Time-stepping methods for large scale differential variational inequalities (DVI) in nonsmooth dynamics

Mihai ANITESCU,
Argonne National Laboratories

Stevens Institute of Technology
Dec 4, 2008
Team

- Mihai Anitescu
- Alessandro Tasora
 - University of Parma,
 - Author of ChronoEngine
- Dan Negrut,
 - University of Wisconsin
 - Former ADAMS developer
1. Plan

1. Complementarity and variational inequalities.
2. Differential Variational Inequalities (DVI) and nonsmooth dynamics.
3. Time-stepping methods for nonsmooth dynamics.
4. Iterative (~ projected Gauss-Seidel) methods for the subproblem.
6. Some GPU calculation examples.
1. Complementarity and Variational Inequalities.
Complementarity-Complementary Variables.

Are variables that satisfy

\[s \geq 0, \ x \geq 0, \ s^T x = 0 \leftrightarrow 0 \leq s \perp x \geq 0 \]

Their most common occurrence is perhaps in the optimality conditions of problems with bound constraints

\[\min_{x \geq 0} F(x) \Rightarrow \nabla_x F(x) - s = 0, \ 0 \leq s \perp x \geq 0 \]

But their modeling power exceeds optimization since they can quantify alternatives.

- Example: Normal force – normal separation
Most common algebraic format: linear complementarity problems, LCP

\[s = \mathcal{M}x + q(F(x)), \ s \geq 0, \ x \geq 0, \ s^T x = 0. \]

- Examples: Linear and Quadratic Programming.
- Important classes of matrices: \textbf{PSD} \ (x^T \mathcal{M} x \geq 0, \ \forall x) and \textbf{copositive} \ (x^T \mathcal{M} x \geq 0, \ \forall x \geq 0).
- LCP’s involving copositive matrices do not have a solution in general.
- Let \(\mathcal{M} \) be copositive. If, \(x \geq 0 \) and \(x^T \mathcal{M} x = 0 \) implies \(q^T x \geq 0 \), then the \textbf{LCP} has a solution that can be found by Lemke’s algorithm.
Variational Inequalities and connection to complementarity.

Problem: Let $F : \mathbb{R}^{n+m} \to \mathbb{R}^m$, $F \in C^2$, and $\mathcal{K} \subset \mathbb{R}^m$ be a convex set. Find $y \in \mathbb{R}^m$ such that

$$\langle F(x, y), v - y \rangle \geq 0, \quad \forall v \in \mathcal{K}.$$

x are the design variables, y are the state variables. Solution set of the variational inequality: $S(x)$.

$\mathcal{K} = \{ v \in \mathbb{R}^m | v \geq b \}$, for some vector $b \in \mathbb{R}^m$, the parameterized variational inequality can be represented as

$$F(x, y) \geq 0,$$

$$y \geq b,$$

$$(y - b)^T F(x, y) = 0.$$
2. Nonsmooth contact dynamics-Differential Variational Inequalities (DVI)
Nonsmooth contact dynamics—what is it?

- Differential problem with variational inequality constraints – DVI

\[M \frac{dv}{dt} = \sum_{j=1,2,...,p} \left(c_n^{(j)} n^{(j)} + \beta_1^{(j)} t_1^{(j)} + \beta_2^{(j)} t_2^{(j)} \right) + f_c(q,v) + k(t,q,v) \]

\[\frac{dq}{dt} = \Gamma(q)v \]

\[c_n^{(j)} \geq 0 \perp \Phi^{(j)}(q) \geq 0, \quad j = 1,2,...,p \]

\[\left(\beta_1^{(j)}, \beta_2^{(j)} \right) = \text{argmin}_{\mu^{(j)c_n^{(j)} \geq \sqrt{\beta_1^{(j)} + \beta_2^{(j)}}}} \left[\begin{array}{c} v^T t_1^{(j)} \beta_1 + v^T t_2^{(j)} \beta_2 \end{array} \right] \]

- Truly, a Differential Problem with Equilibrium (parametric VI) Constraints AND complementarity constraints
Differential Variational Inequalities—why do it?

