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Abstract — This paper reports new contributions to he
advancement of wind power uncertainty forecasting &-
yond the current state-of-the-art. A new kernel desity
forecast (KDF) method applied to the wind power prblem
is described. The method is based on the Nadaraya-\fgan
estimator, and a time-adaptive version of the algathm is
also proposed. Results are presented for differentase-
studies and compared with linear and splines quarig
regression.

Keywords: Wind power forecasting, uncertainty,
kernel density estimation, time-adaptive.

1 INTRODUCTION

A wind power forecaster seeks the perfect wind

power forecast, but it is common sense that thisere
sents a utopian image. Nevertheless, successfuiteff

wind power generation as input. Usaola [11] presgiat
probabilistic power flow that takes into accountreta-
tion between wind farms and uses beta distributfons
modeling the wind power uncertainty.

Wind power uncertainty can take the form of prob-
abilistic forecasts [4]-[14] or scenarios for shtmtm
wind power generation [12]. Probabilistic forecagti
consists of expressing the wind power generation or
forecast error in “probabilistic terms”, such aargmet-
ric representation (e.g. Gaussian distribution)ments
of the distributions (e.g. standard deviation, skess); a
set of quantiles; probability density functigodf). Nor-
mally, the uncertainty representation is determibgd
the algorithm used, e.g. if quantile regressiomused,
the uncertainty is represented by a set of quantile

Models trained in an offline mode (e.g. [4][14]ear
unable to cope with (non-stationary) changes in the

have been made to decrease the wind power forecastynderlying distributions of the input variables.eTinend

error [1]. Furthermore, with the growing penetratiof
wind power and the economic importance of foreogsti
errors [2], it is becoming increasingly importaatélso

in the state-of-the-art is to develop algorithmgatade of
adapting to changes in data [13].
Hence, an algorithm for wind power uncertainty fore

forecast the uncertainty associated with wind power casting should ideally have as requisites: i)  Higxi-

generation prediction.

An extensive state-of-the-art report on algorittfors
wind power uncertainty forecasting can be founf3in
The most popular statistical algorithms are: spgline
quantile regression [4], which consists of a lingaan-
tile regression with basis functions formulatedcabic
B-splines; adapted resampling [5], which is a pssder
generating alternative scenarios of power prodaoctio
and this way, it is possible to change the weigltis
tained by a fuzzy inference system. Physical apgres
for uncertainty forecasting can be found in [6] §nfd

The information provided by probabilistic forecasti
algorithms creates additional value (e.g. econorimic)
several decision-making problems. Bottereidal. [8]
presented several bidding strategies for wind pawer
the electricity market, such as expected utilityximé-
zation and trade-off between expected value ard ris

Matos and Bessa [9] presented a decision making ap-
proach for setting the operating reserve requirésnen

using non-parametric probabilistic forecasts (a cfet
quantiles) as input. Wareg al.[10] described a stochas-
tic unit commitment that uses forecasted scenasfos

bility to represent wind power uncertainty; ii) #m
adaptive characteristics.

In this paper we propose a novel Kernel Density
Forecast (KDF) algorithm that addresses these ége r
uisites. The output is pdf of the forecasted wind power,
and since this representation is generic it carrdes-
formed to several uncertainty forms, such as glesnti
standard deviation, or skewness. A time-adaptive ve
sion of the algorithm is described, which means the
model is capable of learning from recent informatio
while discounting older information.

Methods based on Kernel Density Estimation (KDE)
are not new in the state-of-the-art, one exampie
found in [14]. The authors present an adaptatiothef
classic Nadaraya-Watson kernel density estimator,
where all the kernel functions are biweight funatio
The reflection method was used for bounded variable

Our approach differs in two important ways: 1) our
method is based on selecting adequate kernelsddr m
eling the different variables types, 2) our methed
time-adaptive.
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The paper is organized as follows: section 2 dessri the smoothness between conditional densities inxthe
the KDF methodology; in section 3 results are presk direction.

for_dlfferent cgse—studleg a|.'1d compared with lirered 2.3 Formulation for the Wind Power Problem
splines quantile regression; section 4 presentsoime . .
clusions The wind power density .forecast prob_lem can be
' formulated as: forecast the wind powpeif at time step
for each look-ahead time stepk of a given time-
2 KERNEL DENSITY FORECAST horizon (e.g. up to 72 hours ahead) knowing a éet o
METHODLOGY explanatory variables (numerical weather prediction

(NWP) variables, wind power measured values, héur o

the day, etc.).
Translating this sentence to an equation, we have:

