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Abstract – This paper reports new contributions to the 

advancement of wind power uncertainty forecasting be-
yond the current state-of-the-art. A new kernel density 
forecast (KDF) method applied to the wind power problem 
is described. The method is based on the Nadaraya-Watson 
estimator, and a time-adaptive version of the algorithm is 
also proposed. Results are presented for different case-
studies and compared with linear and splines quantile 
regression. 

Keywords: Wind power forecasting, uncertainty, 
kernel density estimation, time-adaptive. 

1 INTRODUCTION 

A wind power forecaster seeks the perfect wind 
power forecast, but it is common sense that this repre-
sents a utopian image. Nevertheless, successful efforts 
have been made to decrease the wind power forecast 
error [1]. Furthermore, with the growing penetration of 
wind power and the economic importance of forecasting 
errors [2], it is becoming increasingly important to also 
forecast the uncertainty associated with wind power 
generation prediction.  

An extensive state-of-the-art report on algorithms for 
wind power uncertainty forecasting can be found in [3]. 
The most popular statistical algorithms are: splines 
quantile regression [4], which consists of a linear quan-
tile regression with basis functions formulated as cubic 
B-splines; adapted resampling [5], which is a process for 
generating alternative scenarios of power production, 
and this way, it is possible to change the weights ob-
tained by a fuzzy inference system. Physical approaches 
for uncertainty forecasting can be found in [6] and [7]. 

The information provided by probabilistic forecasting 
algorithms creates additional value (e.g. economic) in 
several decision-making problems. Botterud et al. [8] 
presented several bidding strategies for wind power in 
the electricity market, such as expected utility maximi-
zation and trade-off between expected value and risk. 
Matos and Bessa [9] presented a decision making ap-
proach for setting the operating reserve requirements 
using non-parametric probabilistic forecasts (a set of 
quantiles) as input. Wang et al. [10] described a stochas-
tic unit commitment that uses forecasted scenarios of 

wind power generation as input. Usaola [11] presented a 
probabilistic power flow that takes into account correla-
tion between wind farms and uses beta distributions for 
modeling the wind power uncertainty. 

Wind power uncertainty can take the form of prob-
abilistic forecasts [4]-[14] or scenarios for short-term 
wind power generation [12]. Probabilistic forecasting 
consists of expressing the wind power generation or 
forecast error in “probabilistic terms”, such as: paramet-
ric representation (e.g. Gaussian distribution); moments 
of the distributions (e.g. standard deviation, skewness); a 
set of quantiles; probability density function (pdf). Nor-
mally, the uncertainty representation is determined by 
the algorithm used, e.g. if quantile regression is used, 
the uncertainty is represented by a set of quantiles. 

Models trained in an offline mode (e.g. [4][14]) are 
unable to cope with (non-stationary) changes in the 
underlying distributions of the input variables. The trend 
in the state-of-the-art is to develop algorithms capable of 
adapting to changes in data [13]. 

Hence, an algorithm for wind power uncertainty fore-
casting should ideally have as requisites: i) a high flexi-
bility to represent wind power uncertainty; ii) time-
adaptive characteristics. 

In this paper we propose a novel Kernel Density 
Forecast (KDF) algorithm that addresses these two req-
uisites. The output is a pdf of the forecasted wind power, 
and since this representation is generic it can be trans-
formed to several uncertainty forms, such as quantiles, 
standard deviation, or skewness. A time-adaptive ver-
sion of the algorithm is described, which means that the 
model is capable of learning from recent information 
while discounting older information. 

Methods based on Kernel Density Estimation (KDE) 
are not new in the state-of-the-art, one example can be 
found in [14]. The authors present an adaptation of the 
classic Nadaraya-Watson kernel density estimator, 
where all the kernel functions are biweight functions. 
The reflection method was used for bounded variables.  

Our approach differs in two important ways: 1) our 
method is based on selecting adequate kernels for mod-
eling the different variables types, 2) our method is 
time-adaptive.  
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The paper is organized as follows: section 2 describes 
the KDF methodology; in section 3 results are presented 
for different case-studies and compared with linear and 
splines quantile regression; section 4 presents the con-
clusions. 