- Contact Dynamics.
 - Rigid-Bodies: Differential Operator is ODE.
 - Deformable Bodies: Differential Operator is PDE.
 - Granular Flow, Masonry Stability, Rock Dynamics…
- Finance: Option Pricing—American Options. PDE-based.
- Dynamics of multicristalline materials: evolution of the boundary between phases.
- Porous Media Flow.
- See Luo, Pang et al, and Kinderlehrer and Stampacchia Monographs..
Or, just for fun Physics-based VR

This “fun” is serious business in the US,
One of the main drivers of new architectures (GPU, Ageia); huge user community

Implication: Speed and Stability more weight than of accuracy.

Note: real-time simulation
Question 1: Should we do smoothing?

- Recall, DVI (for C=R+)

\[
\dot{x} = f(t, x(t), u(t)); \\
u \geq 0 \quad \perp F(t, x(t), u(t)) \geq 0
\]

- Smoothing

\[
\dot{x} = f(t, x(t), u(t)); \\
u_i F_i(t, x(t), u(t)) = \varepsilon, \quad i = 1, 2, \ldots n_u
\]

\[
u_i^n F_i(t^{n-1}, x^{n-1}, u^{n-1}) = \varepsilon, \quad i = 1, 2, \ldots n_u
\]

- Followed by forward Euler.

\[
x^{n+1} = x^n + hf(t^n, x^n, u^n);
\]

Easy to implement!!

- Compare with the complexity of time-stepping

\[
x^{n+1} = x^n + hf(t^{n+1}, x^{n+1}, u^{n+1});
\]

- But does it give good results?
Applying ADAMS to granular flow

- ADAMS is the workhorse of engineering dynamics.
- ADAMS/View Procedure for simulating.
- Spheres: diameter of 60 mm and a weight of 0.882 kg.
- Forces: smoothing with stiffness of 1E5, force exponent of 2.2, damping coefficient of 10.0, and a penetration depth of 0.1
ADAMS versus ChronoEngine

Table 1: Number of rigid bodies v. CPU time in ADAMS

<table>
<thead>
<tr>
<th>Number of Spheres</th>
<th>Max Number of Mutual Contacts [-]</th>
<th>CPU time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.41</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>3.3</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>7.75</td>
</tr>
<tr>
<td>8</td>
<td>44</td>
<td>25.36</td>
</tr>
<tr>
<td>16</td>
<td>152</td>
<td>102.78</td>
</tr>
<tr>
<td>32</td>
<td>560</td>
<td>644.4</td>
</tr>
</tbody>
</table>

The following graph shows the nonlinear increase in the CPU time as the number of colliding bodies increases.

Table 2: Number of rigid bodies v. CPU time in ChronoEngine

<table>
<thead>
<tr>
<th>Number of Spheres</th>
<th>Max Number of Mutual Contacts [-]</th>
<th>CPU time (seconds)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>0.70</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>0.73</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>0.73</td>
</tr>
<tr>
<td>8</td>
<td>44</td>
<td>0.76</td>
</tr>
<tr>
<td>16</td>
<td>152</td>
<td>0.82</td>
</tr>
<tr>
<td>32</td>
<td>560</td>
<td>1.32</td>
</tr>
<tr>
<td>64</td>
<td>2144</td>
<td>2.65</td>
</tr>
<tr>
<td>128</td>
<td>8384</td>
<td>6.17</td>
</tr>
<tr>
<td>256</td>
<td>33152</td>
<td>15.30</td>
</tr>
</tbody>
</table>

Conclusion 1: Often, time stepping is more promising,
Recall: Nonsmooth contact dynamics

- Differential problem with equilibrium constraints – DPEC.

\[
M \frac{dv}{dt} = \sum_{j=1,2,\ldots,p} \left(c_n^{(j)} n^{(j)} + \beta_1^{(j)} t_1^{(j)} + \beta_2^{(j)} t_2^{(j)} \right) + f_c(q,v) + k(t,q,v)
\]

\[
\frac{dq}{dt} = v
\]

\[
c_n^{(j)} \geq 0 \perp \Phi^{(j)}(q) \geq 0, \quad j = 1,2,\ldots,p
\]

\[
\left(\beta_1^{(j)}, \beta_2^{(j)} \right) = \arg\min_{\mu^{(j)} c_n^{(j)} = \sqrt{\beta_1^{(j)} + \beta_2^{(j)}}} \left[(v^T t_1^{(j)}) \beta_1 + (v^T t_2^{(j)}) \beta_2 \right]
\]

