk−1(s)

⇒ αTk−1Ck−2(s) + αTk−1Pk−1(s)Bk−2 = 0

(3.10),Asmp 3.6⇒ αk−1 = 0⇒ βk−2 = 0.

So LICQ holds for problem Pθs at optimality. Directly applying Lemma 3.5 concludes
the proof.
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Problem (3.12) is an equality-constrained problem for which the results derived in
Section 2, especially the exponential decay property of the dependence of solutions on
the initial state and terminal reference, can be applied under certain assumptions. In
the following, we investigate the controllability conditions for problem (3.12). Denote
the active set of problem P iθs(i) and the index set for the corresponding equality

constraints of problem (3.12) as As(i) and Is(i), respectively.
Lemma 3.8. Under Assumption 3.6, for s ∈ [0, 1] and i = 1, . . . , n0, we have that

Is(i) is UDB(λH) as defined in Definition 2.2.
Proof. Since Is(i) ⊂ As(i), rows of H ′k(s) are subsets of rows of Hk(s), then the

conclusion follows from Assumption 3.6.
Lemma 3.9. If the equality-constrained system (3.11) corresponding to the active

sets of Pθs is controllable at q in t steps, then the controllability matrix Cq,t(Is) defined
by the subsetted system (3.12c)–(3.12d) has full row rank.

Proof. If system (3.11) can be controlled to an arbitrary state x in t steps with
some admissible controls and corresponding states, then the subsetted system (3.12c)–
(3.12d) can also be controlled to x in t steps with the same controls and states, because
the feasible set defined by (3.12c)–(3.12d) contains that defined by (3.11). As a result,
from Proposition 2.11 Cq,t(Is) has full row rank.

Assumption 3.10. For i = 1, . . . , n0 and s ∈ [0, 1], let θ0(i) = (x̃n′
1(i), dn′

2(i)),

θ1(i) = (ĥn′
1(i), d̂n′

2(i)) as defined in (3.5), and θs(i) = θ0(i) + s(θ1(i) − θ0(i)). We
have the following for any n′1(i) ≤ q ≤ n′2(i), 1 ≤ i ≤ n0:

(a) the system (3.11) defined by As(i) is controllable at q for t steps;
(b) under (a), Cq,t(As(i)) and Cq,t(Is(i)) have full row rank by Proposition 2.11

and Lemma 3.9, respectively; and we further assume that both As(i) and Is(i)
are UCC(λC).

Assumption 3.10(a) assumes controllability of problem Pθs only at optimality.
Proposition 2.11 and Lemma 3.9 imply that Cq,t(As) and Cq,t(Is) are bounded below,
and Assumption 3.10 (b) in addition assumes that the lower bounds are uniform for all
time points and receding horizons. Now we are ready to bound the distance between
solutions of Pθ0 and Pθ1 , which by Proposition 3.2, is also the distance between
solutions of RHC and problem (1.1).

Theorem 3.11. For 1 ≤ i ≤ n0, let (u∗n′
1(i):n′

2(i)−1, x
∗
n′
1(i)+1:n′

2(i)) be the solution

of problem P iθ1(i), which from Proposition 3.2 is exactly the solution of problem (1.1)

restricted to Ri. Let ũk and x̃k be the receding horizon control and state defined in
(3.3) and (3.4), respectively. Under Assumptions 2.1, 2.18, 2.20, and 3.6, we have,
for some lag L so that Z1ρ

L < 1 and receding horizon length N > L,

‖x∗k − x̃k‖2, ‖u∗k − ũk‖2 ≤ CdZ2

(
1 +

Z1

1− Z1ρL

)
ρN−L−1

for n1 ≤ k ≤ n2 − 1. Here Cd > 0 is independent of N , n1, and n2; Z1, Z2, and ρ
are as in Proposition 2.17.

