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EFFICIENT IMPLEMENTATION OF NONLINEAR COMPACT
SCHEMES ON MASSIVELY PARALLEL PLATFORMS

DEBOJYOTI GHOSH YZ, EMIL M. CONSTANTINESCU YX, AND JED BROWN Y{

Abstract.  Weighted nonlinear compact schemes are ideal for simulatin g compressible, turbulent
ows because of their nonoscillatory nature and high spectr al resolution. However, they require
the solution to banded systems of equations at each time-int egration step or stage. We focus on
tridiagonal compact schemes in this paper. We propose an e ¢ ient implementation of such schemes
on massively parallel computing platforms through an itera tive substructuring algorithm to solve
the tridiagonal system of equations. The key features of our implementation are that it does not
introduce any parallelization-based approximations or er rors and it involves minimal neighbor-to-
neighbor communications. We demonstrate the performance a nd scalability of our approach on the
IBM Blue Gene/Q platform and show that the compact schemes ar e e cient and have performance
comparable to that of standard noncompact nite-di erence methods on large numbers of processors
( 500; 000) and small subdomain sizes (4 points per dimension per pr ocessor).
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1. Introduction.  Weighted, nonlinear compact schemes use the adaptive steihic
selection of the weighted, essentially nonoscillatory (WEO) [27, 44] schemes to yield
essentially nonoscillatory solutions with high spectral esolution; they are thus ideal
for simulating compressible, turbulent ows. Notable e or ts include weighted compact
nonlinear schemes (WCNS) [11, 12, 50, 48], hybrid compact{#O/WENO schemes [4,
3, 36, 40], weighted compact schemes (WCS) [28, 31, 49], coagt-reconstruction
WENO (CRWENO) schemes [17, 20, 16, 18], and nite-volume comact-WENO
(FVCW) schemes [23]. These schemes show a signi cant imprement in the resolu-
tion of moderate- and small-length scales compared with theesolution of the standard
WENO schemes of the same (or higher) order and were applied tthe simulation of
compressible, turbulent ows. The WCNS schemes [12, 50, 48Fsult in a system of
equations with a linear left-hand side that can be prefactoed. This is a substantial
advantage; however, the spectral resolution of these schesa is only marginally higher
than that of the WENO scheme. The hybrid compact-WENO, WCS, CRWENO, and
FVCW schemes have a signi cantly higher spectral resoluti, as demonstrated by
both linear and nonlinear spectral analyses [36, 18]. Theyasult in solution-dependent
systems of equations at each time-integration step or stageTests have shown that on
a single processor the additional cost of solving the tridigonal system of equations
is justi ed by the lower absolute errors and higher resolution of small-length scales
and discontinuities [17, 16]; moreover, the CRWENO schemeare less expensive than
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the WENO schemes when comparing solutions of comparable agracy or resolution.
A quantitative analysis of the numerical cost of hybrid compact-WENO has not yet
been presented in the literature; however, the conclusionsegarding the CRWENO
scheme are also expected to hold true for the hybrid schemesince the computational
complexity is similar.

An e cient, parallel solver for banded systems is thus a crudal issue in the im-
plementation of nonlinear compact schemes on distributednemory platforms. Past
attempts have followed three approaches. One approach is toecouple the global
system of equations into separate systems inside each subdain by applying the
noncompact WENO scheme [7] or biased compact schemes [29] the interior (par-
allel subdomain) boundaries. This decoupling causes the gbal numerical properties
to be a function of the number of processors. Specically, tle spectral properties
of the compact scheme get compromised [7] as the number of messors increases
for a given problem size, and numerical errors are observe@9]. A second approach
is a parallel implementation of the tridiagonal solver, sut as the pipelined Thomas
algorithm [39] in which the idle time of the processors durig the forward and back-
ward solves is used to carry out nonlocal data-independent amputations or local
data-dependent Runge-Kutta step completion calculations This algorithm requires
a complicated static schedule of communications and compations, however, result-
ing in a trade-o between communication and computation e ¢ iencies. A reduced
parallel diagonally dominant [46] algorithm solves a pertubed linear system, intro-
ducing an error because of an assumption of diagonal dominae that is bounded.
A third approach, involving data transposition [10, 21], cadllects the entire system of
equations on one processor and solves it sequentially. Thigequires the transposition
of \pencils" of data between processors. The approach is comunication intensive;
indeed, a large fraction of the total execution time is spentin the data transposition
operations. Because of these drawbacks, massively pardligimulations of turbulent
ows, such as [5], have been limited to using standard (noncmpact) nite-di erence
methods with limited spectral resolution. We note that seveal implementations of a
parallel tridiagonal solver [45, 26, 34, 47, 8, 13, 37, 38, 385] have been proposed,
although they have not been applied speci cally to compact nite-di erence schemes.

This paper presents a parallel implementation of nonlineay tridiagonal compact
schemes with the following aims that address the drawbacksfgast approaches: the
overall algorithm does not su er from parallelization-related approximations or er-
rors that are larger than the discretization errors, the implementation does not re-
quire complicated scheduling, and the overall scheme is cqmtationally more e cient
(compared with a standard nite-di erence scheme) at subdomain sizes (points per
processor) of practical relevance. This implementation wil make the compact schemes
viable for simulations such as that presented in [5]. The trdiagonal system is solved
on multiple processors by using a substructuring approach47, 13, 38, 35, 15], and an
iterative method is used for the reduced system [38]. Argualy, this approach may
not perform well in general, since several iterations may be&equired for an accurate
solution [38]. We show here, however, that the reduced systas resulting from a com-
pact nite-di erence discretization are characterized by strong diagonal dominance,
and thus one can obtain solutions of su cient accuracy with few iterations. We stress
here that \su cient accuracy" implies that the error in the s olution of the reduced
system is insigni cant compared with the discretization errors; in other words, mul-
tiprocessor and serial solutions are identical. We also shwo that one can specify a
priori the number of Jacobi iterations for a given problem based on the number of
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Fig. 2.1 . Discretized one-dimensional domain.

grid points and number of processors and can avoid a norm-basl exit criterion. We
demonstrate the performance and scalability of our paralle compact scheme based
on the iterative substructuring approach. Results are pregnted with the fth-order
CRWENO scheme [17]; however, this approach is also applicdd to other nonlinear
compact (hybrid compact-WENO, WCS, and FVCW) schemes that result in tridiag-
onal systems of equations.

The paper is organized as follows. Section 2 describes the merical method
and the CRWENO scheme, as well as the numerical properties it motivate its use.
Section 3 describes our parallel implementation of these gbrithms and presents a
scalability analysis of the proposed method for some represtative, manufactured
problems. Large processor-count simulations of physicall relevant problems are re-
ported in Section 4. Conclusions are drawn in Section 5.

2. Numerical Method. A hyperbolic partial di erential equation (PDE) can
be expressed as

@_ QW _,. :

@t+ & =0;x2 ; (2.1)
u(x;ty=u (t); x2 ; (2.2)
ux;0)=uo(x); x2 (2.3)

wherex is the position vector in spacep is time, u is the conserved solution, and (u)
is the hyperbolic ux function. The domain is given by with t he boundary as .
The boundary conditions and the initial solution are speci ed by u (t) and ug (x),
respectively. A conservative, nite-di erence discretization of (2.1) in space results in
an ordinary di erential equation (ODE) in time. Figure 2.1 s hows an example of a
one-dimensional domain of unit length discretized by a gridwith (N +1) points. The
corresponding semi-discrete ODE for this domain is given by

dditj+ = hjsi=2 hj 12 =0; (2.4)

whereu; = u(xj); x; =] xis the cell-centered solution andh; -, is the numerical
ux at the interface. The numerical ux function h(x) is required to satisfy exactly

@ 1 _ .
@szxj = _X[h(xj +1 :Zat) h(Xj l=2,t)], (2_5)
wheref (u) is the ux function and can thus be de ned implicitly as
1 Z X+ x=2

X x=2
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Equation (2.4) is numerically integrated in time by the classical fourth-order, four-
stage or the strong stability-preserving three-stage, thid-order Runge-Kutta schemes
[22]. The reconstruction of the numerical ux at the interfa ce (f'}ﬂ = hj+1=2)
from the cell-centered ux (fj = f(u;)) with the fth-order WENO and CRWENO
schemes is summarized in the following paragraphs. The leftiased reconstruction for
a scalar quantity is described, and the corresponding expssions for the right-biased
reconstruction are trivially obtained. Vector quantities are reconstructed by applying
the scalar reconstruction method to each component.