Friction Model
Options and challenges for methods with no smoothing

- Piecewise DAE (Haug, 86)
 - Plus: Uses well understood DAE technology
 - Minus: The density of switches, switching consistency, and Painleve are problems.

- Acceleration-force time-stepping (Glocker & Pfeiffer, 1992, Pang & Trinkle, 1995)
 - Plus: No consistency problem.
 - Minus: Density of switches and Painleve.

 - Plus: No consistency, or Painleve. Some have fixed time stepping (Moreau, 198*, Anitescu & Hart 04, Anitescu, 06).
 - Minus: Nonzero restitution coefficient is tough—but its value is disputable in any case
3. Time-stepping methods
Conic Complementarity IS NATURAL in Coulomb Models.

- Coulomb model.

\[
\begin{align*}
(\beta_1^{(j)}, \beta_2^{(j)}) = & \arg\min_{\mu^{(j)}c_n^{(j)} = \sqrt{(\beta_1^{(j)} + \beta_2^{(j)})^2}} \left[(v^T t_1^{(j)}) \beta_1 + (v^T t_2^{(j)}) \beta_2 \right] \\
K = \left\{ (x, y, z) \mid \mu^{(j)} z \geq \sqrt{y^2 + x^2} \right\} & \quad K^* = \left\{ (x, y, z) \mid z \geq \mu^{(j)} \sqrt{y^2 + x^2} \right\}
\end{align*}
\]

\[
\begin{pmatrix}
c_n^{(j)} \\
\beta_1^{(j)} \\
\beta_2^{(j)}
\end{pmatrix} \in K \quad \perp \quad \begin{pmatrix}
\mu^{(j)} \sqrt{(v^T t_1^{(j)})^2 + (v^T t_2^{(j)})^2} \\
v^T t_1^{(j)} \\
v^T t_2^{(j)}
\end{pmatrix} \in K^*
\]

- Most previous approaches discretize friction cone to use LCP…
- Question 2: Can we still get convergence but not do that?
A measure differential inclusion solution can be obtained by time-stepping (Stewart, 1998, Anitescu 2006):

\[M \left(\mathbf{v}^{(l+1)} - \mathbf{v}^l \right) = \sum_{i \in \mathcal{A}(q^{(l)}, \epsilon)} \left(\gamma_n^i D_n^i + \gamma_u^i D_u^i + \gamma_v^i D_v^i \right) + \]

\[+ \sum_{i \in \mathcal{G}_B} \left(\gamma_n^i \nabla \Phi^i \right) + hf_t(t^{(l)}, q^{(l)}, \mathbf{v}^{(l)}) \]

\[0 = \frac{1}{h} \Psi^i(q^{(l)}) + \nabla \Psi^i T \mathbf{v}^{(l+1)} + \frac{\partial \Phi^i}{\partial t}, \quad i \in \mathcal{G}_B \]

\[0 \leq \frac{1}{h} \Phi^i(q^{(l)}) + \nabla \Phi^i T \mathbf{v}^{(l+1)} \]

\[\gamma_n^i \geq 0, \quad i \in \mathcal{A}(q^{(l)}, \epsilon) \]

\[(\gamma_u^i, \gamma_v^i) = \arg \min_{\mu^i \gamma_n^i \geq \sqrt{(\gamma_u^i)^2 + (\gamma_v^i)^2}} \quad i \in \mathcal{A}(q^{(l)}, \epsilon) \]

\[\left[\mathbf{v}^T (\gamma_u D_u^i + \gamma_v D_v^i) \right] \]

\[q^{(l+1)} = q^{(l)} + h \mathbf{v}^{(l+1)} \]
Pause: Constraint Stabilization

- Compared to original scheme

\[\nabla \Phi(q^{(l)})^T v^{(l+1)} \geq 0 \implies \Phi^{(j)}(q^{(l)}) + \gamma h_l \nabla \Phi(q^{(l)})^T v^{(l+1)} \geq 0. \]

\[\nabla \Theta(q^{(l)})^T v^{(l+1)} = 0 \implies \Theta^{(j)}(q^{(l)}) + \gamma h_l \nabla \Theta(q^{(l)})^T v^{(l+1)} = 0. \]