Proof. Assumption 2.1 and Lemma 3.3 give, for i = 1, . . . , n0,

‖d̂n′
2(i) − dn′

2(i)‖2 ≤ Cθ +m0
∆
= Cd.(3.13)

Let θ0(i) = (x̃n′
1(i), dn′

2(i)), θ1(i) = (ĥn′
1(i), d̂n′

2(i)) as defined in (3.5), and θs(i) =
θ0(i) + s(θ1(i)− θ0(i)) for s ∈ [0, 1]. Note that for 1 ≤ j ≤ L, x∗n′

1(i)+j is the optimal

state of problem (1.1), which by Proposition 3.2 is also that of problem P iθ1(i); while
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x̃n′
1(i)+j is the optimal state of problem P iθ0(i) by (3.4). Denote s̃∗k(θs(i)) and p̃∗k(θs(i))

for n′1(i) ≤ k ≤ n′2(i) as the optimal control and state of problem P iθs(i), and s∗k(θs(i))

and p∗k(θs(i)) as those of the corresponding subsetted equality-constrained problem
(3.12). Then for 1 ≤ i ≤ n0 − 1, we have from Proposition 3.2 and Lemma 3.7

x∗n′
1(i)+j − x̃n′

1(i)+j

=

∫ 1

0

Dθ1(i)−θ0(i)p̃
∗
n′
1(i)+j(θs(i)) ds

=

∫ 1

0

[
∇hn′

1(i)
p∗n′

1(i)+j(θs(i)) ∇dn′
2(i)
p∗n′

1(i)+j(θs(i))
] [ĥn′

1(i) − x̃n′
1(i)

d̂n′
2(i) − dn′

2(i)

]
ds.

Lemma 3.8 states that the index set of the corresponding problem (3.12) is UDB(λH),
and Assumption 3.10(b) further states it is UCC(λC). Note that the exponential
bounds obtained in Proposition 2.17 are independent of the problem interval and
the particular choice of the equality constraint index set, which is UDB(λH) and
UCC(λC). Therefore, applying Proposition 2.17, we have, for 1 ≤ i ≤ n0 − 1 and
1 ≤ j ≤ L,

(3.14)

‖x∗n′
1(i)+j − x̃n′

1(i)+j‖2
(3.13)

≤ CdZ2ρ
n′
2(i)−n′

1(i)−j + Z1ρ
j‖ĥn′

1(i) − x̃n′
1(i)‖2

(3.5)
= CdZ2ρ

n′
2(i)−n′

1(i)−j + Z1ρ
j‖x∗n′

1(i) − x̃n′
1(i)‖2

= CdZ2ρ
N−j−1 + Z1ρ

j‖x∗n′
1(i) − x̃n′

1(i)‖2.

When j = L, note that n′1(i) + L = n′1(i+ 1), so (3.14) becomes

‖x∗n′
1(i+1) − x̃n′

1(i+1)‖2 ≤ CdZ2ρ
N−L−1 + Z1ρ

L‖x∗n′
1(i) − x̃n′

1(i)‖2.

From this recursion, at the starting index of Ri for 1 ≤ i ≤ n0 we have

(3.15)
‖x∗n′

1(i) − x̃n′
1(i)‖2 ≤

1− (Z1ρ
L)i−1

1− Z1ρL
CdZ2ρ

N−L−1

≤ CdZ2ρ
N−L−1/(1− Z1ρ

L).

Note that L is chosen so that Z1ρ
L < 1. Substituting (3.15) into (3.14), we have, for

1 ≤ i ≤ n0 − 1 and 1 ≤ j ≤ L,

(3.16)

‖x∗n′
1(i)+j − x̃n′

1(i)+j‖2 ≤ CdZ2ρ
N−j−1 + Z1ρ

j‖x∗n′
1(i) − x̃n′

1(i)‖2
≤ CdZ2ρ

N−L−1 + Z1‖x∗n′
1(i) − x̃n′

1(i)‖2
(3.15)

≤ CdZ2

(
1 +

Z1

1− Z1ρL

)
ρN−L−1.