2.1. WENO Schemes. The WENO schemes [32, 27] use adaptive stenciling to
achieve high-order accuracy when the solution is smooth, ahthey yield nonoscillatory
solutions across discontinuities. At a given interface, tlere arer candidate stencils
of rth-order accuracy, with optimal coe cients such that the we ighted sum results
in a (2r 1)th-order interpolation. The optimal weights are scaled by the local
smoothness of the solution to obtain the nonlinear WENO weidpts. The nal scheme
is the weighted sum of therth-order stencils with the nonlinear weights. The fth-
order WENO scheme is constructed by three third-order scheres:

1 7 11 1
f/}l+1 == éfj 2 éfj 1t Efj; €= E; (2.7)
1 5 1 6
= gl 1T gl +3fin &= 5 (2.8)
1 5 1 3
fl}aﬂ =2~ §fj + 6f1+1 gfj+2; %= 10 (2.9)

By multiplying each of (2.7){(2.9) with their optimal coe ¢ ient ¢; k = 1;2;3, and
then adding the three, we obtain a linear, fth-order interp olation scheme:
1 13 a7 27 1
fl}+1 -2 = %fj 2 a)fl 1+ a)fj + a)fj+1 X)fj+2:
The nonlinear weights are computed from the optimal coe cients and local solution
smoothness as [27]

(2.10)

=P = % =123 2.11
g Kk k “ ( + k)p ( )
where = 10 © is a small number to prevent division by zero. The smoothness
indicators ( k) for the stencils are given by
13 1
1= Tz(fl 2 ij 1+fj)2+ Z(fl 2 4fj 1+3fj)2; (2.12)
13 1
2= i 1 2+ fie)?+ AU fia)? (2.13)
13 , 1 )
and 3= 1_2(fl 2fj+1 + fj+2) + Z(3fj 4fj+1 + fj+2) : (2.14)

A mapping function was proposed for these weights [24] to ad@ss the drawbacks
of this de nition of the weights, and this approach is adopted here. By multiplying
(2.7){(2.9) by the nonlinear weights (instead of the optimal coe cients c¢) and then
adding the three, we obtain the fth-order WENO (WENOS5) sche me:

! 1 1
flam = éfj 2 g(Ma+l2)f] 1+ ((111+51,+219)f,

1 I3
+s@a+5lafa P (2.15)
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When the solution is smooth,! ¢ ! ¢, and (2.15) reduces to (2.10). An elaborate
description of the WENOS5 scheme, including discussion of ta value of , is available
in [27, 24].

2.2. CRWENO Schemes.  Compact schemes use an implicitly-de ned function
to compute the ux at the interfaces; the numerical ux at ani nterface depends on the
numerical ux at neighboring interfaces (as well as the known ux at the cell centers).
Therefore, they require the solution to a system of equatios. This dependence results
in higher spectral resolution and lower absolute errors compared with standard nite-
di erence schemes of the same order of convergence. The CRWMB scheme applies
solution-dependent weights to compact candidate stencils A fth-order CRWENO
scheme [17, 16] is constructed by considering three thirdrder compact interpolation
schemes:

2 1 1 2
30 =t Ffia== S0 145f) = oo (2.16)
1 2 1 5
30 12t Ffia== S6f+fu)ie= 4 (2.17)
2 1 1 3
§f/}+1=2+ §f/}+3=2: é(fj +5fj41); 3= 10 (2.18)

By multiplying (2.16){(2.18) with their optimal coe cient s (c; k =1;2;3) and then
adding the three, we obtain a linear, fth-order compact scheme:

3 6 1 1 19 1
1—0 i 1:2+ 1—Ofl}+1:2+ 1—Ofl}+3:2 = 3—0fl l+ 3—ij + éf1+1 (219)

The optimal coe cients ¢ are replaced with the nonlinear weights! y, and we get
the fth-order CRWENO scheme (CRWENOS5):

2 1 1 2 1
3i1t 32 fi 1o+ 31t gltatla) o=+ 5!3fl}+3:2
! 5001+ 1)+ ! I,+5!
= ofi 1 s 62) i+ e (2.20)

The weights !  are computed by (2.11) and (2.12){(2.14). When the solutionis
smooth, ' ! ¢, and (2.20) reduces to (2.19). The present implementation b
the CRWENO schemes uses the nonlinear weights de ned for th&VENO scheme,
an approach justi ed previously [17, 18]. A detailed descrmption of the CRWENO5
scheme is available in [17], and an analysis of its sensittyito and the behavior of
the nonlinear weights is presented in [18].

The primary di erence between the WENO scheme (an example ofa standard
nite-di erence scheme) and the CRWENO scheme (an example 6a compact scheme)
is as follows. The WENO scheme, given by (2.15), expressesdhunknown interface
ux f’}+1 =, as an explicit function of the known ux at the cell centers f;. It is
thus straightforward to compute the numerical ux at the int erfaces. The CRWENO
scheme, given by (2.20), de nes the unknown interface ux asan implicit function {
the ux at an interface f'}+1 -, depends on the ux at neighboring interfaces (} 1=2,
f’}+3 -»). Thus, it requires the solution to a tridiagonal system of equations. Moreover,

the weights !  are solution-dependent and the system of equations has to bsolved
along each grid line at every time-integration step or stage
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2.3. Boundary Treatment. The physical domain is extended by using \ghost"
points, and the dependent variables at the ghost points areet such that the interface
ux is consistent with the physical boundary conditions. The CRWENOS5 scheme
[17, 18] uses the WENO5 scheme at the boundary interfaces, dra numerical analysis
of the overall discretization [16] showed that this bounday treatment was numerically
stable. The overall scheme needs three ghost points at physl boundaries, and
the resulting tridiagonal system of equations along a grid ihe has the rst and last
diagonal elements (corresponding to the physical boundaryinterfaces) as one and
o -diagonal elements as zero.

2.4. Numerical Properties. The numerical properties of the CRWENOS5 scheme
are summarized in this section to explain the motivation befind its use. More de-
tailed discussions were previously presented [17, 16, 18]at demonstrate the superior
numerical properties of the CRWENOS5 scheme compared with te WENOS5 scheme.
A Taylor series analysis of (2.19) (the linear fth-order compact scheme underlying
the CRWENOS5 scheme) shows

3 6 1 1 1 18 9 10
1_0fx;j 1+ 1_Ofx;j + Efx;j o= — %fj 2 3—ij 1+ %fj + %fjﬂ
) g =f 5+ L ot e L &f x®+ O( x'); (2.21)

600 @% , © ' 2100 @%

where the termf denotes the nite-di erence approximation to the rst deri vative.
The corresponding expression for (2.10) (the underlying hear interpolation for the
WENOS5 scheme) is

1 1 1 1 1 1
fx;j = ~ —3ij 3+ ij 2 fj 1+ éfj + Efj+1 —Zofj+2
1 of s, 1 @f 6 7.
+§)@j X+170@j X2+ 0 xT: (2.22)

The leading-order dissipation and dispersion error termslsow that the compact inter-

polation scheme vyields solutions with £10 the dissipation error and %15 the disper-
sion error of the solutions obtained by the noncompact schem, for the same order of
convergence. Consequently, the fth-order WENO scheme regjres 10°  1:5 times
more grid points per dimension to yield a smooth solution wit accuracy comparable
to that of the fth-order CRWENO scheme.