- Allows fixed time steps for plastic collisions.
- How do we know it is achieved? Infeasibility is one order better than accuracy (O(h^2))
Time Stepping -- Convex Relaxation

A modification (relaxation, to get convex QP with conic constraints):

\[
M(v^{(l+1)} - v^l) = \sum_{i \in A(q^{(l)}, \epsilon)} (\gamma_n^i D_n^i + \gamma_u^i D_u^i + \gamma_v^i D_v^i) + \\
+ \sum_{i \in G_B} (\gamma_b^i \nabla \Psi^i) + h f(t^{(l)}, q^{(l)}, v^{(l)})
\]

\[
0 = \frac{1}{h} \Psi^i(q^{(l)}) + \nabla \Psi^i T v^{(l+1)} + \frac{\partial \Psi^i}{\partial t}, \quad i \in G_B
\]

\[
0 \leq \frac{1}{h} \Phi^i(q^{(l)}) + \nabla \Phi^i T v^{(l+1)} - \mu^i \sqrt{(D_u^i T v)^2 + (D_v^i T v)^2}
\]

\[
\perp \quad \gamma_n^i \geq 0, \quad i \in A(q^{(l)}, \epsilon)
\]

\[
(\gamma_u^i, \gamma_v^i) = \arg\min_{\mu^i \gamma_n^i \geq \sqrt{(\gamma_u^i)^2 + (\gamma_v^i)^2}} \quad i \in A(q^{(l)}, \epsilon)
\]

\[
q^{(l+1)} = q^{(l)} + hv^{(l+1)},
\]

(For small \(\mu\) and/or small speeds, almost no one-step differences from the Coulomb theory)

But In any case, converges to same MDI as unrelaxed scheme.

[see M.Anitescu, “Optimization Based Simulation of Nonsmooth Rigid Body Dynamics”]
Pause: what does convergence mean here?

We must now assign a meaning to

\[M \frac{dv}{dt} - f_c(q, v) - k(t, q, v) \in FC(q). \]

Definition If \(\nu \) is a measure and \(K(\cdot) \) is a convex-set valued mapping, we say that \(\nu \) satisfies the differential inclusions

\[\frac{dv}{dt} \in K(t) \]

if, for all continuous \(\phi \geq 0 \) with compact support, not identically 0, we have that

\[\frac{\int \phi(t) \nu(dt)}{\int \phi(t) dt} \in \bigcup_{\tau: \phi(\tau) \neq 0} K(\tau). \]
Pause(2) : What does convergence mean here?

H1 The functions $n^{(j)}(q), t_1^{(j)}(q), t_2^{(j)}(q)$ are smooth and globally Lipschitz, and they are bounded in the 2-norm.

H2 The mass matrix M is positive definite.

H3 The external force increases at most linearly with the velocity and position.

H4 The uniform pointed friction cone assumption holds.

Then there exists a subsequence $h_k \to 0$ where

- $q^{h_k}(\cdot) \to q(\cdot)$ uniformly.
- $v^{h_k}(\cdot) \to v(\cdot)$ pointwise a.e.
- $dv^{h_k}(\cdot) \to dv(\cdot)$ weak * as Borel measures. in $[0,T]$, and every such subsequence converges to a solution $(q(\cdot), v(\cdot))$ of MDI.
What is physical meaning of the relaxation?

- **Origin**

- **Behavior**
Further insight.