Now we prove the approximation error bound for the RHC policies. For 1 ≤
i ≤ n0 − 1 and 1 ≤ j ≤ L, u∗n′

1(i)+j−1 is the optimal control of problem (1.1), which

by Proposition 3.2 is also that of problem P iθ1(i), whereas ũn′
1(i)+j−1 is the optimal

control of problem P iθ0(i) by (3.3). Therefore, by Proposition 3.2 and Lemma 3.7 we
have

u∗n′
1(i)+j−1 − ũn′

1(i)+j−1
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=

∫ 1

0

Dθ1(i)−θ0(i)s̃
∗
n′
1(i)+j−1(θs(i)) ds

=

∫ 1

0

[
∇hn′

1(i)
s∗n′

1(i)+j−1(θs(i)) ∇dn′
2(i)
s∗n′

1(i)+j−1(θs(i))
] [ĥn′

1(i) − x̃n′
1(i)

d̂n′
2(i) − dn′

2(i)

]
ds.

Proposition 2.17 and (3.13) give

(3.17)

‖u∗n′
1(i)+j−1 − ũn′

1(i)+j−1‖2 ≤ CdZ2ρ
n′
2(i)−n′

1(i)−j+1 + Z1ρ
j−1‖ĥn′

1(i) − x̃n′
1(i)‖2

(3.5)
= CdZ2ρ

N−j + Z1ρ
j−1‖x∗n′

1(i) − x̃n′
1(i)‖2

≤ CdZ2ρ
N−L−1 + Z1‖x∗n′

1(i) − x̃n′
1(i)‖2

(3.15)

≤ CdZ2

(
1 +

Z1

1− Z1ρL

)
ρN−L−1.

On the last receding horizon Rn0
= [n′1(n0), n2], we have, for m+ 1 ≤ k ≤ n2,

x∗k − x̃k =

∫ 1

0

Dθ1(n0)−θ0(n0)p̃
∗
k(θs(n0)) ds

=

∫ 1

0

[
∇hn′

1(n0)
p∗k(θs(n0)) ∇dn2

p∗k(θs(n0))
] [
ĥn′

1(n0) − x̃n′
1(n0)

0

]
ds,

and for m ≤ k ≤ n2 − 1,

u∗k − ũk =

∫ 1

0

Dθ1(n0)−θ0(n0)s̃
∗
k(θs(n0)) ds

=

∫ 1

0

[
∇hn′

1(n0)
s∗k(θs(n0)) ∇dn2

s∗k(θs(n0))
] [
ĥn′

1(n0) − x̃n′
1(n0)

0

]
ds,

from which we have

(3.18)

‖x∗k − x̃k‖2, ‖u∗k − ũk‖2
Prop 2.17

≤ Z1ρ
k−n′

1(n0)‖ĥn′
1(n0) − x̃n′

1(n0)‖2
(3.5)
= Z1ρ

k−n′
1(n0)‖x∗n′

1(n0) − x̃n′
1(n0)‖2

(3.15)

≤ CdZ2Z1ρ
N−L−1/(1− Z1ρ

L).

Combining (3.15), (3.16), (3.17) and (3.18) concludes this proof.
Note that since the quantities Z1 and ρ are independent of the problem interval

[n1, n2], so is the choice of L. Therefore, Theorem 3.11 proves the approximation er-
ror of the RHC solution with an appropriate lag L decays exponentially in the length
N of the receding horizon regardless of the full problem interval under the uniform
boundedness and controllability conditions. The exponential decay rate provides sys-
tematic means to choose the length of the receding horizon given a desired accuracy
level. We also note that it is a bit surprising that the choice L = 1 may sometimes
not satisfy our assumptions; that case occurs when Z1ρ > 1. This seems to indicate
that it is sometimes better to wait for a few lags before applying a newly computed
control, which may be counterintuitive if the goal is stability. While we cannot yet
state whether this condition is also necessary for some cases, we point out that certain
types of instability in rolling horizon control due to frequent policy updates have been
identified in inventory management and carry the name of “nervousness” [22].
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Fig. 4.1: Relative error in states ‖x∗ −
x̃‖2/‖x∗‖2 at each receding horizon
length (hour) N for U = 200, . . . , 1000
and G = 12, 000.