The primary motivation for the use of compact schemes is thei high spectral
resolution; they are thus well suited for applications with a large range of length
scales. Detailed linear and nonlinear spectral analyses dhe CRWENOS5 scheme
were presented in [17, 18] and are brie y discussed here. Rige 2.2 shows the dis-
persion and dissipation properties of the CRWENO5, WENOS5, and their underlying
fth-order linear schemes, (2.10) and (2.19) (henceforth eferred to as the \NonCom-
pact5" and \Compact5" schemes, respectively). The nonlin@r spectral properties of
the WENO5 and CRWENOS schemes are obtained by a statistical aalysis [14, 18] of
the schemes. The linear fth-order compact and the CRWENO5 £hemes have signif-
icantly higher spectral resolution than do the corresponding standard fth-order and
WENOS schemes, respectively. The compact schemes also elttilower dissipation
for the low and moderate wavenumbers that are accurately modled, while they show
higher dissipation for very high wavenumbers that are incorectly aliased to lower
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Fig. 2.2 . Spectral properties of the linear and nonlinear schemes: \C ompact5" refers to (2.19);
\NonCompact5" refers to (2.10); CRWENO5 and WENOS5 refer to ( 2.20) and (2.15), respectively.

wavenumbers. Higher dissipation at very small length scale is advantageous because
it di uses the small length-scale errors.

2.5. Time Integration and Lin-

ear Stability. ~ The classical fourth- : :
order, four-stage and the strong stability- S RK3
preserving third-order three-stage Runge- e ggnm%f;';gacﬁ
Kutta schemes are used to integrate 25
(2.4) in time for the numerical examples
presented in this paper. We thus brie 'y
analyze and compare the linear stability
restrictions on the time-step size for the
WENO5 and CRWENOS5 schemes. Fig-
ure 2.3 shows the stability regions of the 1t
three-stage, third-order (\RK3") and
the four-stage, fourth-order (\RK4") 0.5
Runge-Kutta schemes. The eigenval-
ues of the fth-order standard (2.10) o TR
(\NonCompact5") and the fth-order Real
compact (2.19) (\Compact5") nite-
di erence schemes are also shown. The Fig. 2.3 . Eigenvalues of the standard and
CRWENO scheme su ers from a smaller compact .f_th-orde.r nite-di erence schemes, and
. - the stability regions of three- and four-stage
time-step limit than does the WENO Runge-Kutta time-integration schemes.
scheme. This situation is veried
through numerical experiments on the linear advection equéon on a periodic do-
main. The WENO scheme yields stable solutions until CFL numbers of  1:4 and

1:5 for the third- and fourth-order Runge-Kutta schemes, resgectively; the corre-
sponding CFL limits for the CRWENO scheme are 0:9 and 1:0. Thus, from a
linear stability perspective, the WENO scheme may use timestep sizes that are 1.5
larger than those used by the CRWENO scheme, for the third- anl fourth-order
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Table 2.1
Factors relating the grid size, CFL, and time-step size of a W ENOS5 solution to those of a
CRWENOS solution for a fair comparison with explicit time-i ntegration. ( D is the number of
spatial dimensions.)
Type of Problem Grid Size CFL Time-Step Size
Smooth 1.5P 1.5 1
Nonsmooth 1:25° 1 1.5 1:25

Runge-Kutta schemes.

2.6. Comparisons between the WENO5 and CRWENO5 Schemes. Ta-
ble 2.1 summarizes the implications of the numerical propdres and linear stability
limits discussed in Sections 2.4 and 2.5, comparing the conupational costs of the
WENO5 and CRWENO5 schemes. Numerical analysis of the lineaschemes shows
that the WENO5 scheme yields comparable solutions on gridshat have  1:5 times
more points in each dimension than does the grid used with th€ RWENO5 scheme for
a smooth, well-resolved solution. Numerical experimentsn Sections 3.3 and 4 show
this factor to be  1:25 for solutions with unresolved length scales where the non
linear weights are not optimal. It is thus appropriate to compare the computational
cost of the CRWENOS5 scheme on a given grid with that of the WENG5 scheme on a
grid that has  1:25 or  1:5 times as many points along each dimension, depending
on the problem type. Solutions obtained with explicit time-integration schemes often
use the maximum time-step size allowed by the linear stabity limit. The WENO5
scheme has a stability limit that is  1:5 times higher than that of the CRWENO5
scheme, and the wall times for the WENO5 and CRWENO5 schemesra measured
with the WENOS solution obtained at a CFL number that is 1:5 times higher.
Thus, for a smooth, well-resolved problem, we use the samentie-step size such that
the CFL number of the WENO5 scheme is 1.5 times higher. The time-step size for
the WENOS solution is  1:25 times higher than that for the CRWENOS5 solution for
problems with unresolved scales.

3. Parallel Implementation. The fth-order CRWENO scheme (2.20) results
in a solution-dependent, tridiagonal system of equations bthe form

Af =r; wherer =Bf + b: (3.1)

The tridiagonal, left-hand side matrix A is of size (N +1) 2, f = [f].12;j =0;  ;N]T
is the (N +1)-dimensional vector of unknown ux at the interfaces, Bisa (N +1) N
matrix representing the right-hand side operator, andf = [fj;j =1; ;N]T is the
vector of (known) ux at the cell centers (N is the number of interior points in the
grid). The boundary terms are represented byb. Parallel implementations of the
CRWENO scheme (as well as the hybrid compact-ENO/WENO schenes) depend
on the e cient, multiprocessor solution of (3.1). We focus on a distributed-memory
parallel algorithm in this study; shared-memory thread-based parallelization is beyond
the scope of this paper and will be investigated in future stulies. This section describes
the parallel tridiagonal solver and demonstrates its perfemance and scalability.

3.1. Tridiagonal Solver. We require a parallel tridiagonal solver that solves
the system to su cient accuracy (so as to ensure that no paralelization errors exist

1This factor is determined by numerical experiments in Secti ons 3.3 and 4.
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Fig. 3.1 . Example of a partitioned grid: 21 points distributed among ve processors, with the
global and local numbering of points.
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AP SRR ISPy e 8| IR | e, U I .
a, C, b4 Xy I,
a4 €y by = Ty
4 Cp b, Xy L
25 Ci by X6 13

Fig. 3.2 . Reordered tridiagonal system of equations for a multiproce ssor algorithm. The lines
divide the data stored on each processor; the solid boxes show the decoupled tridiagonal blocks on
each processor; the rows inside the dashed box at the bottom are the rst point in each subdomain
(except the rst), and each row resides on a di erent process or.

in the overall scheme), whose mathematical complexity is cmparable to that of the

serial Thomas algorithm and does not involve any collectivecommunications. Figure
3.1 shows an example of a system with = 21, distributed on ve processors. We use
the substructuring or partitioning approach [47, 38] that is explained by reordering
the system as shown in Fig. 3.2. The rst row on each subdomair{except the global
rst that is a physical boundary point) is placed at the botto m of the matrix in the

order of the processor rank on which it resides (marked by thedotted box in Fig.

3.2). The decoupled tridiagonal blocks on each processor @armarked by the solid
boxes. Independent elimination of these decoupled block®lflowed by the elimination
of the reordered rows results in the reduced tridiagonal sytem of sizep 1 (p being
the number of processors), shown in Fig. 3.3. A more detailedlescription of our
implementation of this algorithm is provided in [19].

Several strategies exist for solving the reduced system [338]; however, a scalable
and e cient method is challenging because each row of the redced system resides
on a dierent processor. We choose to solve the reduced syste iteratively using
the Jacobi method. Although this approach may not work well for general systems
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Fig. 3.3 . Elimination of all the rows results in a reduced tridiagonal equation (shown by the
box) with each row residing on a di erent processor.