2 KERNEL DENSITY FORECAST 
METHODLOGY 

2.1 Kernel Density Estimation 
KDE consists of a non-parametric estimator of a 

probability density function (pdf) [15]. Given independ-
ent and identically distributed data (i.i.d.) X1,…,Xn 
drawn from an unknown density function f, the univari-
ate KDE is given by: 
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where N is the number of samples, K is a kernel function 
and h the bandwidth parameter. This equation, places a 
kernel around each sample Xi. 

Given i.i.d. multivariate data X1d,…,Xnd from d dif-
ferent variables drawn from an unknown multivariate 
density function f, the multivariate KDE is given by the 
product kernel estimator [16]: 
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where Kj is the kernel function for variable j with band-
width hj. 

2.2 Nadaraya-Watson Estimator 
Conditional density estimation consists of estimating 

the density of a random variable Y, knowing that the 
explanatory random variable X is equal to x. In other 
words, it consists of estimating the density of Y condi-
tioned to X=x, f(y|X=x). The conditional density can be 
formulated as follows: 
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where fXY(x,y) is the multivariate density function of X 
and Y (joint pdf) and fX(x) is the marginal density of X. 

It is also possible to have nonparametric conditional 
density estimation using Eq. 1 and 2. The classic ap-
proach is the modified Nadaraya-Watson kernel 
smoother [17]: 
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where the bandwidth hy controls the smoothness of each 
conditional density in the y direction, while hx controls 

the smoothness between conditional densities in the x 
direction. 

2.3 Formulation for the Wind Power Problem 
The wind power density forecast problem can be 

formulated as: forecast the wind power pdf at time step t 
for each look-ahead time step t+k of a given time-
horizon (e.g. up to 72 hours ahead) knowing a set of 
explanatory variables (numerical weather prediction 
(NWP) variables, wind power measured values, hour of 
the day, etc.). 

Translating this sentence to an equation, we have: 
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where pt+k is the wind power forecasted for look-ahead 
time t+k, xt+k|t are the explanatory variables forecasted 
for look-ahead time step t+k and available/launched at 
time step t. 

Eq. 6 can be solved using Eq. 4 and 5, where the 
variable Y is the wind power, and the explanatory vari-
ables X are for instance: NWP variables (wind speed, 
wind direction, pressure), wind power point forecast, 
measured wind power.  

Fig. 1 depicts the joint pdf computed using Eq. 2 for 
data from a real wind farm. This joint pdf represents the 
probability density associated to each joint realization of 
forecasted wind speed and realized wind power.  

Fig. 2 is a discrete representation of the information 
contained in Eq. 6. It allows seeing the changes in the 
wind power density function conditioned to different 
values of forecasted wind (i.e. the explanatory variable).  
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Figure 1:  Joint probability density function of forecasted 
wind speed and measured wind power. 
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Figure 2:  Conditional KDE for forecasted wind speed and 
wind power generation. 
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2.4 Kernel Function Choice 
The choice of the kernel function for the wind power 

forecasting problem is a critical issue. The choice de-
pends on the type of variable.  

We have in the wind power problem four different 
variable types: wind power bounded between 0 and 1 
(e.g. rated power); wind speed bounded between 0 and 
+Inf ; circular variables like the wind direction; variables 
such as temperature, between -Inf and + Inf. For these 
four types, different kernels should be considered. 

For variables with range [0,1] we use the following 
beta kernel (used for wind power in Fig. 1) [18]: 
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where Kp,q is the density function of a Beta(p,q) random 
variable defined by: 
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with B(.) denoting the beta function, p and q are the two 
positive shape parameters, and h being the bandwidth 
parameter.  

For the variables with support [0,+Inf) the gamma 
kernel (used for wind speed in Fig. 1) [19] was used: 
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where Kp,q is the density function of a Gamma(p,q) ran-
dom variable defined by:  
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with Γ(.) denoting the gamma function, p as the shape 
parameter, q as the scale parameter, and h is the band-
width parameter of Kp,q. 

For variables with unbounded support, the natural 
choices are the Gaussian kernel or the biweight kernel. 

For circular variables the approach is to use circular 
distributions such as the von Mises distribution [20]:  
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where I0 is the modified Bessel function of the first kind 
and order 0 and defined by: 
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The parameter µ is the directional center of the distri-
bution, κ is the concentration parameter and θ belongs to 
any interval of length 2π. The concentration parameter 
can be used to control the degree of smoothing in circu-
lar KDE, and it is analogous to the bandwidth parameter 
but larger values lead to less smoothing. 