Fig. 4.2: Relative error in controls
‖u∗−ũ‖2/‖u∗‖2 at each receding horizon
length (hour) N for U = 200, . . . , 1000
and G = 12, 000.

4. Numerical results. In this section, we apply the receding horizon strategy
to the following production cost model and verify some of the theoretical results.

min

N∑
k=1

c1(xk − dk)2 + c2x
2
k + u2

k(4.1a)

s.t. xk+1 = xk + uk(4.1b)

0 ≤ xk ≤ G(4.1c)

− U ≤ uk ≤ U(4.1d)

In this model, dk is the hourly electricity demand to be satisfied, for which we
employ the estimated hourly demand data in the northern Illinois region for year 2016
provided by PJM Interconnection [8]. The demand can be satisfied by two generators:
one with a high quadratic cost c1 = 10 and the other one with a low quadratic cost
c2 = 5. The low-cost generator has a limited capacity to change its output, modeled
by the box constraints (4.1d) on the controls uk and the dynamical constraints (4.1b);
and it also has a limited generation level, modeled by the upper bound (4.1c) on the
generation xk. The generator with a high cost can change its output rapidly and
hence serve the remaining loads dk − xk. One example of such a situation is the
combination of a fast but expensive gas plant and a cheap but slow coal plant. We
initialize problem (4.1) by setting the initial state x0

1 to be the average demand of
year 2015 on the same hour as the initial time point. We note that problem (4.1) has
the form of problem (1.1).

We implement the receding horizon strategy described in Section 3 with lag L = 1.
Specifically, we solve a short version of problem (4.1) on a receding horizon Ri =
[n′1(i), n′2(i)] with length N and initial value x̃n′

1(i), obtain the optimal control ũn′
1(i)

and state x̃n′
1(i)+1, then reinitialize at time point n′1(i) + 1 with x̃n′

1(i)+1 to solve the
problem on the next receding horizon Ri+1 = [n′1(i) + 1, n′2(i) + 1]. Problem (4.1) is
solved on the full horizon and each receding horizon using the Ipopt software [4]. The
model was defined by using the Julia/JuMP interface [16].

We investigate the solution accuracy of the receding horizon strategy with differ-
ent choices of the generation upper bound G and the bound U on control to verify
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Fig. 4.3: Relative error in states
‖x∗ − x̃‖2/‖x∗‖2 at each receding
horizon length (hour) N for G =
11000, . . . , 15000 and U = 600.

Fig. 4.4: Relative error in controls
‖u∗ − ũ‖2/‖u∗‖2 at each receding
horizon length (hour) N for G =
11000, . . . , 15000 and U = 600.

our theoretical findings. Denote x∗ = {x∗k} and u∗ = {u∗k} as the optimal state and
control of problem (4.1) on the full horizon, and x̃ = {x̃k} and ũ = {ũk} as those
obtained by the receding horizon strategy. Figures 4.1 and 4.2 show the relative ap-
proximation errors of the optimal states and controls, respectively, for a fixed G. We
observe exponential decay of the approximation error in the length of the receding
horizon for all cases tested. Moreover, the rate of decay is faster for a larger bound
U on the control. The decay rate ρ in Theorem 3.11 depends on the quantity β de-
fined in Proposition 2.14, which in turn depends on the uniform lower bound λC of
the controllability matrix defined in Definitions 2.9 and 2.12. A larger bound on the
control improves the controllability of the problem and should lead to a faster rate of
convergence, as is indeed observed here. Figures 4.3 and 4.4 plot the relative errors
for different upper bound G on the generation. Similarly, we observe exponential rate
of decay for the approximation error in the length of receding horizon. Furthermore,
in this case the decay rate is larger for a smaller choice of G. Recall that G is the
generation upper limit of the slow plant and our model (4.1) assumes the remain-
ing load will be satisfied fully by a high-cost fast plant. A smaller G indicates that
more demand is met by the fast plant, and therefore the system is more controllable,
resulting in a faster rate of convergence (for example, if G = 0, then we get the op-
timal solution to be xk = uk = 0, ∀k and the convergence occurs in one step for any
horizon). In summary, our numerical experiments verify the exponential decay of the
approximation errors for RHC as proved in Theorem 3.11.