[38], we specically solve tridiagonal systems that resultfrom the compact nite-
di erence discretization of a hyperbolic ux, such as (2.20. The reduced system
represents the coupling between the rst interfaces on eaclsubdomain, separated by
the interior grid points on each processor. Therefore, thisystem has a strong diagonal
dominance forp  Nj;asp! O(N), the diagonal dominance decreases. We consider
as an example the tridiagonal system (2.19) withN = 1024 and a random right-hand
side. Figure 3.4 shows the elements of thp=2th column (an arbitrary choice) of the
inverse of the reduced system for 16, 64, 128, and 256 process (where p is the
number of processors), corresponding to subdomain sizes 6#, 16, 8, and 4 points,
respectively. Elements larger than machine zero (10%) are shown. We observe that
for a subdomain size of 64 points (16 processors), only the afjonal element has a
value higher than machine zero; the reduced system is e eciely a diagonal matrix,
and the solution is trivial. The number of non-machine-zeroelements grows, and the
diagonal dominance decreases as the subdomain size dece=as

We analyze the properties of the reduced system as a functiof the global
problem size and the number of processors, and we estimate éhnumber of Jacobi
iterations needed to achieve converged solutions. The reded system of equations is
expressed as

Rfp = (3.2)

where R represents the tridiagonal matrix of sizep 1 (inside the box in Fig. 3.3),+is
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Fig. 3.4 . Elements of the p=2th column of the inverse of the reduced system for various num bers
of processors (p).

the corresponding right-hand side obtained fronmr in (3.1) by applying the elimination
steps, andf‘\p is a portion of the interface ux vector f in (3.1) constituting the rst
interface of each subdomain (except the physical boundaryniterface). The Jacobi
method is expressed as [42]

fit =D ' RIf¥+D 'w (3.3)

whereﬁ‘j is the kth guess forf,,, D is the diagonal of R, and | is the identity matrix.
The initial guess is taken as

fO=pD I (3.4)

The convergence of the Jacobi method is determined by the spg&al radius of the
iteration matrix; we thus require

DI R) <1 (3.5)
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Fig. 3.5. Solutions (N = 1024) by which !; in (2.20) are computed for the analysis of the
reduced system.

We estimate the number of iterations for a converged solutia from the convergence
rate = log [42] as

logC

NJjacobi = ; (3.6)
where C is the convergence criterion or tolerance.

We evaluate the spectral radius of the Jacobi iteration matix, D *(I R) , for
several global problem sizes and number of processors. Wesalanalyze the e ect of
nonlinear weights in (2.20) on the reduced system. We consét three cases. \Case 1"
represents a smooth solution for which the nonlinear weigtg are optimal (! ; = ¢),
and (2.20) is essentially (2.19). \Case 2" represents the fdiagonal system (2.20) with
the weights computed for the solution shown in Fig. 3.5(a), gven by

% exp Iog(Z)gggég 08 x 0:6;

1 04 x 0:2

ux)= _ 1 j 10x 0:1)j 0 x 02 (3.7)
E 1 100 052> 04 x 086
-0 otherwise

This is representative of smooth solutions with isolated dscontinuities. \Case 3"
represents the tridiagonal system (2.20) with weights compted for a solution repre-
sentative of turbulent ows, given by

N2
ux)=  A(k)cos(2kx + (K); (3.8)
k

where A(k) = k 57 is the amplitude and the phase (k) 2 [ ; ]is arandomly cho-
sen for each wavenumbek. Figure 3.5(b) shows one realization of (3.8). Although the
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Fig. 3.6 . Analysis of the iterative solution to the reduced system wit h the Jacobi method.

solution is theoretically smooth, the presence of small legth scales (high wavenum-
bers) results in highly nonlinear behavior [18]. Thus, our toice of cases includes all
possible solution features of compressible, turbulent ovs.

Figure 3.6(a) shows the spectral radius of the Jacobi iterabn matrix as a func-
tion of the number of processors for the three cases descritbeabove and for several
values of the global system sizeN = 256;512:::;16384). The largest number of
processors for a given global system size corresponds to absiomain size of 4 points
per processor. Note that for \Case 3" the data points represet the average, and the
gray error bars represent the maximum and minimum values ove10; 000 realizations
of (3.8) (this analysis is similar to the nonlinear spectralanalysis of WENO [14] and
CRWENO [18] schemes). The spectral radius increases as theumber of processors
increases for a given global problem size. This result is exggted because the reduced
system represents the compact nite-di erence coupling béween the rst point on
each processor; as the number of processors increases, thesints come closer, and
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Fig. 3.7 . Performance of the parallel tridiagonal solver, and compar ison with ScaLAPACK
(pddtsv): Wall time as a function of subdomain size and number of proc essors for the solution of
the tridiagonal system given by (2.19) with N grid points and a random right-hand side.

the coupling is stronger. The spectral radius for the systemwith optimal weights
(\Case 1") is the largest for a given global system size and nonber of processors; the
spectral radius corresponding to the other two cases is eitér lower or similar. This
result is again expected because the optimal weights resulh the widest stencil with
highest-order accuracy, while nonoptimal weights reducehe accuracy by biasing the
stencil in one direction and make it more local. Thus, the spetral radius correspond-
ing to the linear scheme (2.19) is an upper bound, and nonoptial weights will result
in an iteration matrix with a smaller or equal spectral radius. Figure 3.6(b) shows the
spectral radius as a function of the subdomain size for the sae systems and cases.
The spectral radii for the systems corresponding to \Case 1"are insensitive to the
global system size (and thus the size of the reduced systemhd are a function of the
subdomain size only.

Figure 3.6(c) shows the number of Jacobi iterations requird for a tolerance of
C =10 10 estimated by using (3.6) and the spectral radii reported in Fg. 3.6(a). The
number of Jacobi iterations increases with the number of praessors for a given global
system size ), as expected. The number of iterations required by the optmal case
(\Case 1") is an upper bound on the number of iterations requred by the other two
cases for a given global system size and number of processofEigure 3.6(d) shows
the number of Jacobi iterations as a function of the subdomai size. We observe that
the required number of Jacobi iterations for \Case 1" is a furction of the subdomain
size only, and not of the global system size or number of prossors. We show results
for subdomain sizes from 4 points to 64 points per processofpr subdomain sizes
larger than 64 points per processor, no Jacobi iterations a needed if the initial
guess is (3.4) since the reduced system is essentially a daagal matrix (this is veri ed
in subsequent sections). We do not consider subdomains sniel than 4 points per
processor because this is almost the smallest practical sdbmain size for fth-order
nite-di erence methods.

The analysis presented leads to the following conclusionsegarding the a priori
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Fig. 3.8 . Array arrangement for the tridiagonal solver: two-dimensi  onal problem with i and j
as the grid indices in x and vy, respectively, while reconstructing the x-derivatives.

speci cation of the number of Jacobi iterations to solve thereduced system. When the
solution is smooth and when the CRWENOS5 scheme (2.20) is equalent to the optimal
fth-order compact scheme (2.19), the number of iterationsrequired is an upper bound
for a given problem size and number of processors; any otheokition resulting in
nonoptimal weights will require a smaller or equal number ofJacobi iterations. This
number of Jacobi iterations for the optimal case is a functim of the subdomain size
and not of the global problem size. Thus, for an arbitrary problem with a given grid
size and number of processors, specifying the number of Jdmaterations as the one
required for a smooth solution with the corresponding subdmain size ensures that
the solution to the reduced system is converged. This allowss to avoid a norm-based
exit criterion and, consequently, the requirement of colletive communications.

The performance of the parallel tridiagonal solver is demostrated by solving a
tridiagonal system of equations given by (2.19) with a randan right-hand side, and
compared with that of the ScaLAPACK [6, 9] routine pddtsv |a parallel tridiago-
nal solver for diagonally-dominant systems. Appendix A desribes the computing
platform and the software environment used. Figure 3.7(a) bows the wall time as
a function of the number of processors and subdomain sizesrf@ system of size
N = 4;194 304. The solutions are obtained using the iterative substraturing-based
tridiagonal solver with a norm-based exit criterion (C = 10 ) as well as a pri-
ori speci cation of the number of Jacobi iterations. The smadlest subdomain size in
this example is 128, and thus, both approaches (norm-basedxi, and a priori spec-
i cation) do not perform any Jacobi iterations. The initial guess, given by (3.4), is
su ciently accurate. The norm-based exit is slightly more expensive due to the collec-
tive communications in the calculation of the global norm. Slutions are also obtained
using ScaLAPACK; however, the ScaLAPACK solver scales pody for the tridiago-
nal system considered here when subdomain sizes are smaltban 4; 096 points per
processor.