2.1 Kernel Density Estimation
KDE consists of a non-parametric estimator of a
probability density functionpdf) [15]. Given independ- ; ( )
ent and identically distributed data (i.i.d¥y,...,% ; _ _ o\ Broier X
Y (1103 fP(pt+k | X = Xt+k|t) (6)

drawn from an unknown density functiénthe univari- i (X
ate KDE is given by:
" 1 & X —X. wherep. is the wind power forecasted for look-ahead
fx(x):ﬁ K( h 'j 1) time t+k, x.i: are the explanatory variables forecasted
i= for look-ahead time steprk and available/launched at

whereN is the number of samplés,is a kernel function time stept.

andh the bandwidth parameter. This equation, places a EQ. 6 can be solved using Eq. 4 and 5, where the
kernel around each sampie variableY is the wind power, and the explanatory vari-

Given i.i.d. multivariate datXyg,...,X,q from d dif- ablesX are for instance: NWP variables (wind speed,

ferent variables drawn from an unknown multivariate Wind direction, pressure), wind power point fordcas

density functiorf, the multivariate KDE is given by the ~ measured wind power. _
product kernel estimator [16]: Fig. 1 depicts the joinbdf computed using Eq. 2 for

) 1N dq % = X. data from a real wind farm. This joiptf represents the
f(%,0 %y ) = =3 M=K, ) probability density associated to each joint resicn of
N\l h forecasted wind speed and realized wind power.

Fig. 2 is a discrete representation of the inforomat
wherekK; is the kernel function for variabjewith band- contained in Eq. 6. It allows seeing the changethén
width h;. wind power density function conditioned to differen
values of forecasted wind (i.e. the explanatoryaide).

h.

J

2.2 Nadaraya-Watson Estimator

Conditional density estimation consists of estingti
the density of a random variab¥ knowing that the
explanatory random variablg is equal tox. In other
words, it consists of estimating the densityYotondi-
tioned toX=x, f(y|X=x). The conditional density can be
formulated as follows:

f(y|X:x):M @)

(%)

wherefy(X,y) is the multivariate density function of X
andY (joint pdf) andfy(x) is the marginal density of.

It is also possible to have nonparametric condiion
density estimation using Eq. 1 and 2. The claspic a
proach is the modified Nadaraya-Watson kernel
smoother [17]:

Figure 1: Joint probability density function of forecasted
wind speed and measured wind power.
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where the bandwidth, controls the smoothness of each
conditional density in thg direction, whilehy controls Figure 2: Conditional KDE for forecasted wind speed and
wind power generation.

17" Power Systems Computation Conference Stockholm Sweden - August 22-26, 2011

Pscc



2.4 Kernel Function Choice

The choice of the kernel function for the wind powe
forecasting problem is a critical issue. The chalee
pends on the type of variable.

We have in the wind power problem four different
variable types: wind power bounded between 0 and 1
(e.g. rated power); wind speed bounded betweendO an
+Inf; circular variables like the wind direction; véblas
such as temperature, betweémf and + Inf. For these
four types, different kernels should be considered.

For variables with range [0,1] we use the following
beta kernel (used for wind power in Fig. 1) [18]:

A 1 <N

fy (X) = NP5 Kx/h+:L(l—x)/h+l(Xi )
whereK, q is the density function of Beta(p,q)random
variable defined by:

K(u p,q)=8(;q)

with B(.) denoting the beta functiop,andq are the two
positive shape parameters, amdeing the bandwidth
parameter.

For the variables with support [0,+Inf) the gamma
kernel (used for wind speed in Fig. 1) [19] wasdise

- 1

fx (X):N i=1Kx/h+lh(xi) )
whereK, 4 is the density function of @Gamma(p,qyan-
dom variable defined by:

K(u p,q)=uf* Be% ud[0+eo[ (10)

with T'(.) denoting the gamma functiop,as the shape
parameterg as the scale parameter, amés the band-
width parameter ok o

For variables with unbounded support, the natural
choices are the Gaussian kernel or the biweigimdter

For circular variables the approach is to use tarcu
distributions such as the von Mises distributio®]{2

9(6; k) = 20

)

WP ffi-u)*™, uofog (®)

eKos(B—,u) (11)

wherelg is the modified Bessel function of the first kind
and order 0 and defined by:

2
NE %1 [e*Ide (12)
0

The parametet is the directional center of the distri-
bution, x is the concentration parameter ghlelongs to
any interval of length 2 The concentration parameter
can be used to control the degree of smoothingrdn-c
lar KDE, and it is analogous to the bandwidth patem
but larger values lead to less smoothing.