5. Conclusions. RHC has made a significant impact on industrial control engi-
neering and received extensive study of its theoretical characteristics. We investigate
the convergence of its solution with respect to the length of the receding horizon for
a linear-quadratic path-constrained optimal control problem.

The version of RHC considered in this work applies the model predictive control
every L steps. Our theoretical result, Theorem 3.11, shows that, under some bound-
edness and controllability conditions, the RHC solution converges to the full horizon
solution exponentially fast in the length of receding horizon for a certain choice of L.
The exponential rate of convergence allows a principled way of choosing the length
of the receding horizon and the control frequency, both important parameters for
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applications, to achieve a desired accuracy. Our problem admits a nonzero reference
trajectory, which to the best of our knowledge is not assumed in the existing stability
analysis of RHC. The inclusion of a reference trajectory makes the analysis different
from previous approaches since now the convergence is with respect to the solution
of the full horizon problem instead of a fixed equilibrium point. Therefore our proofs
do not rely on the value function, as most RHC stability analyses do, but instead
expose the solution properties of an equality-constrained subproblem and then use
sensitivity analysis to connect it to the solution of the original problem. We verify
numerically the exponential rate of convergence for a small, synthetic production cost
model under various parameter settings. In this example, a lag L = 1 is sufficient to
observe the exponential decay for the approximation error of the RHC solutions.

The class of optimal control problems investigated here is only one instance of
the problems to which RHC can be applied. In particular, although we consider state
and control constraints that are common in RHC literature, we do not include other
intricate but practical features such as nonlinear dynamics or time delay. Moreover,
our theory certifies only that an L, which is computable in terms of the problem
data, exists; but L = 1 may not always satisfy our conditions. In future work, we
will investigate extending the results to other complicating features and determining
whether there exist cases where smaller L decreases the performance, as our analysis
and the“nervousness” [22] concept in inventory management seem to suggest.
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Appendix A. Proofs of results in Sections 2 and 3.

A.1. Proof of Proposition 2.14. For any xq ∈ Rn, consider the standard
linear-quadratic problem:

min

n2−1∑
k=q

uTkRkuk + xTk Q̂kxk + xTn2
Qn2xn2(A.1a)

s.t. xk+1 = Âkxk + B̂kuk, q ≤ k ≤ n2 − 1.(A.1b)

For k ≥ q, successively applying (A.1b) gives, for j ≥ 0,

(A.2)

xq+j −

(
j−1∏
l=0

Âq+l

)
xq =

[
B̂q+j−1 Âq+j−1B̂q+j−2 . . .

(∏j−1
l=1 Âq+l

)
B̂q

]uq+j−1

...
uq

 ,
and for j = t, (A.2) reduces to

xq+t −

(
t−1∏
l=0

Âq+l

)
xq = Cq,t

uq+t−1

...
uq

 .
The index set being UCC(λC) implies that Cq,t is uniformly completely control-
lable and in particular that Cq,t has full row rank. Therefore, there exists û =
(ûTq , . . . , û

T
q+t−1)T so that

−

(
t−1∏
l=0

Âl

)
xq = Cq,t

ûq+t−1

...
ûq

 .(A.3)

Several û satisfy this relationship; we consider the one defined by

û = −CTq,t(Cq,tCTq,t)−1

(
t−1∏
l=0

Âq+l

)
xq.