Figure 3.7(b) shows the wall times for a smaller system withN = 131; 072 points,
and smallest subdomain size is 4 points per processor. Theeitative substructuring-
based tridiagonal solver with a norm-based exit criterion sales well till a subdomain
size of 128 points per processor; at smaller subdomain sizethe cost of Jacobi it-
erations and global norm calculations increase signi carlty. A priori speci cation of
the number of Jacobi iterations results in a similar performance; however, avoiding
the calculation of the global norm results in a signi cant reduction of the cost. At
subdomain sizes smaller than 10; 000 points per processor, the scalability and per-
formance of the iterative substructured tridiagonal solve are superior to those of the
ScalLAPACK routine for the systems considered here becauséé former exploits the
strong diagonal dominance of the reduced system.
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3.2. Extension to Multidimensions. Solutions to multidimensional problems
using a compact nite-di erence scheme require solving sesral tridiagonal systems
of equations|one system along each grid line in each dimensin. We extend our par-
allel tridiagonal solver to multiple dimensions by solving the systems in one function
call. The data is stored in arrays with the innermost loop regresenting distinct sys-
tems; that is, the arrays containing the diagonals and the rght-hand side vectors of
all the systems have a given row element of all the systems inoosecutive memory
locations. Figure 3.8 shows this arrangement for a two-dimesional problem where
the x-derivative (corresponding to grid index i) is being reconstructed. Each opera-
tion on an element of a single tridiagonal system is carried at on the corresponding
elements of multiple tridiagonal systems, thus increasingthe arithmetic density. In
addition, messages that contained the relevant elements ofne tridiagonal system
contain elements of multiple systems, thus increasing commmication e ciency; that
is, the size of the messages increases while their number g$athe same. Therefore,
the cost of the tridiagonal solver is initially sublinear in the number of systems. We
thus expect the proposed implementation of the tridiagonalsolver to be more e cient
for multidimensional simulations.

Reconstruction of the interface uxes with the CRWENOS scheme (2.20) is carried
out independently along each dimension for multidimensioal problems. The analysis
presented in the previous section can thus be used to specithe number of Jacobi
iterations based on the number of grid points and the number & processors along
each dimension.

3.3. Performance Analysis. We analyze the performance of our parallel im-
plementation of the CRWENOS5 scheme by applying it to the inviscid Euler equations
[30]. We consider smooth, well-resolved solutions as welkasolutions with unresolved
length scales. The software environment and hardware deté of the computing plat-
forms used in this study are summarized in Appendix A. The fouth-order four-stage
Runge-Kutta (RK4) scheme is used for time integration. The alar reconstruction
schemes are applied to each component of the vector quantds. The CRWENO5
scheme was previously demonstrated [17] to be computatioflg more e cient than
the WENO5 scheme (for both smooth and discontinuous problers) on a single pro-
cessor with time-step sizes dictated by the linear stabiliy limits of each scheme. The
cost of the parallel tridiagonal solver described above ineases with the number of
processors for the same domain size because of the larger ruen of Jacobi iterations
needed to solve the reduced system. We investigate the e ciecy of the CRWENO5
scheme (relative to that of the WENOS5 scheme) as the number ofrocessors increases
(i.e., the subdomain size becomes smaller). We expect CRWEDS to be less e cient
than the WENO5 scheme for subdomains smaller than a criticalsize; however, we
show that it retains its higher e ciency for subdomain sizes of practical relevance.

We note that we use a modi ed de nition of the parallel e cien cy when comparing
the two schemes. Although generally one de nes the parallek ciency of a scheme
based on its own wall time on the smallest number of processsr we calculate the
e ciencies of both schemes based on the wall time of the CRWEND5 scheme on the
lowest number of processors considered. The modi ed paradl e ciency is given by

0;CRWENO5  [20;CRWENOS5

p

where o.crwenos IS the wall time of the CRWENOS solution on po.crwenos humber
of processors (which is the minimum number for a given caseand is the wall time

E ciency =

; (3.9)
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of the CRWENOS5 or WENOS5 solution on p number of processors. This de nition
allows for the computational e ciencies of the two schemes pased on accuracy and
wall time) to be re ected in our comparisons. The traditional de nition results in a
starting value of one for both and does not provide any infornation on the relationship
between the wall times of the two schemes. Our de nition resits in a starting value
of one for the CRWENOS scheme and a starting value less than anfor the WENO5
scheme, thus re ecting that the WENOS scheme requires a largr wall time to yield
a solution of desired accuracy on the smallest number of prassors considered. The
modi ed parallel e ciency shows the scalability of each scheme (through its slope),
as well as the relative costs to compute similar solutions (trough its absolute value).
We start with the one-dimensional advection of a sinusoidaldensity wave|an ex-

ample of a smooth, well-resolved solution for which the Taybr series analysis (Section
2.4) holds. The initial density, velocity, and pressure arespeci ed as

= pt+~sin(2x);
u=1lp=1=; (3.10)

respectively, on a unit periodic domainx 2 [0;1]. The specic heat ratio is = 1:4.
The mean density ¢ is 1, and the amplitude of the wave is ~= 0:1. Solutions are
obtained with the CRWENOS5 scheme on grids with 64, 128, and 26 points (baseline
grids), and with the WENOS5 scheme on grids with 15 times as many points (96, 192,
and 384). The solutions are obtained after one cycle over th@eriodic domain. A
small time-step size of 104 is used such that the numerical time integration errors
are negligible (relative to those from the spatial discretzation).

Table 3.1 shows thelL, norm of the numerical errors and the wall times for
dierent grid sizes (Ngobai). The number of Jacobi iterations (Njac) is specied
based on Fig. 3.6(d). Both schemes show fth-order convergee, and the errors
for the WENOS5 solutions on grids with 96, 192, and 384 points e&e comparable to
those for the CRWENOS solutions on grids with 64, 128, and 384oints, respectively.
The numerical errors for the CRWENOS5 scheme are identical fovarying numbers of
processors on a given grid, thus demonstrating that our algothm does not introduce
any parallelization-based errors. All the cases considedeuse the same time-step size;
therefore the WENO5S solutions are obtained at a CFL number that is 1.5 times
higher than that of the CRWENO5 solutions (Section 2.6). The WENOS5 cases on
the ner grids are run on the same number of processors; in otbr words, with a given
number of processors, we investigate whether the CRWENObS seme is more e cient
than the WENObS scheme.

The solutions obtained on one processor show that the CRWEN®G scheme is
more e cient; the wall times of the CRWENOS5 scheme are lower m the 64, 128,
and 256 point grids than those of the WENO5 scheme on the 96, 79 and 384 point
grids, respectively. These results agree with previous stlies [17]. As we reduce
the subdomain sizes for a given case of grid sizes (e.g., CRWMB5 on the 64-points
grid and WENOS on the 96-points grid), the relative cost of the CRWENO5 scheme
increases because of the increasing number of Jacobi iterahs. As a result, the
WENO5 scheme is more e cient at smaller subdomain sizes. We bserve from Table
3.1 that the CRWENOS5 scheme is less expensive for subdomainzes larger than 64
points, whereas for smaller subdomains the WENO5 scheme igds expensive. Figure
3.9(a) shows the wall time per time step as a function of the nmber of processors.
The CRWENOS5 scheme does not scale as well as the WENO5 schemer flarger
numbers of processors; the wall time for the CRWENO5 schemesiinitially lower than
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Table 3.1

Errors ( L2) and wall times (in seconds) for the one-dimensional advect ion of a sinusoidal

density wave.