- The key is the combination between relaxation and constraint stabilization.

\[0 \leq \frac{1}{h} \Phi^{(j)}(q^{(l)}) + \nabla_q \Phi^{(j)}(q^{(l)})v^{(l+1)} - \mu^{(j)} \sqrt{(D_u^{l,t}v)^2 + (D_v^{l,t}v)^2} \]

- If the time step is smaller than the variation in velocity then the gap function settles at

\[0 \approx \frac{1}{h} \Phi^{(j)}(q^{(l)}) - \mu^{(j)} \sqrt{(D_u^{l,t}v)^2 + (D_v^{l,t}v)^2} \]

- So the solution is the same as the original scheme for a slightly perturbed gap function….
Cone complementarity

- Aiming at a more compact formulation:

\[b_A = \left\{ \frac{1}{h} \Phi^{i_1}, 0, 0, \frac{1}{h} \Phi^{i_2}, 0, 0, \ldots, \frac{1}{h} \Phi^{i_{n_A}}, 0, 0 \right\} \]

\[\gamma_A = \left\{ \gamma_1^{i_1}, \gamma_u^{i_1}, \gamma_v^{i_1}, \gamma_1^{i_2}, \gamma_u^{i_2}, \gamma_v^{i_2}, \ldots, \gamma_1^{i_{n_A}}, \gamma_u^{i_{n_A}}, \gamma_v^{i_{n_A}} \right\} \]

\[b_B = \left\{ \frac{1}{h} \Psi^1 + \frac{\partial \Psi^1}{\partial t}, \frac{1}{h} \Psi^2 + \frac{\partial \Psi^2}{\partial t}, \ldots, \frac{1}{h} \Psi^{n_B} + \frac{\partial \Psi^{n_B}}{\partial t} \right\} \]

\[\gamma_B = \{ \gamma_1^b, \gamma_2^b, \ldots, \gamma_{n_B}^b \} \]

\[D_A = [D^{i_1}|D^{i_2}|\ldots|D^{i_{n_A}}], \quad i \in A(q^l, \epsilon) \quad D^i = [D^i_n|D^i_u|D^i_v] \]

\[D_B = [\nabla \Psi^{i_1}|\nabla \Psi^{i_2}|\ldots|\nabla \Psi^{i_{n_B}}], \quad i \in G_B \]
Cone complementarity

- Also define:

\[\tilde{k}^{(l)} = M \nu^{(l)} + h f_t(t^{(l)}, q^{(l)}, \nu^{(l)}) \]

\[N = D^T_\varepsilon M^{-1} D_\varepsilon \]

\[r = D^T_\varepsilon M^{-1} \tilde{k} + b_\varepsilon \]

- Then:

\[M(\nu^{(l+1)} - \nu^l) = \sum_{i \in \mathcal{A}(q^{(l)}, \nu)} (\gamma_n^i D^i_n + \gamma_u^i D^i_u + \gamma_v^i D^i_v) + \sum_{i \in \mathcal{S}_n} (\gamma_n^\nu \nabla \Psi^i) + h f_t(t^{(l)}, q^{(l)}, \nu^{(l)}) \]

\[0 = \frac{1}{h} \psi^i(q^{(l)}) + \nabla \psi^i + v^{(l+1)} + \frac{\partial \psi^i}{\partial t}, \quad i \in \mathcal{G}_B \]

\[0 \leq \frac{1}{h} \psi^i(q^{(l)}) + \nabla \psi^i + v^{(l+1)} \]

\[\perp \gamma_n^i \geq 0, \quad i \in \mathcal{A}(q^{(l)}, \nu) \]

\[(\gamma_n^i, \gamma_v^i) = \arg\min_{\gamma_n^i \gamma_v^i \geq \sqrt{(\gamma_n^l)^2 + (\gamma_v^l)^2}} \quad i \in \mathcal{A}(q^{(l)}, \nu) \]

\[\nu^T (\gamma_n^i D^i_n + \gamma_u^i D^i_u + \gamma_v^i D^i_v) \]

\[(N \gamma_\varepsilon + r) \in -\gamma^0 \quad \perp \gamma_\varepsilon \in \mathcal{Y} \]
Cone complementarity—Decomposable cones.