Denote the corresponding states generated with ûq:q+t−1 as x̂q:q+t. Then x̂q+t = 0
by (A.3).

Lemma 2.4 implies that

max
1≤j≤t

∥∥∥[B̂q+j−1 Âq+j−1B̂q+j−2 . . .
(∏j−1

l=1 Âq+l

)
B̂q

]∥∥∥
2

≤ max
1≤j≤t

(
CB + CACB + · · ·+ Cj−1

A CB

)
≤ CB (1− CtA)

1− CA
∆
= M.

Then from Definition 2.12 and Lemma 2.4, we have

‖û‖ ≤ M

λC
CtA‖xq‖.(A.4)
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From (A.2), we have, for 1 ≤ j ≤ t− 1,

‖x̂q+j‖ ≤ CjA‖xq‖+M‖û‖ ≤
(
CjA +

M2

λC
CtA

)
‖xq‖.(A.5)

Now we let ûk = 0 for k ≥ q + t. Then it follows that x̂k = 0 for k ≥ q + t. Also
note that since (A.1) is a standard linear-quadratic regulator problem, the optimal
value is given by xTq Kqxq [2]. As a result, we have the following.

xTq Kqxq = min
uk

n2−1∑
k=q

xTk Q̂kxk + uTkRkuk + xTn2
Qn2

xn2

≤
n2−1∑
k=q

x̂Tk Q̂kx̂k + ûTkRkûk + x̂Tn2
Qn2

x̂n2

≤
q+t−1∑
k=q

x̂Tk Q̂kx̂k + ûTkRkûk

≤ CQ

q+t−1∑
k=q

‖x̂k‖2 + CR

q+t−1∑
k=q

‖ûk‖2

(A.4),(A.5)

≤ CQ

(
1 +

t−1∑
i=1

(
CiA +

M2

λC
CtA

)2
)
‖xq‖2 + CR

M2C2t
A

λ2
C

‖xq‖2

Letting

β = CQ

(
1 +

t−1∑
i=1

(
CiA +

M2

λC
CtA

)2
)

+ CR
M2C2t

A

λ2
C

completes the proof. Note that β depends only on the quantities in Assumption 2.1,
Definitions 2.2 and 2.12, and Lemma 2.4, which are independent of n1, n2, and the
particular choice of I given it is UDB(λH) and UCC(λC).

A.2. Proof of Proposition 2.15. Define Lk = −W−1
k B̂Tk Kk+1Âk. Then from

Lemma 2.13 and (2.4d) we have Dk = Âk + B̂kLk. In [2] the recursion (2.14b) is
shown to be equivalent to

Kk = Dk
TKk+1Dk + Q̂k + Lk

TRkLk.(A.6)

For q ≤ j ≤ n2− 1, define xj+1 = Djxj . Then (A.6) and Proposition 2.14 imply that

(A.7)

xTj Kjxj ≥ xTj+1Kj+1xj+1 + xTj Q̂jxj
Prop 2.14

≥ xTj+1Kj+1xj+1 +
λQ
β
xTj Kjxj

(A.6)

≥
(

1 +
λQ
β

)
xTj+1Kj+1xj+1.

Here we used the bounds from Lemma 2.4 and the fact that xTj Kjxj ≥ xTj+1Kj+1xj+1,

as implied by (A.6) and the positive definiteness of Q̂k and Rk. Also we have

xTj Kjxj
(A.6),Lemma 2.7

≥ xTj Q̂jxj ≥ λQ‖xj‖2.(A.8)
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As a result, for n2 − 1 ≥ j ≥ q, we have the following:∥∥∥∥∥∥
j∏
l=q

Dlxq

∥∥∥∥∥∥
2

= ‖xj+1‖2
(A.8)

≤ 1

λQ
xTj+1Kj+1xj+1

(A.7)

≤ 1

λQ(1 + λQ/β)
xTj Kjxj

(A.7)

≤ 1

λQ

(
1

1 + λQ/β

)j−q+1

xTq Kqxq

Prop 2.14

≤ β

λQ

(
1

1 + λQ/β

)j−q+1

‖xq‖2,

where the third inequality is obtained by repeatedly applying (A.7).