WENO5 CRWENOS5
N global Error Wall Time N global Error Wall Time N jac
1 processor
96 1.3332E-08 126.33 64 1.1561E-08 96.69 0
192 4.1680E-10 248.20 128 3.3927E-10 187.26 0
384 1.3024E-11 48451 256 1.0253E-11 366.87 0
2 processors
96 1.3332E-08 65.25 64 1.1561E-08 56.43 0
192 4.1680E-10 126.35 128 3.3927E-10 103.00 0
384 1.3024E-11 24452 256 1.0253E-11 195.15 0
4 processors
96 1.3332E-08 34.27 64 1.1561E-08 41.72 2
192 4.1680E-10 64.95 128 3.3927E-10 61.91 1
384 1.3024E-11 124.36 256 1.0253E-11 104.34 0
8 processors
96 1.3332E-08 18.66 64 1.1561E-08 34.97 4
192 4.1680E-10 3425 128 3.3927E-10 41.51 2
384 1.3024E-11 64.17 256 1.0253E-11 61.75 1
16 processors
192 4.1680E-10 18.68 128 3.3927E-10 34.97 4
384 1.3024E-11 33.76 256 1.0253E-11 41.44 2
32 processors
| 384 1.3024E-11 19.4@ 256 1.0253E-11 43.37 6 ‘
1.1
0.1 ‘
Ideal Scaling
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Fig. 3.9 . One-dimensional advection of density sine wave: wall times

(b) Modi ed parallel e ciency vs.

size
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Sub-domain size (points per processor)

subdomain

and e ciencies for the

CRWENOS on grids with 64, 128, and 256 points, and the WENOS5 scheme on grids with 96, 192,

and 384 points (data in Table 3.1).
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Table 3.2
Errors ( L) and wall times (in seconds) for the three-dimensional adve ction of a sinusoidal
density wave.

WENO5 CRWENOS5

N global Error Wall time N global Error Wall time N jac
64 (4°) processors

48°  53211E-07 12960 3°  5.4544E-07 5058 10|
512 (8%) processors

48° 5.3211E-07 1818 3 5.4544E-07 933 10

96° 1.6660E-08 12884 64° 1.4849E-08 4985 10
4096 (16) processors

96° 1.6660E-08 1803 643 1.4849E-08 936 10

192 5.2096E-10 12819 128 4.3038E-10 4929 10
32768 (32) processors

| 192 5.2096E-10 1953| 128 4.3038E-10 941 10 ‘

that of the WENOS5 scheme, but as the number of processors inease, the cost of
the CRWENOS5 scheme exceeds that of the WENOS5 scheme. Figure.®b) shows

the modied parallel e ciency as a function of the subdomain size and reiterates
this result; the CRWENO5 scheme is more e cient for larger subdomains, but the

e ciency decreases rapidly as subdomains grow smaller, anthe WENO5 scheme is
more e cient at the smallest subdomains considered.

We next consider the three-dimensional smooth, well-resgkd solution. The di-
mensionality of the problem a ects the e ciency and relativ e computational cost of
the CRWENOS5 scheme in two ways. The rst e ect is that the WENO 5 scheme
requires grids with  1:25{ 1:5° (D being the number of dimensions) more points
than that required by the CRWENOS5 scheme to yield comparablesolutions, and this
factor increases by theDth power. Thus, in two and three dimensions, this factor is

2:25and 3:375 respectively. The other e ect of dimensionality is on the e ciency
of the tridiagonal solver, as discussed in Section 3.2. Theptution to multidimensional
problems requires solving several systems, thus increagjrthe arithmetic density and
communication e ciency of the tridiagonal solver. These two factors indicate that our
implementation of the CRWENO5 scheme is expected to be more eient in higher
dimensions.

The initial density, velocity, and pressure for the three-dmensional advection of
a sinusoidal density wave are speci ed as

= p+~sin(2x)sin(Qy)sin(2z);

u=v=w=1p=1=; (3.11)
on a unit periodic domain [0;1]3. The specic heat ratio is = 1:4. The mean
density ¢ is 1, and the amplitude of the wave is ~= 0:1. We use a time-step

size of 104 for all the cases. Table 3.2 shows the errorsL(> norm) and wall times
for the grid sizes (Ngiobal) COnsidered. Fifth-order convergence is veri ed; and, the
errors of the CRWENO5 scheme on the grids with 33, 64°, and 128 points are
comparable to those of the WENO scheme on grids with B° times more points (48,
96%, and 192). The CRWENOS5 scheme is less expensive than the WENOS5 scheme
for all the cases considered, including the smallest subdoain size of 4 points per
processor. The number of Jacobi iterations  ;5c) in Table 3.2 is identical (10) for all
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Fig. 3.10 . Energy spectrum of the numerical solutions to the three-dim ensional advection of
density uctuations.

the cases. Although ten iterations are more than what is reqired for convergence for
subdomains larger than 4 points per dimension per processdsee Fig. 3.6(d)), the
CRWENOS scheme is less expensive by a relatively large margi(because of the e ect
of dimensionality), allowing us to specify a more-than-adguate number of iterations.

Thus, all the cases reported carried out with 10 Jacobi iteréions to solve the reduced
tridiagonal system.

We now consider the three-dimensional advection of densityvaves comprising all
grid-supported wavenumbers|an example of a solution with u nresolved length scales
for which the WENO5 and CRWENO5 schemes show nonlinear behawor. The initial
density uctuations is prescribed in the Fourier space as

_iLi 56 q_—
Nk Ky z) = ﬁ”‘di—(u yiki= k2 kT K2
1 ku;ky;kz N=2; (3.12)

where N is the number of points per dimension on a square grid and the amplex
conjugates are taken in the remainder of the wavenumber domia. The amplitude
decay is such that the uctuation energy spectrum is represatative of the kinetic
energy spectrum of turbulent ows. The initial density is th en speci ed in the physical
space as

= o+ (3.13)

where (X;y; z) is the inverse Fourier transform of /(Ky; ky; kz). The maximum ampli-
tude of uctuations ~ is taken as 10 ® to ensure that the total density is non-negative.
Uniform unit velocity (in all dimensions) and pressure (p = 1= ) are speci ed where

= 1:4 is the ratio of specic heats. A periodic domain of unit lengh in each
dimension is taken.

We solve the problem on two grid sizes: CRWENO5 and WENOS5 soltions are
obtained on grids with 328 and 128 points, and the WENO5 solutions are obtained
on grids with 1:25° times more points (4¢ and 16C points) as well. Figure 3.10
shows the density uctuations spectrum for the solutions ater one time period. The
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Table 3.3
Wall times (in seconds) for the three-dimensional advectio n of density uctuations.

WENO5 CRWENO5
N proc Niocal Wall Times Niocal Wall Times N jac
40° (WENOS5) and 323 (CRWENO5) grid points
8 20° 4516.9 163 3343.9 10
64 10° 655.3 gd 520.1 10
512 58 93.4 43 92.8 10
160° (WENO5) and 128° (CRWENOS5) grid points
8 80° 1004960 643 795420 10
64 40° 137864 328 103310 10
512 20° 18791 16° 14651 10
4096 10° 2616 88 2084 10
32768 58 376 43 378 10

spectral resolutions of the CRWENOS5 scheme on the grids witt82 and 128 points
are comparable to those of the WENOS5 scheme on grids with 40and 16G points,
respectively. The WENOS5 solutions are obtained at a CFL numker 1.5 times
higher than that for the CRWENOS5 solutions (Section 2.6); the time-step sizes are
1 10 3 (CRWENOS5 on 322 points), 1:25 10 3 (WENOS5 on 403 points), 2:5

10 4 (CRWENOS5 on 128 points), and 3:125 10 5 (WENO5 on 160° points). We
compare the wall times of these cases in Table 3.3 for solutis obtained on Npoc
processors Niocal is the subdomain size). The number of Jacobi iterations N jac) is
speci ed as 8 for all the cases and is more than adequate to em® convergence of
the reduced system, as shown in our analysis (Figs. 3.6(c) @n3.6(d), \Case 3").
The CRWENOS scheme is less expensive than the WENOS5 schemerfall except the
smallest subdomain sizes & points per processor) considered; the costs are similar
at this subdomain size.