- Here we introduced the convex cone

\[
\mathcal{Y} = \bigoplus_{i \in A(q^l, \epsilon)} \mathcal{F}C^i \bigoplus \bigoplus_{i \in \mathcal{G}_B} \mathcal{B}C^i
\]

- ...and its polar cone:

\[
\mathcal{Y}^o = \bigoplus_{i \in A(q^l, \epsilon)} \mathcal{F}C^{i^o} \bigoplus \bigoplus_{i \in \mathcal{G}_B} \mathcal{B}C^{i^o}
\]

CCP:

\[
(N\mathcal{Y}_\mathcal{E} + r) \in -\mathcal{Y}^o \perp \mathcal{Y}_\mathcal{E} \in \mathcal{Y}
\]
General: The iterative method

- Question 3: How to efficiently solve the Cone Complementarity Problem for large-scale systems?

\[(N\gamma + r) \in -\gamma^\circ \perp \gamma \in \gamma\]

- Our method: use a fixed-point iteration

\[\gamma^{r+1} = \lambda \Pi_{\gamma} \left(\gamma^r - \omega B^r \left(N\gamma^r + r + K^r (\gamma^{r+1} - \gamma^r) \right) \right) + (1 - \lambda) \gamma^r\]

- with matrices:
- ..and a non-extensive orthogonal projection operator onto feasible set

\[B^r = \begin{bmatrix}
\eta_1 I_{n_1} & 0 & \cdots & 0 \\
0 & \eta_2 I_{n_2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \eta_{n_k} I_{n_{nk}}
\end{bmatrix}\]

\[N^r = \begin{bmatrix}
0 & K_{12} & \cdots & K_{1nk} \\
0 & 0 & \cdots & K_{2nk} \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 0
\end{bmatrix}\]

\[\Pi_{\gamma} : \mathbb{R}^{n_\epsilon} \to \mathbb{R}^{n_\epsilon}\]
General: The iterative method

ASSUMPTIONS

A1. The matrix N of the problem (CQP) is symmetric and positive semi-definite.

A2. There exists a positive number, $\alpha > 0$ such that, at any iteration r, $r = 0, 1, 2, \ldots$, we have that $B^r \succ \alpha I$.

A3. There exists a positive number, $\beta > 0$ such that, at any iteration r, $r = 0, 1, 2, \ldots$, we have that

$$
(x^{r+1} - x^r)^T \left((\lambda \omega B^r)^{-1} + K^r - \frac{N}{2} \right) (x^{r+1} - x^r) \geq \beta \|x^{r+1} - x^r\|^2.
$$

- Under the above assumptions, we can prove **THEOREMS** about convergence.

- The method produces a **bounded sequence** with an **unique accumulation point**.
General: Theory

\[
\begin{align*}
\text{(OC)} & \quad \min \quad f(x) = \frac{1}{2}x^T N x + r^T x \\
\text{s.t.} & \quad x_i \in \mathcal{Y}^i, \quad i = 1, 2, \ldots, n_k.
\end{align*}
\]

Theorem Assume that \(x^0 \in \mathcal{Y} \) and that the sequences of matrices \(B^r \) and \(K^r \) are bounded. Then we have that

\[
f(x^{r+1}) - f(x^r) \leq -\beta \|x^{r+1} - x^r\|^2
\]

for any iteration index \(r \), and any accumulation point of the sequence \(x^r \) is a solution of (CCP).

Corollary Assume that the friction cone of the configuration is pointed The algorithm produces a bounded sequence, and any accumulation point results in the same velocity solution

- **Answer 2:** Simple, but first result of this nature for conic constraints—and HIGHLY EFFICIENT
The projection operator is easy and separable

- For each frictional contact constraint:

\[
\Pi_\gamma = \left\{ \Pi_{\gamma_1}(\gamma_1)^T, \ldots, \Pi_{\gamma_n}(\gamma_n^A)^T, \Pi_{\gamma_b}(\gamma_b^1)^T, \ldots, \Pi_{\gamma_b}(\gamma_b^n)^T \right\}^T
\]

- For each bilateral constraint, simply do nothing.