Note that the integrals computed from the beta and 
gamma kernels may lead to distributions that do not 
have an integral (area of the distribution) equal to one. 

Hence, we use the idea of a modified beta kernel estima-
tor [21]: 
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Since this is only a change of scale, the normalization 
is employed over the conditional function of Eq. 4. 

2.5 Time-adaptive Algorithm 
A recursive formula described in the literature [22] 

can be used for the KDE estimator: 
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The extension to the multivariate case (Eq. 2) is 
straightforward. 

Eq. 14 allows updating the density function when 
new samples are available without the need to entirely 
recompute the whole density function. However, as the 
number of t increases, the ratio (n-1)/n approaches one 
(and 1/n approaches zero), and then the new samples 
become redundant. Moreover, if there is a change in the 
general structure of the data (non-stationary data), this 
recursive estimation is incapable of automatically dis-
card older data. 

In order to overcome these problems, the KDE esti-
mator with exponential smoothing [22] can be used: 
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where λ is called forgetting factor and controls how 
quickly or slowly the exponential smoothing adapts to 
the new data (exponential forgetting). A value of λ close 
to one means that the exponential smoothing puts more 
weight on the historical data and little weight on the 
most recent values, while when λ is closer to zero it 
means the opposite situation; λ can be represented in 
terms of n, and we have: λ=n/(n+1). 

The Nadaraya-Watson estimator described in section 
2.2 can be converted to a time-adaptive estimator using 
Eq. 15. The estimator becomes: 
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where ft(y|X=x) means the knowledge of the model at 
time instant t, which is updated using recent values of Y 
and X. 

The time-adaptive wind power forecast problem con-
sists of the following main steps: 

1. ( )tktktt xXpf ||ˆ
++ = : KDF model with knowl-

edge at time step t; 
2. Obtain new values of measured wind power 

generation and corresponding NWP data for the 
same period. This recent data is used to update 
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the knowledge of the model (using Eq. 16), and 
the model in (1) becomes ( )tktktt xXpf |1 |ˆ

++− = ; 

this process is repeated when new values are available. 

3 CASE STUDIES 

3.1 Description 
Two different sets of data are used as case studies. 

The first dataset consists of day-ahead wind power fore-
casted and realized values for 15 hypothetical wind 
power sites in the state of Illinois, obtained from 
NREL’s Eastern Wind Integration and Transmission 
Study [23]. We used the wind power data for the period 
Jan-Aug to train the uncertainty forecast models. The 
months between September and December are used as a 
test dataset. 

The second dataset is from a large wind farm located 
in flat terrain in the U.S. Midwest. The complete dataset 
(SCADA and NWP) correspond to the period between 
January 1st 2009 and February 20th 2010.  The NWP 
data was generated with the Weather Research and 
Forecasting (WRF) model [24] by Argonne National 
Laboratory and consists of several weather variables 
(e.g. wind speed, direction, temperature) for one refer-
ence point inside the wind farm.  

The temporal horizon of the NWP predictions was as 
follows:  wind power is forecasted at 6 AM for the tem-
poral horizon of t+6 up to t+48 hours. The temporal 
resolution of the forecasts is one hour. The training 
dataset was selected to have 70% of the all available 
data (30% of for testing): training set from 1 January 
2009 to 21 November 2009 (12169 points), and the 
testing set from 22 November 2009 to 20 February 2010 
(5203 points). 

3.2 Evaluation Framework 
The results obtained with the Nadaraya-Watson esti-

mator were compared with the linear quantile regression 
model and the splines quantile regression [4]. 

A framework to evaluate wind power probabilistic 
forecasts detailed in [25] was followed in this paper. 
Three metrics were used for evaluation: calibration, 
sharpness and skill score.  

Calibration is a measure of the agreement between 
nominal proportions (forecasted probabilities) and the 
ones computed from the evaluation sample. In other 
words, for a quantile the empirical proportion should 
equal the nominal, e.g. an 85% quantile should contain 
85% of the observed values lower or equal to its value.  

In order to evaluate quantile forecasts, it is necessary 
to define the indicator variable. An indicator variable for 
a quantile forecast α

tktq |ˆ + with nominal proportion α is: 
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The indicator variable refers to the actual outcome of 
pt+k at time t+k. 

Furthermore, these indicators are defined as follows: 
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that is, as sums of hits and misses, respectively, for a 
given horizon k over N realizations. 