The numerical experiments presented in this section indicge that our implemen-
tation of the parallel tridiagonal solver does not introduce any parallelization-related
errors. We analyze the computational cost of our implementéion as a function of
grid size and number of processors. In one spatial dimensiah a critical subdomain
size is observed, and the CRWENOS has a lower time to solutiofior subdomain sizes
larger than this. The increasing cost of solving the tridiagonal system renders it
less e cient at smaller subdomain sizes. In three dimensios, however, the WENO5
scheme requires several times more grid points to yield conapable solutions, and
the CRWENOS5 scheme is computationally less expensive for &ations of comparable
accuracy for most subdomain sizes considered. The two sches have comparable
expense for the smallest practical subdomain size £4points per processor). These re-
sults imply that our implementation of the CRWENOS5 scheme is a viable alternative
to standard, noncompact schemes even for massively parallsimulations.

4. Results. The performance of the CRWENO5 scheme is evaluated on bench-
mark ow problems. Previous studies [17, 20, 16, 18] demonshted two desirable
properties of the CRWENOS scheme: accurate preservation ofow features as they
convect large distances and improved resolution of a largerange of relevant length
scales for turbulent ows. The two ow problems in this section|the long-term con-
vection of an isentropic vortex and the decay of isotropic tubulencelillustrate these
properties, and the computational e ciency of the CRWENOS5 scheme on multiple
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processors is demonstrated for these ows.

4.1. Isentropic Vortex Convection. The long-term convection of an isen-
tropic vortex [43] tests the ability of the algorithm to preserve a ow feature for large
simulation times. The vortex is a two-dimensional ow; however, we solve this ow
over a three-dimensional domain in order to demonstrate thecomputational cost and
e ciency of the three-dimensional solver. The CRWENOS5 schane shows a signi -
cant improvement in the preservation of the strength and shae of the vortex as it
convects over a large distance [17]. In this study, we consét a large domain along
the direction of vortex convection in order to evaluate the grong and weak scaling
of the parallel algorithm for a large number of grid points and correspondingly large
number of processors. The freestream ow is specied as; =1 (density), u; =0:5
(x-velocity), vi = wy =0 (y and z velocities), and p; = 1 (pressure). The initial
vortex is speci ed as

g
8 2 '

( 1w

=1

102

b
u= --ez (Y VYo

102

b .
2—e 2 (X Xg);
w=0;p= ; (4.2)

\Y

where u, v, and w are the velocity perturbations, (X¢;Yc) = (5;5) is the initial
location of the vortex center, r = (x? + y?)172 is the radial distance from the vortex
center, = 1:4is a ratio of specic heats, andb = 0:5 is the vortex strength. The
vortex has a unit core radius. The ow is uniform along the z dimension. Periodic
boundary conditions are speci ed on all boundaries.

The strong scaling of the algorithm is evaluated by solving he ow on a domain
of length 1,280 10 10. Solutions are obtained with the CRWENO5 and WENO5
schemes on a grid with 8192 64 64 points. Solutions are also obtained with the
WENOS5 scheme on a grid with 15° times more points (12288 96 96 points).
The vortex convects a distance of 1000 times the core radius. The solution is in-
tegrated in time by using the third-order-accurate strong-stability-preserving Runge-
Kutta (SSPRK3) scheme [22] with a time-step size of @25 on both grids. Figure 4.1
shows the density contours of the ow for the solutions obtaned with the WENO5
and CRWENOS5 schemes. The solution obtained by the WENO5 schme on the
8;192 64 64 points grid is signi cantly dissipated, whereas the CRWENOS5 scheme
on this grid yields a solution comparable to the one obtainecby the WENO5 scheme
on the 12288 96 96 points grid. This is reiterated through Figs. 4.2(a) and
4.2(b), which show the cross-sectional pressure through #hvortex core and the time
history of the vortex core pressure error, respectively. Wecompare the wall times of
the CRWENObS scheme on the 8192 64 64 points grid with those of the WENO5
scheme on the 12288 96 96 points grid. The number of Jacobi iterations for
the CRWENOS5 scheme is xed at 10, irrespective of the subdoman size. The do-
main is partitioned along all three dimensions. Figure 4.3&) shows the wall times per
core-radius distance traveled by the vortex (80 time steps)s a function of the num-
ber of processors. The subdomain sizes range fronf 46° for WENO5) for 524; 288
(2;048 16 16) processors to 18 (24° for WENOS) for 8;192 (512 4 4) proces-
sors. Although the CRWENOS5 scheme does not scale as well asédHWENOS5 scheme
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Fig. 4.1 . Isentropic vortex convection: density contours after vort ex has traveled a dis-
tance 1; 000 times its core radius.
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Fig. 4.2 . Isentropic vortex convection: cross-sectional pressure dter vortex has traveled
a distance 1;000 times its core radius, and pressure error at vortex center as a function of
time.

for larger numbers of processors, the absolute wall time isigni cantly lower. Figure
4.3(b) compares the modi ed parallel e ciencies of the two schemes as a function of
the subdomain size. The e ciency of the CRWENO5 scheme decrases rapidly as
the subdomain size decreases; however, in absolute term$iet CRWENOS scheme is
signi cantly more e cient than the WENOS5 scheme even for the smallest subdomain
size.

Figure 4.3(c) shows the wall times per core-radius distancéaveled by the vortex
of the CRWENO5 and WENOS5 scheme for constant subdomain sizesf 4° and 6°
points, respectively (the number of grid points and the numker of processors are
increased by the same factors). These results are obtainedyhvarying the physical
length, number of points, and number of processors along thelirection of vortex
convection while keeping these quantities along the otherwo dimensions constant.
We initially start with a domain of size 40 10 10 length units, discretized by a grid
with 256 64 64 points (384 96 96 points for WENOS5) on 16,384 (64 16 16)
processors and increase the quantities in the-dimension by a factor of two until a
domain of size 1280 10 10 length units, discretized by a grid with 8,192 64 64
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Fig. 4.3 . Isentropic vortex convection: wall times and parallel e ci encies for the CR-
WENOS5 and WENOS5 schemes. the number of processors varies fron 8,192 to 524,288.

points (12288 96 96 points for WENOS5) on 524,288 (2048 16 16) processors. The
wall times for CRWENOS5 scheme are signi cantly lower than those of the WENO5
scheme. The parallel implementation of the tridiagonal sober involves only point-
to-point communications between processors, and thus an eellent weak scaling is
observed. We therefore predict that the CRWENO5 scheme wilremain more e cient
than the WENOS scheme as the problem sizes and the number of pcessors increase
further.