Note that the integrals computed from the beta and
gamma kernels may lead to distributions that do not
have an integral (area of the distribution) eqoabne.

Hence, we use the idea of a modified beta kerriighas

tor [21]:
f'(x)= ﬂ (13)

1~
L f(X)dx
Since this is only a change of scale, the normidiza

is employed over the conditional function of Eq. 4.

2.5 Time-adaptive Algorithm
A recursive formula described in the literature][22
can be used for the KDE estimator:

(0="ted e L m[x—hxij (14)

n

The extension to the multivariate case (Eq. 2) is
straightforward.

Eq. 14 allows updating the density function when
new samples are available without the need toaiptir
recompute the whole density function. However, tes t
number of t increases, the rafie-1)/n approaches one
(and 1/n approaches zero), and then the new samples
become redundant. Moreover, if there is a changkéan
general structure of the data (non-stationary dakes
recursive estimation is incapable of automaticali-
card older data.

In order to overcome these problems, the KDE esti-
mator with exponential smoothing [22] can be used:

f”n(x):Amfn_l(x)+(1y)u<[ﬁ\xij as)

where A is calledforgetting factorand controls how
quickly or slowly the exponential smoothing adafuts
the new data (exponential forgetting). A valué.alose

to one means that the exponential smoothing pute mo
weight on the historical data and little weight the
most recent values, while whenis closer to zero it
means the opposite situatioh;can be represented in
terms ofn, and we havet=n/(n+1).

The Nadaraya-Watson estimator described in section
2.2 can be converted to a time-adaptive estimatimgu
Eqg. 15. The estimator becomes:

y-Y,
oo

A0 (xy)+ (1—/1){}% [X;XX‘ ] IIKhy[

A th,l(x)+(1—a)u<[%x'j

X

fyIx=x)=

where f(y|X=x) means the knowledge of the model at
time instantt, which is updated using recent valuesrof
andX.

The time-adaptive wind power forecast problem con-
sists of the following main steps:

1. f‘(pt+k|x:xt+kn): KDF model with knowl-

edge at time stefp

2. Obtain new values of measured wind power
generation and corresponding NWP data for the
same period. This recent data is used to update
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the knowledge of the model (using Eq. 16), and
the model in (1) becomef_, (p,,, | X = Xy, );

this process is repeated when new values are bigila

3 CASE STUDIES

3.1 Description

Two different sets of data are used as case studies
The first dataset consists of day-ahead wind pdorer
casted and realized values for 15 hypothetical wind
power sites in the state of lllinois, obtained from
NREL's Eastern Wind Integration and Transmission
Study [23]. We used the wind power data for theqaker
Jan-Aug to train the uncertainty forecast modelse T

N :#{Eﬁk = 1} = ZN:Ef’k (18)
=)
e, =#{&5 =0p=nf, —N (19)

that is, as sums of hits and misses, respectifaiya
given horizork overN realizations.

The empirical proportions are computed with the Eq.
17 and 18 as follows:
Ny

(20)

é'l? - a

nk,l + nk,O
The difference between empirical and nominal pro-

portions is considered the bias of the probalilifire-

months between September and December are used as Qasting method.

test dataset.

The second dataset is from a large wind farm latate
in flat terrain in the U.S. Midwest. The complettaket
(SCADA and NWP) correspond to the period between
January 1st 2009 and February 20th 2010. The NWP

Sharpness is the tendency of probability forectasts
wards discrete forecasts. Quantiles are gatherquhioy
in order to obtain intervals with different nomirwaver-

— Al-al2 ~al2 i
age rates. Letg, =q.;° — 0, be the size of the

data was generated with the Weather Research andinterval forecast with nominal coverage rdte: esti-

Forecasting (WRF) model [24] by Argonne National
Laboratory and consists of several weather variable
(e.g. wind speed, direction, temperature) for aogferr
ence point inside the wind farm.

The temporal horizon of the NWP predictions was as
follows: wind power is forecasted at 6 AM for tten-
poral horizon of t+6 up to t+48 hours. The temporal
resolution of the forecasts is one hour. The tragjni
dataset was selected to have 70% of the all availab
data (30% of for testing): training set from 1 Janyu
2009 to 21 November 2009 (12169 points), and the
testing set from 22 November 2009 to 20 Februa@d20
(5203 points).

3.2 Evaluation Framework

The results obtained with the Nadaraya-Watson esti-
mator were compared with the linear quantile resiogs
model and the splines quantile regression [4].