- The complete operator:

\[
\forall i \in \mathcal{A}(q^{(l)}, \epsilon)
\]

- \[\gamma_r < \mu_i \gamma_n\]
- \[\gamma_r < -\frac{1}{\mu_i} \gamma_n\]
- \[\gamma_r > \mu_i \gamma_n \land \gamma_r > -\frac{1}{\mu_i} \gamma_n\]

\[
\Pi_i = \gamma_i \\
\Pi_i = \{0, 0, 0\} \\
\Pi_{i,n} = \frac{\gamma_r + \mu_i \gamma_n}{\mu_i^2 + 1} \\
\Pi_{i,u} = \gamma_u \frac{\mu_i \Pi_{i,n}}{\gamma_r} \\
\Pi_{i,v} = \gamma_v \frac{\mu_i \Pi_{i,n}}{\gamma_r}
\]
5. Numerical considerations
The algorithm

- Development of an **efficient algorithm** for fixed point iteration:

 - avoid temporary data, exploit **sparsity**. Never compute explicitly the N matrix!
 - implemented in **incremental** form. Compute only deltas of multipliers.
 - **O(n)** space requirements and supports premature termination
 - for real-time purposes: **O(n)** time
The algorithm is specialized, for minimum memory use!

(1) // Pre-compute some data for friction constraints
(2) for $i := 1$ to n_A
(3) $s^i_a = M^{-1}D^i$
(4) $g^i_a = D^{i,T}s^i_a$
(5) $\eta^i_a = \frac{1}{\text{Trace}(g^i_a)}$
(6) // Pre-compute some data for bilateral constraints
(7) for $i := 1$ to n_B
(8) $s^i_b = M^{-1}\nabla \Psi^i$
(9) $g^i_b = \nabla \Psi^{i,T} s^i_b$
(10) $\eta^i_b = \frac{1}{g^i_b}$
(11)
(12) // Initialize impulses
(13) if warm start with initial guess γ^*_E
(14) $\gamma^0_E = \gamma^*_E$
(15) else
(16) $\gamma^0_E = 0$
(17)
(18) // Initialize speeds
(19) $v = \sum_{i=1}^{n_A} s^i_a \gamma^i_a + \sum_{i=1}^{n_B} s^i_b \gamma^i_b + M^{-1}\ddot{k}$
(20)
(21) // Main iteration loop
(22) for $r := 0$ to r_{max}
(23) // Loop on frictional constraints
(24) for $i := 1$ to n_A
(25) $\delta^{i,r} = \left(\gamma^{i,r}_a - \omega \eta^i_a \left(D^{i,T}v^r + b^i_a\right)\right)$;
(26) $\gamma^{i,r+1}_a = \lambda \Pi_T \left(\delta^{i,r}_a\right) + (1 - \lambda)\gamma^{i,r}_a$;
(27) $\Delta \gamma^{i,r+1}_a = \gamma^{i,r+1}_a - \gamma^{i,r}_a$;
(28) $v := v + s^i_a \Delta \gamma^{i,r+1}_a$.
(29)
(30) // Loop on bilateral constraints
(31) for $i := 1$ to n_B
(32) $\delta^{i,r}_b = \left(\gamma^{i,r}_b - \omega \eta^i_b \left(\nabla \Psi^{i,T}v^r + b^i_b\right)\right)$;
(33) $\gamma^{i,r+1}_b = \lambda \Pi_T \left(\delta^{i,r}_b\right) + (1 - \lambda)\gamma^{i,r}_b$;
(34) $\Delta \gamma^{i,r+1}_b = \gamma^{i,r+1}_b - \gamma^{i,r}_b$;
(35) $v := v + s^i_b \Delta \gamma^{i,r+1}_b$.
(36)
(37) return γ^*_E, v
Simulating the PBR nuclear reactor

- The PBR nuclear reactor:
 - Fourth generation design
 - Inherently safe, by Doppler broadening of fission cross section
 - Helium cooled > 1000 °C
 - Can crack water (mass production of hydrogen)
 - Continuous cycling of 360'000 graphite spheres in a pebble bed
Simulating the PBR nuclear reactor