4.2. Isotropic Turbulence Decay. The decay of an isotropic turbulent ow-
eld [41, 33] is a canonical turbulent ow problem and is characterized by a transfer
of energy from larger to smaller length scales. The ow is comressible for higher
values of the turbulent uctuations, and a nonoscillatory scheme is required. Pre-
vious studies [16, 18] have demonstrated through direct numrical simulation that
the CRWENOS scheme yields solutions with higher resolutionof moderate and high
wavenumbers when compared with the WENO5 scheme on the sameid. A sim-
ilar problem is solved in this paper to compare the computatonal costs of the two
schemes for solutions of comparable resolution. The thredimensional Navier-Stokes
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(a) Density (b) Vorticity Magnitude

Fig. 4.4 . Isotropic turbulence decay: Solution at Re = 200, obtained at t= = 3:0 by
CRWENO5 scheme on a grid with 256° points.
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Fig. 4.5 . Isotropic turbulence decay: energy spectrum att= = 3:0 for solutions obtained
by the WENO5 and CRWENO5 schemes (inset gures are zoomed-in portions showing in-
termediate and small length scales).

equations [25] are solved without a turbulence model; in adition to the numerical
method described in Section 2, the viscous terms are discriged using fourth-order
central di erences. An initial solenoidal velocity eld is specied that satis es the
following prescribed kinetic energy spectrum:

r
2 4 2
Eq=16 2% K on 2 K 7. (4.2)
ko Ko

where E is the kinetic energy, k is the wavenumber, kg = 4 is the wavenumber
corresponding to the maximum kinetic energy, andug = 0:3 is the RMS turbulence
intensity. Constant initial density and pressure are specied ( =1 and p=1=,
where = 1:4 is a ratio of specic heats). The procedure to specify the coplete
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initial solution is described in [41]. A periodic cubic doman is taken with edge length
2 . The problem is solved with the WENO5 and CRWENOS5 schemes onwo grids|
64° and 256 points; in addition, solutions are obtained with the WENO5 scheme on
grids that are 1:25 times as ne in each dimension (88 and 32G points). The ow is
solved at initial Taylor microscale-based Reynolds numbes (Re = uo= , where

is the Taylor microscale and is the coe cient of viscosity) of 50 on the grids with
64%and 8C° points, and 200 on the grids with 256 and 32C points. Solutions are
obtained at a normalized time (t= , where = =u g is the turbulent time scale based
on the initial ow) of 3 :0. The solutions are integrated in time with the four-stage
fourth-order Runge-Kutta scheme, and the following time-gep sizes are speci ed:
0:02 (CRWENO5 on 64° points), 0:03125 (WENO5 on 64 points), 0:025 (WENO5
on 8@ points), 0:005 (CRWENOS5 on 256 points), 0:008 (WENO5 on 256 points),
and 0:00625 (WENO5 on 326 points). These values ensure that a fair comparison
of the computational cost is made based on the linear stabity limits of the two
schemes. The initial turbulence intensity (up) results in a smooth, turbulent ow;
however, the ow is characterized by severe gradients. Thescan be observed in Fig.
4.4, which shows the density and vorticity magnitude contous for the CRWENO5
solution obtained on the grid with 256° points. The number of Jacobi iterations for the
tridiagonal solver in the CRWENOS scheme is xed at 10. Figure 4.5 shows the kinetic
energy spectrum for the solutions obtained, with the inset h each gure showing the
moderate and small length scales. The CRWENO5 scheme yieldslutions with higher
resolution than that of the WENOS5 scheme on the same grid (62 and 256 points).
At moderate length scales, the resolution of the CRWENO5 schme on grids with
64° and 256 points is comparable to that of the WENO5 scheme on 88 and 32C
points, respectively, whereas at smaller length scales, hhCRWENOS5 solutions have
the highest resolution.

Figure 4.6(a) shows the solution wall times for the CRWENOS5 gheme on the 258
points grid and the WENO5 scheme on the 328 points grid. The subdomain sizes vary
from 43 (52 for WENOS5) points for 262; 144 (64) processors to 32 (40° for WENOS5)
points on 512 (8) processors. Figure 4.6(b) shows the modi ed parallel e ciencies
of the CRWENO5 and WENOS schemes as a function of the subdomaisizes. Both
gures show that the CRWENO5 scheme does not scale well at snibsubdomain sizes;
however, it is more e cient than the WENOS5 scheme for subdomain sizes larger than
43 points per processor, and the performances are similar at ia subdomain size.
Figure 4.6(c) shows the solution wall times of the CRWENOS5 aml WENOS5 schemes
with constant subdomain sizes of 4 and 5° points per processor, respectively. The
problem sizes vary from 32 (402 for WENOS5) points on 82 processors to 256 (320° for
WENOS5) points on 642 processors. The CRWENOS5 scheme is observed to scale well
and remains less expensive than the WENOb5 scheme as the predh size increases.

5. Conclusions. We present an e cient parallel implementation of nonlinear
compact schemes by applying the iterative substructuring @proach to the solution
of the tridiagonal system of equations. The diagonal dominace of the reduced sys-
tem allows it to be solved iteratively to su cient accuracy w ith few iterations, whose
number is speci ed a priori. Collective communications, dda transposition across pro-
cessors, and complicated scheduling of computation and camunications are avoided,;
minimal point-to-point communications between neighboring processors are required.
Solutions on multiple processors are identical to those on &ingle processor; thus,
parallelization does not a ect the numerical properties (accuracy and resolution) of
the compact schemes.
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Fig. 4.6 . Isotropic turbulence decay: wall times and parallel e cien cies for the CR-
WENOS5 and WENOS5 schemes. The number of processors varies fran 512 to 262,144.

In this paper we consider the CRWENO scheme as an example of aonlinear
compact scheme. The performance of this algorithm is demomsted on manufactured
solutions as well as physically relevant ow problems. We cmpare the computational
cost of the CRWENO and WENO schemes as a function of the numbebf processors
for comparable solutions. The e ect of the increasing cost bthe tridiagonal solver on
the performance of the CRWENO scheme is demonstrated in onepatial dimension:
it is computationally more e cient for larger subdomains; f or smaller subdomains,
the increasing cost of the tridiagonal solver renders it moe expensive than the WENO
scheme. The di erence in the computational e ciencies of the CRWENO and WENO
schemes is larger for three-dimensional problems, and theapallel tridiagonal solver
achieves higher communication e ciency and arithmetic intensity. Our analysis on
the IBM Blue Gene/Q architecture shows that the CRWENO scheme has a higher
computational e ciency until very small subdomain sizes; at the smallest subdomain
size considered (4 points per dimension), the e ciencies a similar. Our parallel
implementation of the CRWENO scheme shows excellent weak sting, compared
with the noncompact WENO scheme. We demonstrate these propéies on up to

500, 000 processors.
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This study used the three- and four-stage explicit Runge-Kita schemes for time
integration, and the wall times for the CRWENO and WENO schemes are compared
by allowing a larger CFL for the WENO scheme because of its higer linear stabil-
ity limit. This is relevant for simulations where the soluti on is obtained with the
largest possible stable time-step. Derivation and implematation of an optimal time-
integration scheme for the CRWENO scheme (and other nonlinar compact schemes)
are subjects of future research. Although this paper presda results for the CRWENO
schemes, the implementation can be applied to other nonlirer compact schemes as
well, such as the hybrid compact-WENO, WCS, and FVCW schemes

The analysis presented in this paper and the conclusions dven are based on the
performance of our algorithm on the IBM BG/Q architecture, w hich is characterized
by an excellent communication network. The scalability and parallel e ciency of
our approach on other high-performance computing platforns will be investigated in
the near future. In addition, performance improvements with alternative, platform-
speci ¢ compilers will be explored.

Appendix A. Hardware and Software Detalils.

The computations presented in this study are carried out on he IBM Blue
Gene/Q architecture. Smaller cases are solved olesta, a small development rack
[2], while larger cases (including those presented in Sectn 4) are solved onMira [1].
The two machines have identical hardware and software envonments but di er by
the number of racks| Vesta comprises two racks whileMira comprises 49152 racks.
One rack of either system has 1024 compute nodes, each haviag.600 MHz PowerPC
A2 processor with a 16-core chip and 16 GB RAM. Each core suppts 4 hardware
threads. A 17th core is available for the communication libary. Vesta thus has 32 768
cores with a peak performance of 4144 tera ops, while Mira has 805306, 368 cores
with a peak performance of 10 peta ops. The nodes are conneetl by a 5D torus
network with 2 GB/s links.

The algorithm is coded in the C programming language, and theGNU Compiler
suite is used to compile it. The-O3 optimization ag is used. The Message Passing
Interface (MP) library is used to implement the parallel functions. We do not use any
thread-based parallelism in our algorithm in this study. The performance tests are
carried out by running 32 processes on each node of our platfms, or 2 processes per
core to use the resources e ciently.
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