A framework to evaluate wind power probabilistic
forecasts detailed in [25] was followed in this gpap
Three metrics were used for evaluation: calibration
sharpness and skill score.

Calibration is a measure of the agreement between
nominal proportions (forecasted probabilities) ahd
ones computed from the evaluation sample. In other
words, for a quantile the empirical proportion skou
equal the nominal, e.g. an 85% quantile shouldasont
85% of the observed values lower or equal to ilseva

In order to evaluate quantile forecasts, it is seagy
to define the indicator variable. An indicator \edaie for
a quantile forecaﬁﬁklt with nominal proportion is:

_ {1” Pe < Gl

éi. (17

0 otherwise

The indicator variable refers to the actual outcarhe
Prk at timet+k.
Furthermore, these indicators are defined as fallow

mated at time for lead timet+k. In this paper, sharp-
ness is measured by the mean size of the distasmce b
tween quantiles:

= 1 o
a a
5 = 2L @
We also calculated a skill score from Eq. 22 which
gives information about a model's performance (e.g.
calibration, sharpness, etc.) in a single measura et
of m quantiles:

Sc(]?t+k » Prak ) =

m

Z (‘wi —a )(pt+k - ﬁﬁk) (22)

i=1

wherep.y is the realized wind powey; is the quan-
tile proportion,q. is the forecasted quantile agiis the
indicator variable of Eq. 17. The higher the scgriale,
the better: the maximum value is O for perfect jpiub
istic forecasts.

For reasons of comparison, the probabilistic foseca
is represented through a set of quantiles rangiom f
5% to 95% with a 5% increment.

3.3 Evaluation Results: NREL's EWITS Study

3.3.1 Offline Results

The kernel function used in the Nadaraya-Watson
(NW) estimators was Chen's beta kernel for both-rea
ized and forecasted wind power (i.e. the explayator
variable). The kernel size was 0.001 for both \@#es
(determined experimentally by trial-error).

Fig. 3 shows the average calibration for the whole
time horizon (24 hours) for probabilistic forecasts-
tained with the linear quantile regression (Lin€xR),
splines quantile regression (Splines QR) and the NW
estimator. Note that what is depicted in the diagia
the difference between forecasted and empiricahtijea
proportions.
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For the quantiles above 55% the NW estimator pre-
sent a lower deviation than the QR methods. Fonqua
tiles below the median the splines QR is competitiv
with the NW, and for some quantiles it achieves the
lowest deviation.

3.3.2 Time-adaptive Algorithm: Proof of Concept

The aim of this section is to demonstrate the itglid
of the time-adaptive concept presented in secti&n 2
However, in order to introduce a change in the data
structure, we “disconnected” two sites (one of B11.

On average, the methods overforecast the quantiles piyw and another of 616.1 MW, out of a 5.19 GW total)

since the forecasted quantile proportions are gréaan

the empirical ones. The tests performed with dfifer
bandwidths showed that by changing the kernel band-
width the model changes from underestimation tar-ove
estimation and vice-versa.
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Figure 3: Calibration diagram for the offline test with NREL
data.
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Figure 4: Sharpness diagram for the offline test with NREL
data.

Fig. 4 depicts a sharpness diagram where the xsaxis
the nominal coverage of the forecast intervab)Yland
the y-axis is the average size of the intervals.

In this case what is desired is to have intervate w
smaller size for all coverage rates. In terms afrghess
the forecasted quantiles presented relatively marro
amplitudes for all methods, although splines QRthas
lowest sharpness.

There is a trade-off between reliability and shagm
meaning that improving the reliability will gendsal
degrade the sharpness and vice-versa [14].

during Jan-Sep and “connected” them after Oct.

This change was created artificially; however,eit r
produces a situation that could actually happemn. Fo
instance: a system operator is receiving foreciasta
13 wind farms (these forecasts are summed up did es
mates for the uncertainty associated to the totadw
power generation are produced); then, in October tw
new wind farms are connected to the grid. In tlisec
the knowledge from past observations is no longdidv
By using a time-adaptive model the system operiator
able to adapt to the new situation without reqgiran
offline training of the model.

Fig. 5 depicts the calibration diagram obtainedhwit
the offline and the time-adaptive NW estimatorshwit
three different values of

Due to the increase in the wind power generation
with the connection of two wind farms, it is expestt
that the offline model gives an underestimationthef
quantiles for values below the 50% quantile and an
overestimation of the quantiles for greater valdesan
example, the 95% quantile means that the probwaloiit
having a wind generation above its value is only; 5%
however, the empirical analysis with the offline-ap
proach shows that this probability is 13%.