A.3. Proof of Lemma 3.5. Let

(A.9)
L(y, θ) = yTGy/2 + yT c(θ) + λT (Ay − r) + φT (By − d(θ))

+ θTFθ + yT c1 + θT c2 + C

be the Lagrangian of problem (3.8). Then we have

∇2
(y,θ)L =

[
G ∇θc
∇Tθ c ∗

]
.

Since G and F are positive definite and LICQ holds at y0, then from [5, Theorem
5.53] and [5, Remark 5.55] we have

(A.10)
Dpy(θ0) = argminh∈S

[
hT pT

] (
∇2

(y,θ)L(y0, θ0)
)[
h
p

]
= argminh∈S h

TGh/2 + pT
(
∇Tθ c(θ0)

)
h,

where S is the solution of the following linearized problem,

(A.11)

minh (Gy0 + c(θ0) + c1)
T
h+

(
∇Tθ c(θ0)y0 + 2Fθ0 + c2

)T
p

s.t. Bh− (∇θd(θ0)) p = 0

AI(y0,θ0)h ≤ 0,

and S is given by

S =

{
h :
[
B −∇θd(θ0)

] [h
p

]
= 0,

[
AI+(y0,θ0,λ̄) 0

] [h
p

]
= 0,

[
AI0(y0,θ0,λ̄) 0

] [h
p

]
≤ 0

}
.

Thus the directional derivative Dpy(θ0) of y(θ) along direction p at θ0 is the solution
of the problem

(A.12)

minh hTGh/2 + pT
(
∇Tθ c(θ0)

)
h

s.t. Bh− (∇θd(θ0)) p = 0

AI+(y0,θ0,λ̄)h = 0

AI0(y0,θ0,λ̄)h ≤ 0.
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Let I1 be the set of active inequality constraints of problem (A.12). Then I1 ⊂
I0(y0, θ0, λ̄), and let I ′(θ0) = I1∪I+(y0, θ0, λ̄). The KKT condition of problem (A.12)
is hence

G̃
∆
=

 G ATI′(θ0) BT

AI′(θ0) 0 0
B 0 0

 , G̃

h∗φ∗1
φ∗2

 =

−∇θc(θ0)p
0

∇θd(θ0)p


for some Lagrange multipliers φ∗1 and φ∗2. Since LICQ holds at y0, rows of AI′(θ0)

and B are linearly independent. Together with the fact that G is positive definite, we
have that G̃ is invertible. Denote the first row of G̃−1 to be

[
p11 p12 p13

]
. Then,

we have

Dpy(θ0) = h∗ = (−p11∇θc(θ0) + p13∇θd(θ0)) p.

On the other hand, for problem (3.9) with I ′(θ0) constructed above, the KKT
condition is

G̃

y∗I′(θ0)(θ)

ψ∗1
ψ∗2

 =

−c(θ)r′

d(θ)

 ,
for some Lagrange multipliers ψ∗1 and ψ∗2 . Since G̃ is invertible, we have y∗I′(θ0)(θ) =

−p11c(θ) + p12r
′ + p13d(θ). It follows that

dy∗I′(θ0)(θ)

dθ

∣∣∣∣∣
θ=θ0

= −p11∇θc(θ0) + p13∇θd(θ0).

As a result, we have

Dpy(θ0) =

(
dy∗I′(θ0)(θ)

dθ

∣∣∣∣∣
θ=θ0

)
p,

which proves the claim.
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