The empirical proportions are computed with the Eq. 
17 and 18 as follows: 
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The difference between empirical and nominal pro-
portions is considered the bias of the probabilistic fore-
casting method. 

Sharpness is the tendency of probability forecasts to-
wards discrete forecasts. Quantiles are gathered by pairs 
in order to obtain intervals with different nominal cover-
age rates. Let 2/

|
2/1

|| ˆˆ αααδ tkttkttkt qq +
−
++ −=  be the size of the 

interval forecast with nominal coverage rate 1-α esti-
mated at time t for lead time t+k. In this paper, sharp-
ness is measured by the mean size of the distance be-
tween quantiles: 
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We also calculated a skill score from Eq. 22 which 
gives information about a model’s performance (e.g. 
calibration, sharpness, etc.) in a single measure for a set 
of m quantiles: 
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where pt+k is the realized wind power, αi is the quan-
tile proportion, qt+k is the forecasted quantile and ξ is the 
indicator variable of Eq. 17. The higher the scoring rule, 
the better: the maximum value is 0 for perfect probabil-
istic forecasts. 

For reasons of comparison, the probabilistic forecast 
is represented through a set of quantiles ranging from 
5% to 95% with a 5% increment. 

3.3 Evaluation Results: NREL’s EWITS Study 

3.3.1 Offline Results 

The kernel function used in the Nadaraya-Watson 
(NW) estimators was Chen’s beta kernel for both real-
ized and forecasted wind power (i.e. the explanatory 
variable). The kernel size was 0.001 for both variables 
(determined experimentally by trial-error).  

Fig. 3 shows the average calibration for the whole 
time horizon (24 hours) for probabilistic forecasts ob-
tained with the linear quantile regression (Linear QR), 
splines quantile regression (Splines QR) and the NW 
estimator. Note that what is depicted in the diagram is 
the difference between forecasted and empirical quantile 
proportions. 
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For the quantiles above 55% the NW estimator pre-
sent a lower deviation than the QR methods. For quan-
tiles below the median the splines QR is competitive 
with the NW, and for some quantiles it achieves the 
lowest deviation.  

On average, the methods overforecast the quantiles 
since the forecasted quantile proportions are greater than 
the empirical ones. The tests performed with different 
bandwidths showed that by changing the kernel band-
width the model changes from underestimation to over-
estimation and vice-versa. 
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Figure 3:  Calibration diagram for the offline test with NREL 
data. 
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Figure 4:  Sharpness diagram for the offline test with NREL 
data. 

Fig. 4 depicts a sharpness diagram where the x-axis is 
the nominal coverage of the forecast interval (1-α) and 
the y-axis is the average size of the intervals.  

In this case what is desired is to have intervals with 
smaller size for all coverage rates. In terms of sharpness 
the forecasted quantiles presented relatively narrow 
amplitudes for all methods, although splines QR has the 
lowest sharpness. 

There is a trade-off between reliability and sharpness, 
meaning that improving the reliability will generally 
degrade the sharpness and vice-versa [14]. 

3.3.2 Time-adaptive Algorithm: Proof of Concept 

The aim of this section is to demonstrate the validity 
of the time-adaptive concept presented in section 2.5. 
However, in order to introduce a change in the data 
structure, we “disconnected” two sites (one of 211.6 
MW and another of 616.1 MW, out of a 5.19 GW total) 
during Jan-Sep and “connected” them after Oct.  

This change was created artificially; however, it re-
produces a situation that could actually happen. For 
instance: a system operator is receiving forecasts from 
13 wind farms (these forecasts are summed up and esti-
mates for the uncertainty associated to the total wind 
power generation are produced); then, in October two 
new wind farms are connected to the grid. In this case, 
the knowledge from past observations is no longer valid. 
By using a time-adaptive model the system operator is 
able to adapt to the new situation without requiring an 
offline training of the model. 

Fig. 5 depicts the calibration diagram obtained with 
the offline and the time-adaptive NW estimators with 
three different values of λ.  

Due to the increase in the wind power generation 
with the connection of two wind farms, it is expected 
that the offline model gives an underestimation of the 
quantiles for values below the 50% quantile and an 
overestimation of the quantiles for greater values. As an 
example, the 95% quantile means that the probability of 
having a wind generation above its value is only 5%; 
however, the empirical analysis with the offline ap-
proach shows that this probability is 13%.  