With the time-adaptive version, under and overesti-
mations are partly corrected. The calibration otzdi
with A equal to 0.999 and 0.995 is much better than the
offline approach. For instance, for the quantil&®the
empirical proportions obtained with the time-adepti
approach is 92.3% witth=0.999 and 91.2% with
2=0.995.

3.4 Evaluation Results: Midwest Wind Farm

3.4.1 Offline Results

The following kernel functions were used: Chen’s
beta kernel with h=0.008 for the wind power gerierat
Chen’'s gamma kernel with h=0.05 for the wind speed
forecast; von Mises distribution witk= 2.5 for the
forecasted wind direction; Chen’s beta kernel \mit0.1
for the look-ahead time step. The kernel bandwidth
values were determined experimentally (trial-erramyl
using as starting point the values suggested byRthe
package “hdrcde” [26].

Fig. 6 depicts the calibration obtained with NW and
splines QR (with 6 degrees of freedom). The bekt ca
bration performance is from the NW estimator. As-pr
viously mentioned, due to the trade-off betweeibcal
tion and sharpness, it is expected from the splpiesa
better sharpness performance, as depicted in Fig. 7

Fig. 8 depicts the skill score computed for eaatkio
ahead time step for both NW and QR estimators. The
NW estimator has almost the same performance as QR
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in terms of skill score. QR is better than KDF fmme
look-ahead steps, but it is worse in others.
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Figure 5: Calibration diagram for the NREL dataset with
concept change.
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Figure 6: Calibration diagram for the Midwest wind farm
with offline NW and QR estimators.
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Figure 7: Sharpness diagram for the Midwest wind farm with
offline NW and QR estimators.

Note that the skill score does not inform on tha-co
tributions from calibration or sharpness. Hencdibca
tion should be assessed (as a primary requirerreamd),
then the information provided by skill score allods-
riving conclusions about the remaining metrics [25]
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Figure 8: Skill score diagram for the Midwest wind farm
with offline NW and QR estimators.

3.4.2 Time-adaptive Results

The time-adaptive NW version was compared with
the offline version for different values of the detting
factor (). For a better understandirigwas represented
by the corresponding value. So, three values far
were considered: 0.99963477 (corresponds to n=2738
points), 0.999 (corresponds to n=1000 points) af8®
(corresponds to n=200 points). The same kernel and
bandwidths as in the offline version was used.

Fig. 9 depicts the calibration results. The time-
adaptive version with n=2738 and n=1000 achieved th
best performance, while a small number of pointda
sliding window leads to a worse performance conmggri
to the offline results. The version with highiedoes not
have a significant impact on the sharpness, astebi

in Fig. 10.
€7 < offiine .
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© Time-adaptive (n=200)
o
= N y/x )
=) 2/
c - o
=%
g °7 x\ S
S (N v
> NS - g //
[} C}I 4 X\X_Z_Z,X/x °/°
\ 0/
< 4
1\ /
© \o—o—o"’\o/
T T T T T T T T T T T T T T T T T T T
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Figure 9: Calibration diagram for the Midwest wind farm
with offline and time-adaptive NW.

Fig. 11 depicts the skill score for both versiofke
best performance was obtained with 2738 and 1000
points. The difference between offline and timepdia
versions is only noticeable in the first 28 loolead
time steps.
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Figure 10: Sharpness diagram for the Midwest wind farm
with offline and time-adaptive NW.
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Figure 11: Skill score diagram for the Midwest wind farm
with offline and time-adaptive NW.

4 CONCLUSIONS

This paper presents a new approach to estimate the

uncertainty in short term wind power forecasts gllasn
kernel density estimation, including a new time{zttlee
model.

Our studies demonstrated that kernel density fore-
casts with the NW estimatbiave a tendency to present
better performance in terms of calibration, while QR
methods have a tendency to present a better sksgrpne
performance. The skill score of both methods ikaat
similar. We must underline that the calibration meeis
the primary requirement for wind power probabitisti
forecasting.

The new time-adaptive version improves the bias of
the probabilistic forecasts (calibration), while lyon
slightly changing the sharpness; it improves thal sk
score when compared with the offline approach.

From a qualitative perspective, density estimation
models offer an important advantage over other itsode
The output is a complete description of the fortaths
pdf, something that is of importance for several denis
problems in the power system domain. Moreover, the

full pdf is very valuable for forecasting multimodal
distributions (i.e. compute the modes instead it ju
computing the expected value). Hence, the work re-
ported in this paper is seen as a valid contriloutiothe
wind power forecasting activity.
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