- Problem of bidisperse granular flow with dense packing.
- Previous attempts: DEM methods on supercomputers at Sandia Labs (regularization)
- 40 seconds of simulation for 440,000 pebbles needs 1 week on 64 processors dedicated cluster (Rycroft et al.)

model a frictionless wall, \(\mu_w = 0.0 \). For the current simulations we set \(k_r = \frac{2}{7} k_n \) and choose \(k_n = 2 \times 10^5 \text{ gml/d} \). While this is significantly less than would be realistic for graphite pebbles, where we expect \(k_n > 10^{10} \text{ gml/d} \), such a spring constant would be prohibitively computationally expensive, as the time step scales as \(\Delta t \propto k_n^{-1/2} \) for collisions to be modeled effectively. Previous simulations have shown that
Simulating the PBR nuclear reactor

- 160,000 Uranium-Graphite spheres, 600,000 contacts on average
- Two millions of primal variables, six millions of dual variables
- 1 day on a Windows station...
- But we are limited by the 2GB user mode limit, 64 bit port in progress—but linear scaling..
- We estimate 3CPU days, compare with 450 CPU days for an incomplete solution in 2006 !!!
- Answer 3: Our approach is efficient for large scale!!
In addition, we can approach efficiently approach many engineering problems (see website for papers)
Examples

- Example: size-segregation in shaker, with thousands of steel spheres

Note: solution beyond reach of Lemke-type LCP solvers!
Tests

- Feasibility accuracy increases with number of iterations:

 - Speed violation in constraints
 - Position error in constraints (penetration)

(with example of 300 spheres in shaker)
Tests: Scalability

- CPU effort per contact, since our contacts are the problem variables.
- Penetration error was uniformly no larger than 0.2% of diameter.

Number of contacts in time, 300 spheres

CPU time per step for 300-1500 spheres
6. Initial experiments on graphical processing unit (GPU).
New large scale computational opportunity
Graphical Processing Unit

Floating Point Operations per Second for the CPU and GPU

G80 = GeForce 8800 GTX
G71 = GeForce 7900 GTX
G70 = GeForce 7800 GTX
NV40 = GeForce 6800 Ultra
NV35 = GeForce FX 5950 Ultra
NV30 = GeForce FX 5800

GFLOPS
0 50 100 150 200 250 300 350
Jan-03 Jul-03 Feb-04 Aug-04 Mar-05 Sep-05 Apr-06 Nov-06

Intel CPU
- NVIDIA GeForce GPU

Intel Core2 Duo 3.0 GHz
IBM BlueGene/L—GPU comparison

- Entry model: 1024 dual core nodes
- 5.7 Tflop (compare to 0.5 Tflop for NVIDIA Tesla GPU)
- Dedicated OS
- Dedicated power management solution
- Require dedicated IT support
- Price (2007): $1.4 million
- Same GPU power (2008): 7K!!!
Brick Wall Example...

- Times reported are in seconds for one second long simulation
- GPU: NVIDIA GeForce 8800 GTX

<table>
<thead>
<tr>
<th>Bricks</th>
<th>Sequential Version</th>
<th>GPU Co-processing Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>1000</td>
<td>43</td>
<td>6</td>
</tr>
<tr>
<td>2000</td>
<td>87</td>
<td>10</td>
</tr>
<tr>
<td>8000</td>
<td>319</td>
<td>42</td>
</tr>
</tbody>
</table>
Future work

- N non symmetric, but positive semidefinite.
- Parallelizing the algorithms: block Jacobi with Gauss Seidel blocks.
- Asynchronous version of the algorithm, particularly for use with GPU.
- Including a good collision model– here we are at a loss with rigid body theory – may need some measure of deformability.
- Compare with experimental data.
Conclusions

- We have defined a new algorithm for complementarity problems with conic constraints.
- We have shown that it can solve very large problems in granular flow far faster than DEM.
- It is the first iterative algorithm that provably converges for nonsmooth rigid body dynamics.
- Its scalability is decent.
- We have created a multithreaded implementation and GPU port increases computational speed by a factor of 7-8.
References (preprints are at authors’ web site)