With the time-adaptive version, under and overesti-
mations are partly corrected. The calibration obtained 
with λ equal to 0.999 and 0.995 is much better than the 
offline approach. For instance, for the quantile 95% the 
empirical proportions obtained with the time-adaptive 
approach is 92.3% with λ=0.999 and 91.2% with 
λ=0.995.  

3.4 Evaluation Results: Midwest Wind Farm 

3.4.1 Offline Results 

The following kernel functions were used: Chen’s 
beta kernel with h=0.008 for the wind power generation; 
Chen’s gamma kernel with h=0.05 for the wind speed 
forecast; von Mises distribution with κ= 2.5 for the 
forecasted wind direction; Chen’s beta kernel with h=0.1 
for the look-ahead time step. The kernel bandwidth 
values were determined experimentally (trial-error) and 
using as starting point the values suggested by the R 
package “hdrcde” [26]. 

Fig. 6 depicts the calibration obtained with NW and 
splines QR (with 6 degrees of freedom). The best cali-
bration performance is from the NW estimator. As pre-
viously mentioned, due to the trade-off between calibra-
tion and sharpness, it is expected from the splines QR a 
better sharpness performance, as depicted in Fig. 7.  

Fig. 8 depicts the skill score computed for each look-
ahead time step for both NW and QR estimators. The 
NW estimator has almost the same performance as QR 
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in terms of skill score. QR is better than KDF for some 
look-ahead steps, but it is worse in others. 
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Figure 5:  Calibration diagram for the NREL dataset with 
concept change. 
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Figure 6:  Calibration diagram for the Midwest wind farm 
with offline NW and QR estimators. 
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Figure 7:  Sharpness diagram for the Midwest wind farm with 
offline NW and QR estimators. 

Note that the skill score does not inform on the con-
tributions from calibration or sharpness. Hence, calibra-
tion should be assessed (as a primary requirement), and 
then the information provided by skill score allows de-
riving conclusions about the remaining metrics [25]. 
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Figure 8:  Skill score diagram for the Midwest wind farm 
with offline NW and QR estimators. 

3.4.2 Time-adaptive Results 

The time-adaptive NW version was compared with 
the offline version for different values of the forgetting 
factor (λ). For a better understanding, λ was represented 
by the corresponding n value. So, three values for λ 
were considered: 0.99963477 (corresponds to n=2738 
points), 0.999 (corresponds to n=1000 points) and 0.995 
(corresponds to n=200 points). The same kernel and 
bandwidths as in the offline version was used. 

Fig. 9 depicts the calibration results. The time-
adaptive version with n=2738 and n=1000 achieved the 
best performance, while a small number of points in the 
sliding window leads to a worse performance comparing 
to the offline results. The version with higher λ does not 
have a significant impact on the sharpness, as depicted 
in Fig. 10.  
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Figure 9:  Calibration diagram for the Midwest wind farm 
with offline and time-adaptive NW. 

Fig. 11 depicts the skill score for both versions. The 
best performance was obtained with 2738 and 1000 
points. The difference between offline and time adaptive 
versions is only noticeable in the first 28 look-ahead 
time steps. 
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Figure 10:  Sharpness diagram for the Midwest wind farm 
with offline and time-adaptive NW. 
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Figure 11:  Skill score diagram for the Midwest wind farm 
with offline and time-adaptive NW. 

4 CONCLUSIONS 

This paper presents a new approach to estimate the 
uncertainty in short term wind power forecasts, based on 
kernel density estimation, including a new time-adaptive 
model.  

Our studies demonstrated that kernel density fore-
casts with the NW estimator have a tendency to present 
better performance in terms of calibration, while the QR 
methods have a tendency to present a better sharpness 
performance. The skill score of both methods is rather 
similar. We must underline that the calibration metric is 
the primary requirement for wind power probabilistic 
forecasting.  

The new time-adaptive version improves the bias of 
the probabilistic forecasts (calibration), while only 
slightly changing the sharpness; it improves the skill 
score when compared with the offline approach. 

From a qualitative perspective, density estimation 
models offer an important advantage over other models. 
The output is a complete description of the forecasted 
pdf, something that is of importance for several decision 
problems in the power system domain. Moreover, the 

full pdf is very valuable for forecasting multimodal 
distributions (i.e. compute the modes instead of just 
computing the expected value). Hence, the work re-
ported in this paper is seen as a valid contribution to the 
wind power forecasting activity. 
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